Boron Or Compound Containing Same Patents (Class 502/202)
  • Patent number: 6627573
    Abstract: A compound useful as a cocatalyst or cocatalyst component, especially for use as an addition polymerization catalyst compound, corresponding to the formula: (A*+a)b(Z*J*j)−cd, wherein: A* is a cation of from 1 to 80, preferably 1 to 60 atoms, not counting hydrogen atoms, said A* having a charge +a, Z* is an anion group of from 1 to 50, preferably 1 to 30 atoms, not counting hydrogen atoms, further containing two or more Lewis base sites; J* independently each occurrence is a Lewis acid of from 1 to 80, preferably 1 to 60 atoms, not counting hydrogen atoms, coordinated to at least one Lewis base site of Z*, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality, j is a number from 2 to 12 and a, b, c, and d are integers from 1 to 3, with the proviso that a×b is equal to c×d, and provided further that one or more of A*, Z* or J* comprises a hydroxyl group or a polar group containing quiescent reactive functionali
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: September 30, 2003
    Assignee: The Dow Chemical Company
    Inventors: David A. Babb, Richard E. Campbell, Jr., David R. Neithamer, Grant B. Jacobsen, Edmund M. Carnahan
  • Patent number: 6624256
    Abstract: Disclosed is a method of preparation of a siloxane-functionalized high 1,4-cis polybutadiene using a siloxane compound, in which the siloxane group expands the usage of the high 1,4-cis polybutadiene.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: September 23, 2003
    Assignee: Korea Kumho Petrochemical Co. Ltd.
    Inventors: Gwanghoon Kwag, Aju Kim, Seunghwon Lee
  • Patent number: 6617403
    Abstract: A copolymer of ethylene and a higher alpha-olefin having broadened melt processing windows and reduced melt fracture can be produced using a chromium-containing catalyst system and a trialkyl boron cocatalyst. The polymerization process must be carefully controlled to produce a copolymer resin that easily can be made into articles of manufacture.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: September 9, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Ashish M. Sukhadia, Elizabeth A. Benham, Joseph J. Bergmeister, Rex L. Bobsein, Gerhard K. Guenther, Eric T. Hsieh, Max P. McDaniel, Steven J. Secora, Joseph S. Shveima, John D. Stewart
  • Patent number: 6613850
    Abstract: A method for feeding a boron compound, which comprises feeding at least one boron compound selected from (1) to (3) described below in the state suspended or slurried in a solvent continuously to a reactor; a boron compound in the form of fine particles being one or more boron compounds selected from (1) to (3) described below and having a maximum particle diameter of 50 &mgr;m or less; a catalyst component for olefin polymerization consisting of said boron compound in the form of fine particles; a method for producing a boron compound in the form of fine particles which comprises dissolving one or more boron compounds selected from (1) to (3) described below in an aromatic hydrocarbon solvent and then precipitating in an aliphatic hydrocarbon solvent; and a method for producing a boron compound in the form of fine particles which comprises pulverizing one or more boron compounds selected from (1) to (3) described below so that their maximum particle diameter is 50 &mgr;m or less.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: September 2, 2003
    Assignee: Sumitomo Chemical Comoany, Limited
    Inventors: Hideki Sato, Hiroaki Katayama, Kazuki Wakamatsu
  • Patent number: 6610629
    Abstract: Disclosed is a process for producing an oxide catalyst comprising, as component elements, molybdenum (Mo), vanadium (V), at least one element selected from the group consisting of the two elements of antimony (Sb) and tellurium (Te), and niobium (Nb), wherein the process comprises providing an aqueous raw material mixture containing compounds of the component elements of the oxide catalyst, and drying the aqueous raw material mixture, followed by calcination, and wherein, in the aqueous raw material mixture, at least a part of the niobium compound as one of the compounds of the component elements is present in the form of a complex thereof with a complexing agent comprising a compound having a hydroxyl group bonded to an oxygen atom or a carbon atom. Also disclosed is a process for producing (meth)acrylonitrile or (meth)acrylic acid, which comprises performing the ammoxidation or oxidation of propane or isobutane in the gaseous phase in the presence of the oxide catalyst.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: August 26, 2003
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Hidenori Hinago, Hiroyuki Yano
  • Patent number: 6602817
    Abstract: Functionalized amine derivatives are prepared by reacting an amine, a carbonyl derivative, and an organoboron compound under mild conditions. Organoboronic acids react with amines and alpha-hydroxy aldehydes to give anti-alpha-amino alcohols with very high diastereoselectivities (>99% de). When optically pure alpha-hydroxy aldehydes are used in this process, no racemization occurs and the products are obtained with very high enantioselectivities (>99% ee). The reaction also works with unprotected glyceraldehyde to give the corresponding amino diol derivatives, while unprotected carbohydrates give the corresponding amino polyols. The chiral amino alcohol products of this process or their derivatives, react further with metals or non-metals to give adducts that are effective catalysts for a variety of asymmetric reactions. Overall, the present invention relies on the facile synthesis of the chiral amino alcohol ligands for the rapid construction of combinatorial libraries of chiral catalysts.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: August 5, 2003
    Assignee: University of Southern California
    Inventor: Nicos A. Petasis
  • Publication number: 20030144136
    Abstract: The present invention is for a transition metal-free catalyst system for synthesizing high molecular weight, linear polymers. The system comprises a catalyst composition having: (a) a neutral compound having the formula AlR3, wherein R is an alkyl or hydride group; (b) a Lewis acid or Lewis acid derivative cocatalyst different from the neutral compound, wherein the cocatalyst reacts with the neutral compound to form an initiator; and (c) an activity-enhancing modifier, wherein the modifier reacts with the initiator to form the catalyst composition. The instant invention is also directed to a method for polymerizing at least one olefinic monomer comprising the step of contacting a feed containing the olefinic monomer under polymerization conditions with the transition metal-free catalyst composition.
    Type: Application
    Filed: January 15, 2002
    Publication date: July 31, 2003
    Inventors: Lisa Saunders Baugh, Joseph Anthony Sissano
  • Patent number: 6599856
    Abstract: A formed activated carbon has a Kiya crushing strength of 1 kg or more and a specific heat of 0.4 J/K·cc or more at 25° C.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: July 29, 2003
    Assignees: Tennex Corporation, Mitsubishi Chemical Corporation
    Inventors: Masashi Uchino, Eiji Yamada, Hiroshi Yamashita, Kazushi Matsuura, Yoshitaka Takeda, Mitsuo Suzuki
  • Publication number: 20030139287
    Abstract: The invention concerns the use as heat-activated catalyst of at least a boron derivative of formula (I): AxB(R)y for dehydrogenative concentration between at least a monomer, oligomer and/or polymer organosiloxane having, per molecule, at least a reactive SiH unit and at least a monomer, oligomer and/or polymer organosiloxane having, per molecule, at least a reactive SiOH unit.
    Type: Application
    Filed: October 3, 2002
    Publication date: July 24, 2003
    Inventors: Thomas Deforth, Gerard Mignani
  • Publication number: 20030134994
    Abstract: A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising
    Type: Application
    Filed: December 19, 2002
    Publication date: July 17, 2003
    Inventors: Tobin J. Marks, Lubin Luo, Sung Cheol Yoon
  • Publication number: 20030130448
    Abstract: A process for making an ultra-high-molecular-weight polyethylene (UHMWPE) is disclosed. The process is performed with a supported quinolinoxy-containing single-site catalyst in the presence of a non-alumoxane activator, but in the absence of an &agr;-olefin, an aromatic solvent, and hydrogen. The process significantly increases the catalyst activity and the UHMWPE produced has improved tensile and impact properties.
    Type: Application
    Filed: January 10, 2002
    Publication date: July 10, 2003
    Inventor: Jia-Chu Liu
  • Patent number: 6579825
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: June 17, 2003
    Assignee: Shell Oil Company
    Inventor: John Robert Lockemeyer
  • Patent number: 6576584
    Abstract: A method for producing a hydrotreating catalyst which relates to the production of a solid catalyst composed of a carrier impregnated with an active component, to give a catalyst for hydrotreating hydrocarbon oils, which contains a large quantity of a hydrogenation-active component and uniform, crystalline composite metal compound, and shows high catalytic activity.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: June 10, 2003
    Assignee: Tonen Corporation
    Inventors: Masahiko Iijima, Takao Hashimoto, Yoshinobu Okayasu, Takeshi Isoda
  • Patent number: 6569354
    Abstract: The invention relates to catalytically bleaching substrates, especially laundry fabrics, with atmospheric oxygen or air. A method of bleaching a substrate is provided that comprises applying to the substrate, in an aqueous medium, a specified organic substance which forms a complex with a transition metal, the complex catalysing bleaching of the substrate by atmospheric oxygen. Also provided is a bleaching composition comprising, in an aqueous medium, atmospheric oxygen and an organic substance which forms a complex with a transition metal, the complex catalysing bleaching of the substrate by the atmospheric oxygen, wherein the aqueous medium is substantially devoid of peroxygen bleach or a peroxy-based or -generating bleach system.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: May 27, 2003
    Assignee: Unilever Home & Personal Care USA, division of Conopco, Inc.
    Inventor: Ronald Hage
  • Patent number: 6569960
    Abstract: A process to produce ethylene polymers is provided. Particularly, a process to produce ethylene polymers having a broad molecular weight distribution is provided. More particularly, a process to produce ethylene polymers that have low formation of smoke and odor during blow molding is provided.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: May 27, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Joseph J. Bergmeister, Steven J. Secora, Elizabeth A. Benham, Max P. McDaniel
  • Patent number: 6562752
    Abstract: A catalyst containing a sulfide phase comprising (a) sulfur (b) and at least one element A selected form group IIIB, including the lanthanides and actinides, group IVB and group VB, and optionally (c) at least one element B selected from group VIIB and group VIII and mixtures thereof, is suitable for use in, for example, hydrorefining or hydroconversion. Sulfur is present in the catalyst at a quantity higher than the quantity corresponding to 40% of the stoichiometric quantity of sulfur in the sulfide compounds of elements from groups MB, IVB, VB, VIIB and VIII. The catalyst also, optionally, comprises at least one porous amorphous or low crystallinity type matrix.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: May 13, 2003
    Assignee: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Patent number: 6544924
    Abstract: The production of ethylenically unsaturated acids or esters by the catalytic reaction of an alkanoic acid or ester, especially methyl propionate, with formaldehyde, and a catalyst therefor wherein the catalyst comprises a porous high surface area silica containing 1-10% by weight of an alkali metal, especially cesium, (expressed as metal) and having compounds of at least one modifier element selected from boron, magnesium, aluminum, zirconium and hafnium dispersed in the pores of said silica in such amount that the catalyst contains a total of 0.25 to 2 gram atoms of primary modifier element per 100 moles of silica.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: April 8, 2003
    Assignee: Lucite International UK Limited
    Inventors: Samuel David Jackson, David William Johnson, John David Scott, Gordon James Kelly, Brian Peter Williams
  • Patent number: 6541663
    Abstract: Raney copper, which is doped (promoted) with an effective quantity of a doping (promoting) agent selected from the group boric acid, onium fluorides, salts of fluorine complex anions, and heteropoly acids, represents an outstanding oxidation catalyst for amine-group-containing primary amines to carboxylic acids.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: April 1, 2003
    Assignee: Syngenta Participations AG
    Inventors: Bernd Siebenhaar, Milos Rusek
  • Publication number: 20030040430
    Abstract: A composition comprises silicon, aluminum, zirconium, and boron. A process for producing the composition comprises contacting a silicon compound, an aluminum compound, a zirconium compound, and a boron compound under a condition sufficient to effect the production of a composition comprising silicon, aluminum, zirconium, and boron. Also disclosed is a process for catalytically cracking a hydrocarbon-containing fluid which comprises contacting said hydrocarbon-containing fluid with a catalyst composition which comprises silicon, aluminum, zirconium, and boron.
    Type: Application
    Filed: April 5, 2002
    Publication date: February 27, 2003
    Inventors: Lyle R. Kallenbach, Dwayne R. Senn
  • Patent number: 6524985
    Abstract: Disclosed is a catalyst component for the polymerization of olefins, which is a compound having the following structure: wherein R1 is a hydrocarbon radical having 1 to 10 carbon atoms or a halogen-containing hydrocarbon radical having 1 to 10 carbon atoms, and R2s are each a hydrogen atom, a halogen atom, a siloxy group, a lower-alkyl-substituted siloxy group or a hydrocarbon radical having 1 to 10 carbon atoms, or which is a reaction product of the following sub-components (i) and (ii): sub-component (i) which is a compound having the formula R1—B—(OH)2 in which R1 is a hydrocarbon radical having 1 to 10 carbon atoms or a halogen-containing hydrocarbon radical having 1 to 10 carbon atoms; and sub-component (ii) which is an organoaluminum compound.
    Type: Grant
    Filed: July 2, 1997
    Date of Patent: February 25, 2003
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Toshihiko Sugano, Tomohiko Takahama
  • Patent number: 6503867
    Abstract: The present invention pertains to a quasi-crystalline boehmite containing additive in a homogeneously dispersed state. Suitable additives are compounds containing elements selected from the group of alkaline earth metals, alkaline metals, transition metals, actinides, silicon, gallium, boron, titanium, and phosphorus. Said QCBs according to the invention may be prepared in several ways. In general, a quasi-crystalline boehmite precursor and an additive are converted to a quasi-crystalline boehmite containing the additive in a homogeneously dispersed state.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: January 7, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, Paul O'Connor, Gregory Pearson, William Jones
  • Patent number: 6492570
    Abstract: The invention provides a polynuclear compound comprising two or more metal-hapto-3-capped nidocarborane groups. Also provided is the use of such a compound as a catalyst in a chemical reaction such as a hydrogenation or oxidation reaction.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: December 10, 2002
    Assignee: British Nuclear Fuels PLC
    Inventors: Nigel Dennis Tinker, Kenneth Wade, Thomas Gibson Hibbert
  • Publication number: 20020169072
    Abstract: A novel olefin polymerization catalyst is provided which comprises (A) a transition metal compound or lanthanoid compound containing two or more atoms selected from the group consisting of boron, nitrogen, oxygen, phosphorus, sulfur, and selenium; and (B) a Lewis acid. A process for producing an olefin polymer is also provided. The catalyst has a high olefin polymerization activity without a combined use of an expensive organoaluminum oxy-compound or organoboron compound, and can maintain the high activity for a long polymerization time.
    Type: Application
    Filed: February 21, 2002
    Publication date: November 14, 2002
    Inventors: Yasushi Nakayama, Hideyuki Kaneko, Hideki Bandoh, Yoshiho Sonobe, Junji Saito, Shinichi Kojoh, Makoto Mitani, Yasuhiko Suzuki, Shigekazu Matsui, Norio Kashiwa, Terunori Fujita
  • Patent number: 6472569
    Abstract: A catalyst system comprising a silicoaluminophosphate impregnated with a compound selected from the group consisting of phosphoric acid, boric acid, tributyltin acetate, and combinations of any two or more thereof, and a method of preparing such catalyst system, are disclosed. The thus-obtained catalyst system is employed as a catalyst in the conversion of a hydrocarbon feedstock comprising oxygenated hydrocarbons to olefins and/or ethers.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: October 29, 2002
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Jianhua Yao, Charles A. Drake
  • Publication number: 20020137957
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Application
    Filed: November 6, 2001
    Publication date: September 26, 2002
    Inventor: John Robert Lockemeyer
  • Patent number: 6455461
    Abstract: A composition comprises a hydrogenation catalyst supported on an inorganic support which comprises aluminum, zirconium, and a borate. A process for producing the composition comprises the steps of (1) contacting an aluminum salt, a zirconium salt, and an acidic boron compound under a condition sufficient to effect the production of a solid material comprising aluminum, zirconium, and borate; and (2) combining a hydrogenation catalyst with the inorganic support. Also disclosed is a process for reducing aromatic compounds content in a hydrocarbon-containing fluid which comprises contacting a hydrocarbon-containing fluid, in the presence of a catalyst composition, with hydrogen wherein said catalyst composition comprises a hydrogenation catalyst and an inorganic support wherein said support comprises aluminum, zirconium and a borate.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: September 24, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Lyle R. Kallenbach
  • Patent number: 6444764
    Abstract: A catalyst system for polymorization of C2-C12-alk-1-eres, comprising A) an organic or inorganic support, B) at least one metallocene complex, C) oligomeric aluminum oxide compounds and D) at least one boron compound of the formula I  or a cyclic boron compound of the formula II  or mixtures of boron compounds I and II.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: September 3, 2002
    Assignee: Basell Polyolefine GmbH
    Inventors: Marc Oliver Kristen, David Fischer
  • Patent number: 6432867
    Abstract: Sulfided catalysts produced by sulfurizing supported catalysts containing at least one element selected from group IIIB, including the lanthanides and actinides, group IVB and group VB, wherein the catalyst is brought into contact with at least one source of elemental sulfur e.g. flowers of sulfur in an atmosphere of at least one reducing gas other than hydrogen e.g. carbon monoxide. The catalyst is suitable for converting hydrocarbon-containing feeds, such as hydrocracking and hydrotreatment.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: August 13, 2002
    Assignee: Insitut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Patent number: 6417302
    Abstract: The present invention relates to a chemical compound of the formula A The compound can be employed as a catalyst component for the polymerization of olefins.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: July 9, 2002
    Assignee: BASELL Polyolefine GmbH
    Inventor: Hans Bohnen
  • Patent number: 6410667
    Abstract: Initiator systems of the invention comprise a complexed initiator comprising a complex of an amidine complexing agent and an initiator; and a decomplexer. The initiator systems are useful for initiating polymerization of at least one monomer to form polymerized compositions. Kits of the invention useful for forming the polymerized compositions comprise a polymerizable composition and an initiator component, wherein the initiator component comprises a complexed amidine initiator. Bonding compositions can be prepared by mixing the polymerizable composition of the kit with the respective initiator component.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: June 25, 2002
    Assignee: 3M Innovative Properties Company
    Inventor: Dean M. Moren
  • Patent number: 6407299
    Abstract: The present invention is a two-component catalyst system comprising (a) an alkyl magnesium (MgR2) component and (b) a Lewis acid component. The catalyst system is used for catalyzing the oligomerization and polymerization of ethylene and/or &agr;-olefins to form homopolymers and copolymers. The products range from highly linear, high molecular weight, solid polymers to highly branched, lower molecular weight oils.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: June 18, 2002
    Assignees: ExxonMobile Research and Engineering Company, The Pennsylvania State Research Foundation
    Inventors: Ayusman Sen, Jang Sub Kim
  • Patent number: 6395847
    Abstract: The invention is directed to organometallic catalysts prepared by a process comprising a) combining nucleophilic group-containing particulate support material with an arylboron or arylaluminum Lewis acid compound in the presence of a Lewis base compound; b) contacting the product of a) with a trialkylaluminum compound before combining said product with a metal precursor compound capable of activation for olefin polymerization by said product a); and, c) combining the product of b) with said metal precursor compound. These catalyst compositions are suitable for addition reactions of ethylenically and acetylenically unsaturated monomers. The invention includes a polymerization process of combining or contacting olefinically unsaturated monomers with the invention catalyst composition. Use of the invention catalyst to polymerize &agr;-olefins is exemplified.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: May 28, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Main Chang
  • Patent number: 6395671
    Abstract: A compound useful as a catalyst activator corresponding to the formula: (A*+a)b(Z*J*j)−cd, wherein: A* is a cation of charge +a, Z* is an anion group of from 1 to 50 atoms not counting hydrogen atoms, further containing two or more Lewis base sites; J* independently each occurrence is a Lewis acid coordinated to at least one Lewis base site of Z*, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality, j is a number from 2 to 12 and a, b, c, and d are integers from 1 to 3, with the proviso that a×b is equal to c×d.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: May 28, 2002
    Assignee: The Dow Chemical Company
    Inventor: Robert E. LaPointe
  • Patent number: 6384165
    Abstract: A composition comprises organoborane amine complex and 1,4-dioxo-2-butene-functional material. The composition can form a part of a polymerization initiator system that also includes a compound that is reactive with the amine portion of the complex. The system can be used to initiate polymerization of acrylic monomer and to form an acrylic adhesive that has exceptionally good adhesion to low surface energy polymers.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: May 7, 2002
    Assignee: 3M Innovative Properties Co.
    Inventor: Dean M. Moren
  • Publication number: 20020045537
    Abstract: The present invention provides a method for producing a catalyst for the production of an ultra high molecular weight polyethylene and also a method for preparation of an ultra high molecular weight polyethylene with the use of said catalyst. The catalyst of the present invention is prepared by a process comprising: (i) producing a magnesium compound solution by contact-reacting a magnesium compound and an aluminum or boron compound with alcohol; (ii) contact-reacting the said solution with an ester compound containing at least one hydroxy group and a silicon compound containing an alkoxy group; and (iii) producing a solid titanium catalyst by adding a mixture of a titanium compound and a silicon compound thereto. The catalyst prepared by the present invention has excellent catalytic activity, and it helps to produce an ultra-high molecular weight polyethylene with large bulk density and narrow particle distribution without too large and minute particles.
    Type: Application
    Filed: March 6, 2001
    Publication date: April 18, 2002
    Inventors: Chun-Byoung Yang, Ho-Sik Chang, Weon Lee
  • Publication number: 20020045539
    Abstract: A catalyst containing a sulfide phase comprising (a) sulfur (b) and at least one element A selected form group IIIB, including the lanthanides and actinides, group IVB and group VB, and optionally (c) at least one element B selected from group VIIB and group VIII and mixtures thereof, is suitable for use in, for example, hydrorefining or hydroconversion. Sulfur is present in the catalyst at a quantity higher than the quantity corresponding to 40% of the stoichiometric quantity of sulfur in the sulfide compounds of elements from groups MB, IVB, VB, VIIB and VIII. The catalyst also, optionally, comprises at least one porous amorphous or low crystallinity type matrix.
    Type: Application
    Filed: December 22, 2000
    Publication date: April 18, 2002
    Applicant: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Patent number: 6372684
    Abstract: It is disclosed a new catalyst system, having high catalytic activity in the oligomerization of &agr;-olefins, comprising a bridged bis-amido Group 4 metal compound of formula (I): wherein M is Ti, Zr or Hf; Y is Si, Ge or Sn; X is a hydrogen, halogen or an hydrocarbon radical; R1, R2, R3, R4, R5 and R6 are hydrocarbon radicals, optionally containing Si, Ge, O, S, P, B or N atoms; Q is a neutral Lewis base; and m is 0-2; in association with a boron activating compound, and with one or more branched alkylaluminiums and/or alumoxanes of branched alkylaluminiums; said catalyst system allows oligomers to be obtained in high yields, with a high selectivity towards &agr;-oligomers.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: April 16, 2002
    Assignee: Shell Oil Company
    Inventors: Andrew D. Horton, Bart Johan Ruisch, Klaas L. von Hebel, Henderikus Hyacinthus Deuling
  • Patent number: 6368994
    Abstract: A method for rapid polymerization, curing or a combination thereof of a polymerizable or curable composition to yield polymers and composites based on these polymers through the utilization of short wavelength microwave energy is described. The inventive method is generally applicable to the chemical transformation of any organic material that can be processed by heating. This invention also relates to specially prepared particulate polymerization curing materials which, when dispersed and irradiated in a polymerizable or curable composition, will effect rapid polymerization, curing or a combination of polymerization and curing of that composition without exceeding the decomposition temperature of the polymerizable or curable composition when the composition is exposed to microwave radiation. The polymerization agent may also be encapsulated by a material which coats the polymerization agent to prevent its premature release into the polymerizable or curable composition.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: April 9, 2002
    Assignee: Gyrorron Technology, Inc.
    Inventor: Vladislav E. Sklyarevich
  • Publication number: 20020040116
    Abstract: A composition comprises organoborane amine complex and 1,4-dioxo-2-butene-functional material. The composition can form a part of a polymerization initiator system that also includes a compound that is reactive with the amine portion of the complex. The system can be used to initiate polymerization of acrylic monomer and to form an acrylic adhesive that has exceptionally good adhesion to low surface energy polymers.
    Type: Application
    Filed: February 15, 2001
    Publication date: April 4, 2002
    Applicant: 3M Innovative Properties Company
    Inventor: Dean M. Moren
  • Publication number: 20020035219
    Abstract: It is disclosed a new catalyst system, having high catalytic activity in the oligomerization of &agr;-olefins, comprising a bridged bis-amido Group 4 metal compound of formula (I): 1
    Type: Application
    Filed: September 14, 2001
    Publication date: March 21, 2002
    Inventors: Andrew D. Horton, Bart Johan Ruisch, Klaas L. von Hebel, Henderikus Hyacinthus Deuling
  • Publication number: 20020025905
    Abstract: A structured catalyst for selective reduction of nitrogen oxides with ammonia using an ammonia-supplying compound. The catalyst is preferably used for exhaust gas treatment of diesel vehicles powered by diesel motors. The catalyst is characterized by the fact that it contains a reduction catalyst for selective reduction of nitrogen oxides with ammonia and a hydrolysis catalyst for the hydrolysis of urea, where the hydrolysis catalyst is applied in the form of a coating onto the reduction catalyst. By this arrangement of the two catalytic functions in one catalyst the exhaust gas system can be made very compactly and space saving. Moreover, advantageous synergistic effects result from the direct contact of the hydrolysis catalyst and the reduction catalyst.
    Type: Application
    Filed: May 9, 2001
    Publication date: February 28, 2002
    Inventors: Michael Harris, Jurgen Leyrer, Yvonne Demel, Egbert Lox, Thomas Kreuzer
  • Patent number: 6350716
    Abstract: A catalyst composition for the selective oxidation of ethane and/or ethylene to acetic acid which composition comprises in combination with oxygen the elements: MOa.Wb.Agc.Ird.Xe.Yf (I) wherein X is the elements Nb and V; Y is one or more elements selected from the group consisting of: Cr, Mn, Ta, Ti, B, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Cu, Au, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl, U, Re and Pd; a, b, c, d, e and f represent the gram atom ratios of the elements such that 0<a≦1, 0≦b≦1 and a+b=1; 0<(c+d)≦0.1; 0<e≦2; and 0≦f≦2. The catalyst composition may be used in the production of acetic acid and in an integrated process for the production of acetic acid and/or vinyl acetate.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: February 26, 2002
    Assignee: BP Chemicals Limited
    Inventors: John Cook, Brian Ellis, Philip Howard, Michael David Jones, Simon James Kitchen
  • Patent number: 6344529
    Abstract: Disclosed are compounds useful as catalyst activators for olefin polymerization, comprising structures of the following formulae: wherein: L+ is a protonated derivative of an element of Group 15 of the Periodic Table of the Elements, additionally bearing two hydrocarbyl substituents of from 1 to 50 carbons each, or a positively charged derivative of an element of Group 14 of the Periodic Table of the Elements, said Group 14 element being substituted with three hydrocarbyl substituents of from 1 to 50 carbons each; R1 is a divalent linking group of from 1 to 40 non-hydrogen atoms; R2 independently each occurrence is a ligand group of from 1 to 50 nonhydrogen atoms with the proviso that in a sufficient number of occurrences to balance charge in the compound, R2 is L+—R1—; M1 is boron, aluminum or gallium; Arf independently each occurrence is a monovalent, fluorinated organic group containing from 6 to 100 non-hydrogen atoms; Y is a Group 15 element; and Z is a Grou
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: February 5, 2002
    Assignee: The Dow Chemical Company
    Inventors: Edmund M. Carnahan, Grant B. Jacobsen, Jerzy Klosin, Peter N. Nickias, David J. Schwartz, David R. Neithamer
  • Publication number: 20020013221
    Abstract: Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1AM2BZCOD, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; 0 is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.
    Type: Application
    Filed: March 30, 2001
    Publication date: January 31, 2002
    Inventors: Levi T. Thompson, Jeremy Patt, Dong Ju Moon, Cory Phillips
  • Publication number: 20020013222
    Abstract: Noble metal catalysts supported by the boron nitride (BN) to be used for oxidizing the volatile organic compound (VOC) are provided. The noble metal is selected from a group consisting of platinum (Pt), palladium (Pd), rhodium (Rh) and Ruthenium (Ru). The process for forming the catalyst includes steps of dissolving a noble metal complex compound in an organic solvent for forming a solution, mixing the solution with the boron nitride (BN) for forming a wetted boron nitride (BN) such that the noble metal complex compound is spread on a surface of the boron nitride (BN), and reducing the noble metal complex on the surface of the wetted boron nitride (BN) into the noble metal at a specific temperature by a gas.
    Type: Application
    Filed: February 5, 2001
    Publication date: January 31, 2002
    Inventors: Min-Hon Rei, Chi-Sheng Wu, Zhi-An Lin, Jen-Wei Pan
  • Publication number: 20020010094
    Abstract: This invention relates to a process for depositing one or more catalytically reactive metals on a carrier, said process comprising selecting a carrier and depositing a catalytically effective amount of one or more catalytically reactive metals on the carrier, the deposition effected by submersing the carrier in an impregnation solution wherein the hydrogen ion activity of the impregnation solution has been lowered. The invention further relates to catalysts made from the process.
    Type: Application
    Filed: March 13, 2001
    Publication date: January 24, 2002
    Inventor: John Robert Lockemeyer
  • Publication number: 20020010080
    Abstract: Organo-Lewis acids of the formula BR′R″2 wherein B is boron, R′ is fluorinated biphenyl, and R″ is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.
    Type: Application
    Filed: July 5, 2001
    Publication date: January 24, 2002
    Inventors: Tobin J. Marks, You-Xian Chen
  • Publication number: 20020006865
    Abstract: The invention features a photocatalytic body including: a porous medium 12 formed on a substrate 10; and photocatalytic material 14 supported on the porous medium. Supporting the photocatalytic material 14 on the porous medium 12 enables enhancement of its catalytic activity.
    Type: Application
    Filed: July 17, 2001
    Publication date: January 17, 2002
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Takeshi Morikawa, Yasunori Taga, Tadashi Nakamura, Yoshiaki Fukushima
  • Patent number: 6329313
    Abstract: The present invention relates to a supported chemical compound of the formula (I) in which Ac+ is a cation, c is an integer from 1 to 10, b is an integer ≧0, T is a support, y is an integer ≧1, a is an integer from 0 to 10, where a·y=c·b, and N is a unit of the formula (II)  in which R independently at each occurrence is an identical or different substituent of M1 such as a halogen atom or a C1-C40 carbon-containing group, such as a C1-C40-alkyl, C1-C40-haloalkyl, C6-C40-aryl, C6-C40-haloaryl, C7-C40-arylalkyl or C7-C40-halo-arylalkyl group, X independently at each occurrence is identical or different and is a C1-C40 carbon-containing group, for example a divalent, carbon-containing group such as a C1-C40-alkylene, C1-C40-haloalkylene, C6-C4-arylene, C6-C40-haloarylene, C7-C40-arylalkylene or C7-C40-halo-arylalkylene, C2-C40-alkynylene, C2-C40-haloalkynylene, C2-C40-alkenylene or C2-C40haloalkenylene group, or a trivalent, carbo
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: December 11, 2001
    Assignee: Basell Polyolefine GmbH
    Inventors: Cornelia Fritze, Frank Küber, Hans Bohnen
  • Publication number: 20010044376
    Abstract: A catalyst body comprising a carrier and a catalyst layer containing an alkali metal and/or an alkaline earth metal, loaded on the carrier, which catalyst further contains a substance capable of reacting with the alkali metal and/or the alkaline earth metal, dominating over the reaction between the main components of the carrier and the alkali metal and/or the alkaline earth metal. With this catalyst body, the deterioration of the carrier by the alkali metal and/or the alkaline earth metal is prevented; therefore, the catalyst body can be used over a long period of time.
    Type: Application
    Filed: December 14, 2000
    Publication date: November 22, 2001
    Inventors: Naomi Noda, Junichi Suzuki, Takashi Harada