Of Group Viii (i.e., Iron Or Platinum Group) Patents (Class 502/258)
  • Publication number: 20020045542
    Abstract: The invention concerns a catalyst comprising at least one matrix, at least one dioctahedral 2:1 phyllosilicate which is optionally synthesised in a fluorine-containing medium and optionally bridged, at least one metal selected from elements from group VIB and/or group VIII of the periodic table, boron and/or silicon, optionally phosphorous, optionally at least one group VIIA element, and optionally at least one group VIIB element. The invention also concerns the use of the catalyst for hydrocracking hydrocarbon-containing feeds.
    Type: Application
    Filed: May 8, 2001
    Publication date: April 18, 2002
    Inventors: Eric Benazzi, Slavik Kasztelan, Nathalie George-Marchal
  • Patent number: 6348565
    Abstract: Complexes of a metal cyanide polymerization catalyst and certain silane-functional complexing agents provide a method whereby supported, active metal cyanide catalysts can be prepared. The catalysts are useful alkylene oxide polymerization catalysts that are easily separated from the polymerization product and recycled.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: February 19, 2002
    Assignee: The Dow Chemical Company
    Inventor: Richard M. Wehmeyer
  • Patent number: 6342464
    Abstract: A solid, particulate catalyst composition is provided containing an active nickel component in which the nickel constitutes from about 25 to about 60 wt % of the catalyst composition; a molybdenum component in which the molybdenum constitutes from about 5 to about 20 wt % of the catalyst composition; and a binder component comprising at least one of oxides of silica, zirconium, aluminum, zinc and calcium, each of the calcium, aluminum and zinc being present in an amount no greater than about 2 wt %, preferably about 0 to 1 wt %. The catalyst is designed for the selective hydrogenation of 3-hydroxypropanal to 1,3-propanediol in aqueous solution.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: January 29, 2002
    Assignee: Shell Oil Company
    Inventors: Juan Pedro Arhancet, Paul Himelfarb, Joseph Broun Powell, Robert Alfred Plundo, Mohammed Shahjahan Kazi, William Joseph Carrick
  • Patent number: 6288007
    Abstract: A catalyst with a high sulphur tolerance for the hydrogenation of middle distillate aromatics which comprises as a support (a) an alumina, the surface of which has been modified by contacting it with a silicon-containing compound, or (b) a silica, the surface of which has been modified by contacting it with an aluminum-containing compound. The support has been treated with air, oxygen or water vapor at an elevated temperature in order to convert the said silicon-containing compound or the said aluminum-containing compound to oxide form. The hydrogenating component of the catalyst is one or more metals of the platinum group.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: September 11, 2001
    Assignee: Fortum Oil & Gas Oy
    Inventors: Marina Lindblad, Aimo Rautiainen, Göran Sandström
  • Patent number: 6267874
    Abstract: The present invention relates to a hydrotreating catalyst composed of a carrier having a Brønsted acid content of at least 50 &mgr;mol/g such as a silica-alumina carrier or a silica-alumina-third component carrier, in which the silica is dispersed to high degree and a Brønsted acid content is at least 50 &mgr;mol/g, and at least one active component (A) selected from the elements of Group 8 of the Periodic Table and at least one active component (B) selected from the elements of Group 6 of the Periodic Table, supported on said carrier. The present invention also relates to a method for hydrotreating hydrocarbon oils using the same. The hydrotreating catalyst of the present invention provides excellent tolerance to the inhibiting effect of hydrogen sulfide, high desulfurization activity, and exhibits notable effects for deep desulfurization of hydrocarbon oils containing high contents of sulfur, in particular gas oil fractions containing difficult-to-remove sulfur compounds.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: July 31, 2001
    Assignee: TonenGeneral Sekiyu K.K.
    Inventors: Masahiko Iijima, Yoshinobu Okayasu
  • Patent number: 6251820
    Abstract: A catalyst for purifying an exhaust gas includes amorphous and homogeneous composite oxide particles, a catalytic noble metal element, and metallic oxide particles. The metallic oxide particles interpose among the composite oxide particles to connect them with each other at least. The catalyst has good heat resistance, sulfur-poisoning resistance, and durability. The catalyst is produced as follows. A slurry is prepared by mixing an organosol with a suspension, or by mixing a solution with a suspension. The slurry is deposited on a support substrate to form a coating layer thereon. The suspension includes a precursor powder, and a solvent. The precursor powder includes the composite oxide particles, and the catalytic noble metal element. The composite oxide particles include a support component, and an NOx storage element. The solvent is free from elution of the NOx storage element. The organosol includes an organic solvent, and an oxide sol.
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: June 26, 2001
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinji Tsuji
  • Patent number: 6235677
    Abstract: A process is disclosed for producing hydrocarbons by contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The process is characterized by using a catalyst prepared by a method involving (1) forming a catalyst gel by destabilizing an aqueous colloid comprising (a) at least one catalytic metal for Fischer-Tropsch reactions (e.g., iron, cobalt, nickel and/or ruthenium), (b) colloidal cerium oxide, zirconium oxide, titanium oxide and/or aluminum oxide, and optionally (c) Al(OR)3, Si(OR)4, Ti(OR)4 and/or Zr(OR)4 where each R is an alkyl group having from 1 to 6 carbon atoms; and (2) drying the gel.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: May 22, 2001
    Assignee: Conoco Inc.
    Inventors: Leo E. Manzer, Kostantinos Kourtakis
  • Patent number: 6231750
    Abstract: The invention provides a hydrocracking catalyst comprising at least one mineral matrix, at least one beta zeolite, at least one group VB element or at least one mixed sulphide phase comprising sulphur, optionally at least one group VIB or group VIII element, optionally at least one element selected from the group formed by silicon, boron or phosphorous, and optionally at least one group VIIA element.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: May 15, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
  • Patent number: 6211113
    Abstract: A layered catalyst support or carrier provides a core member for carrying out non-steady state heterogeneously catalyzed processes where reaction gases and their products come in contact with a conventional catalyst applied to the carrier. The support as a carrier is made up of a large number of individually shaped particulate bodies or monolithic packings to be loaded into a reactor and maintained as a fluidized bed or a fixed bed during the non-steady state reaction and the recovery of the products. The support or carrier may consist of glass, quartz, oxides, nitrides, aluminosilicates, magnesium silicates, metals and carbon or their mixtures. Each shaped particle or monolithic packing of this core support is then completely enclosed by depositing thereon a thin protective layer of a nitride, oxide, carbide or chloride of a metal, a non-metal or a mixture thereof, which exhibits a dense, pore-free microstructure and a nonpolar surface having a very low density of acid centers.
    Type: Grant
    Filed: September 10, 1996
    Date of Patent: April 3, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Klaus Harth, Alfred Hagemeyer, Otto Watzenberger
  • Patent number: 6207610
    Abstract: Compacts based on pyrogenically produced silicon dioxide and having the following physical and chemical characteristics: Outer diameter 0.8-20 mm BET surface area 30-400 m2/g Pore volume 0.5-1.3 ml/g Breaking strength 10-250N Composition >99.8 wt. % SiO2 Other constituents <0.2 wt. % Abrasion <5 wt. % Apparent weight 350-750 g/l are produced in that pyrogenically produced silicon dioxide is homogenized with methyl cellulose, microwax and polyethylene glycol with addition of water, dried at a temperature of 80-150° C. and comminuted to a powder, optionally the powder is compressed into compacts, and heat-treated at a temperature of 400 to 1200° C. for a time of 0.5 to 8 hours. These compacts can be used as catalysts or catalyst carriers in vinyl acetate monomer production and ethylene hydration.
    Type: Grant
    Filed: May 16, 1997
    Date of Patent: March 27, 2001
    Assignee: Degussa-Huls AG
    Inventors: Helmfried Krause, Hermanus Lansink Rotgerink, Thomas Tacke, Peter Panster, Roland Burmeister
  • Patent number: 6191065
    Abstract: A catalyst for the production of alkenylaromatics from alkylaromatics, wherein the catalyst is predominantly iron oxide, an alkali metal compound and less than about 100 ppm of a source for a noble metal, such as palladium, platinum, ruthenium, rhenium, osmium, rhodium or iridium. Additional components of the catalyst may include compounds based on cerium, molybdenum, tungsten and other such promoters. Also a process for the production of alkenylaromatics from alkylaromatics using this catalyst.
    Type: Grant
    Filed: January 26, 1999
    Date of Patent: February 20, 2001
    Assignees: Nissan Girdler Catalysts Company, United Catalysts Inc.
    Inventors: David Williams, Yuji Mishima, Andrzej Rokicki, Kazuhiko Shinyama, Dennis Smith
  • Patent number: 6169055
    Abstract: A catalyst for producing acrolein by oxidizing ethane contains silicon, iron, an alkali metal, and oxygen. A method for producing acrolein includes the step of oxidizing ethane in the presence of the catalyst and a method for producing the catalyst includes the steps of mixing porous silicon oxide with an iron compound and an alkali metal compound and calcining the resultant mixture.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: January 2, 2001
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Yonghong Teng, Tetsuhiko Kobayashi, Atsushi Ueda
  • Patent number: 6165430
    Abstract: The invention is a selective reduction catalyst useful for converting exhaust gases generated by a diesel engine where the atmosphere is oxidizing. The catalyst comprises 5-40 wt. % silica of a silica/alumina sol-gel produced support carrying 0.25-4.0 wt. % platinum.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: December 26, 2000
    Assignee: Ford Global Technologies, Inc.
    Inventors: Robert J. Kudla, Chaitanya Kumar Narula, Mohinder S. Chattha
  • Patent number: 6121187
    Abstract: The present invention relates to amorphous microporous mixed oxides, characterized by having, in dried form, a narrow pore size distribution (half width <.+-.10% of the pore diameter) of micropores with diameters in the range of <3 nm and a total surface area of between 20 and 1000 m.sup.2 /g, containing a fraction of from 0.1 to 20% by weight of non-hydrolyzable organic groups, and to a process for the preparation of such oxides.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: September 19, 2000
    Assignee: Studiengesellschaft Kohle mbH
    Inventor: Wilhelm F. Maier
  • Patent number: 6107237
    Abstract: Addition of catalyst support, such as silica or alumina, to a completed metathesis reaction as a support for the catalyst residue, facilitates quantitative hydrogenation at lower hydrogen pressures.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: August 22, 2000
    Assignee: University of Florida
    Inventors: Kenneth B. Wagener, Mark D. Watson
  • Patent number: 6106802
    Abstract: A composition of matter is provided including an inorganic porous material having wall portions defining mesopore-sized channels having a mean diameter of between about 15 .ANG. and about 100 .ANG. and a narrow diameter distribution of less than or equal to about 30 .ANG., the material having a void volume from the mesopore-sized channels of at least about 0.1 cc/g and a surface area of at least about 500 m.sup.2 /g and having a number of hydroxyl groups of at least about 1.5 mmol of hydroxyl groups per gram of material, and exhibiting thermal and hydrothermal stability at temperatures up to about 500.degree. C. Catalytic materials incorporating aluminum and other active metals, as well as a process for preparing the composition, are also disclosed.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: August 22, 2000
    Assignee: Intevep, S.A.
    Inventors: Juan Lujano, Jose Carrazza, Norma Valencia de Zapata
  • Patent number: 6090742
    Abstract: A process for the preparation of a catalyst which is highly active for the synthesis of hydrocarbons from mixtures of hydrogen and carbon monoxide. A silica or silica-containing support is treated with a solution containing both an Iron Group metal, or metals, and nitrous acid, nitric acid, or a nitro-containing organo, or nitro-containing hydrocarbyl compound, or compounds, sufficient to hydroxylate the surface thereof and increase the number of hydroxyl groups on the surface of the support such that the metal component will be highly dispersed, this increasing the activity of the catalyst in a hydrocarbon synthesis reaction as contrasted with that of a catalyst of similar composition, similarly prepared except that the support component of the catalyst was not contacted and simultaneously treated with both the Iron Group metal and the acid.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: July 18, 2000
    Assignee: Exxon Research and Engineering Company
    Inventor: Claude C. Culross
  • Patent number: 6080893
    Abstract: A mixed oxide solid composition of formula (I):Mo.sub.12 W.sub.a Bi.sub.b Fe.sub.c Co.sub.d Ni.sub.e Si.sub.f K.sub.g Sn.sub.h O.sub.x (I)where O.ltoreq.a.ltoreq.5, 0.5.ltoreq.b.ltoreq.5, 0.1.ltoreq.c.ltoreq.10, 0.5.ltoreq.d.ltoreq.10, 0.ltoreq.e.ltoreq.10, 0.ltoreq.f.ltoreq.15, 0.ltoreq.g.ltoreq.1, 0.ltoreq.h.ltoreq.2 and x is the quantity of oxygen bonded to the other elements and depends on their oxidation states, is used in the manufacture of acrolein by oxidizing propylene, the solid composition reacting with propylene according to the redox reaction (1):solid.sub.oxidized +propylene.fwdarw.solid.sub.reduced +acrolein(I)To manufacture acrolein, gaseous propylene is passed over a solid composition of formula (I), to conduct the redox reaction (1) by operating at a temperature of 200 to 600.degree. C., at a pressure of 1.01.times.10.sup.4 to 1.01 to 10.sup.6 Pa (0.1 to 10 atmospheres) and with a residence time of 0.01 second to 90 seconds, in the absence of molecular oxygen.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: June 27, 2000
    Assignee: Elf Atochem, S.A.
    Inventors: Gerard Hecquet, Jean-Pierre Schirmann, Michel Simon, Gilles Descat, Eric Etienne
  • Patent number: 6060421
    Abstract: A mixed metal oxide MoVLaPdNbXO catalytic system (wherein X=Al, Ga, Ge and/or Si) providing higher selectivity and space time yield of acetic acid at low pressure and low temperature in a single stage oxidation of ethane with a molecular oxygen-containing gas and steam.
    Type: Grant
    Filed: December 23, 1998
    Date of Patent: May 9, 2000
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Mohammad Al-Hazmi, Asah Khan
  • Patent number: 6037300
    Abstract: The invention concerns a hydrotreated catalyst comprising a support, at least one group VI metal, silicon, boron, optionally at least one metal from group VIII of the periodic table, optionally phosphorus, and optionally a halogen, also a particular preparation of this catalyst. The invention also concerns the use of the catalyst for hydrotreating hydrocarbon feeds.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: March 14, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Samuel Mignard, Virginie Harle, Nathalie George-Marchal
  • Patent number: 6034032
    Abstract: The invention herein relates to a catalyst for enhancing the conversion of the dehydrogenation reaction of aromatic hydrocarbons such as ethylbenzene under a flow of carbon dioxide, which is expressed by the following formula I, wherein a catalyst in which an active component of iron oxides is highly dispersed onto a zeolite, activated charcoal, .gamma.-alumina or silica carrier. Further, the invention relates to a dehydrogenation method of aromatic hydrocarbons by means of using said catalyst:(Fe.sup.II.sub.x Fe.sup.III.sub.y O.sub.z)/S (I)wherein S denotes a zeolite, activated charcoal, .gamma.-alumina or silica carrier, and the initial state of iron oxide is as follows:x=0.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: March 7, 2000
    Assignee: Korea Reserarch Institute of Chemical Technology
    Inventors: Sang-Eon Park, Jong-San Chang, Yong Ki Park, Min Seok Park, Chul Wee Lee, Jermim Noh
  • Patent number: 6030919
    Abstract: A method is provided for making a platinum hydrosilylation catalyst by equilibrating a mixture of an alkenylpolysiloxane and a cycloalkylpolysiloxane in the presence of a haloplatinic acid and thereafter treating the resulting equilibrate with a base. Improved rate of cure and a reduction in ppm levels of platinum required to effect hydrosilylation are achieved.
    Type: Grant
    Filed: August 13, 1998
    Date of Patent: February 29, 2000
    Assignee: General Electric Company
    Inventor: Larry Neil Lewis
  • Patent number: 5972832
    Abstract: The present invention relates to a hydrocracking catalyst containing nickel, tungsten, fluorine, zeolite as well as alumina, said catalyst is composed of, based on the total weight of the catalyst, 0.5-5.0 wt % fluorine, 2.5-6.0 wt % nickel oxide, 10-38 wt % tungsten oxide, and a catalyst carrier. Said carrier is composed of 20-90 wt % alumina and 10-90 wt % zeolite wherein the zeolite is mesopore or macropore zeolite of an acidity strength value 1.0-2.0 mmol/g determined by NH.sub.3 -TPD, the alumina is the alumina of an acidity strength value 0.5-0.8 mmol/g determined by NH.sub.3 -TPD. Said catalyst possesses good desulfurization activity, denitrogenation activity, and higher selectivity with respect to middle distillates than that of the prior art.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: October 26, 1999
    Assignees: Research Institute of Petroleum Proc., China Petrochemical Corporation
    Inventors: Jianwen Shi, Hong Nie, Yahua Shi, Yulin Shi, Yanping Zhang, Dadong Li
  • Patent number: 5968869
    Abstract: A catalyst for the production of vinyl acetate by reaction of ethylene, oxygen and acetic acid comprising a porous support on the porous surfaces of which is deposited metallic copper in a zone surrounded by deposits of catalytically effective amounts of metallic palladium and gold, neither of which is substantially intermingled with said copper. Methods for preparing the catalyst and for synthesizing vinyl acetate utilizing the catalyst are also disclosed.
    Type: Grant
    Filed: June 3, 1997
    Date of Patent: October 19, 1999
    Assignee: Celanese International Corporation
    Inventors: Ioan Nicolau, Adolfo Aguilo, Philip M. Colling
  • Patent number: 5891821
    Abstract: A novel aqueous solution for the one step impregnation of catalytic supports, catalysts prepared from such solution, and the preparation and the use of catalysts prepared thereby. The catalysts prepared are used in the hydrotreatment of petroleum fractions and particularly in hydrodesulfurization and/or denitrogenization. The solution is a combination of at least one compound of a metal from group IVa (e.g. Zr), at least one compound of a metal from group VIa (e.g. Mo or W), at least one compound of a metal from group VIII (e.g. Co or Ni), and at least one water soluble amine (e.g. ethylenediamine or MEA).
    Type: Grant
    Filed: April 28, 1995
    Date of Patent: April 6, 1999
    Assignee: Total Raffinage Distribution, S.A.
    Inventors: Olivier Poulet, Michel Bourgogne, Philippe Moldan
  • Patent number: 5879539
    Abstract: The invention concerns a catalyst for conversion of hydrocarbon feeds. The catalyst is essentially constituted by 0.05% to 10% by weight of a precious metal and a silica (5-70%)/alumina support with a specific surface area of 100-500m.sup.2 /g. The catalyst has an average pore diameter of 1-12 nm, the pore volume of pores with diameters between the average diameter.+-.3 nm being more than 40% of the total pore volume. The dispersion of the precious metal is 20-100% and the distribution coefficient for the precious metal is greater than 0.1.The invention also concerns a process for the hydroisomerization of feeds with boiling points of more than 350.degree. C. using this catalyst. The process is operated between 200.degree. C. and 450.degree. C. at 2-25 MPa with a VVH of 0.1-10 h.sup.-1 and a hydrogen/feed volume ratio of 100-2000.
    Type: Grant
    Filed: April 3, 1996
    Date of Patent: March 9, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Samuel Mignard, Nathalie Marchal, Slavik Kasztelan, Pierre-Henri Bigeard, Alain Billon
  • Patent number: 5861521
    Abstract: Esters of unsaturated fatty acids or mixtures thereof can be hydrogenated by a catalysed liquid-phase hydrogenation with hydrogen to give saturated or partially saturated esters of fatty acids or ester mixtures of fatty acids by carrying out the hydrogenation continuously at a pressure of 50 to 350 bar and a reaction temperature of 40 to 150.degree. C. on oxygen-free and support-free shaped bodies which are arranged in a fixed bed and made of pressed powders of elements of the iron subgroup of subgroup VIII of the Periodic Table of the Elements or their alloys with each other or their alloys with elements of subgroup VI; in addition, hydrogenation-inert elements can be present. The shaped bodies have a compressive strength of 20 to 250N on the curved shaped body surface and have an internal surface area of 10 to 90 m.sup.2 /g.
    Type: Grant
    Filed: October 20, 1995
    Date of Patent: January 19, 1999
    Assignee: Bayer Aktiengesellschaft
    Inventor: Gerhard Darsow
  • Patent number: 5851947
    Abstract: Aerogels or xerogels containing atomically dispersed noble metals for applications such environmental remediation. New noble metal precursors, such as Pt--Si or Pd(Si--P).sub.2, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.
    Type: Grant
    Filed: December 16, 1996
    Date of Patent: December 22, 1998
    Assignee: The Regents of the University of California
    Inventors: Lucy M. Hair, Robert D. Sanner, Paul R. Coronado
  • Patent number: 5849973
    Abstract: A catalyst for oxidative coupling of methane comprising Fe.sub.2 O.sub.3 deposited on a silica substrate, said silica substrate having particle sizes in the range of about 150 to 215 .mu.m, and a method for producing said catalyst in which particles of Fe.sub.2 O.sub.3, with a particle size in the range from 100 to 150 .mu.m, and particles of silica, with a particle size in the range from about 150 to about 215 .mu.m are mixed together. The particles are heated to a temperature of at least about 800.degree. C., after which the silica particles impregnated with Fe.sub.2 O.sub.3 are separated from the remaining iron particles.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: December 15, 1998
    Assignee: Gas Research Institute
    Inventor: Donald R. Van Der Vaart
  • Patent number: 5846507
    Abstract: This invention relates to a catalyst for ammonia synthesis. The main phase of the catalyst is a non-stoichiometric ferrous oxide expressed as Fe.sub.1-x O, which is structurally in a Wustite crystal phase form having the rock salt face-centered cubic lattice with lattice paracueter of 0.427-0.433 nm. This catalyst, which has quick reduction rate and high activity, and remarkably lowers the reaction temperature, is especially applicable as an ideal low-temperature, low-pressure ammonia synthesis catalsyt and can be widely used in ammonia synthesis industry.
    Type: Grant
    Filed: July 2, 1996
    Date of Patent: December 8, 1998
    Assignee: Zhejiang University of Technology
    Inventors: Huazhang Liu, Ruyu Xu, Zurong Jiang, Zhangneng Hu, Yanying Li, Xiaonian Li
  • Patent number: 5795559
    Abstract: A method for the preparation of new semi-crystalline, porous inorganic oxide compositions possessing uniform framework-confined mesopores in the range 2.0-10.0 nm. The method uses an interaction between various nonionic polyethylene oxide based surfactants (N.degree.) and neutral inorganic oxide precursors (I.sup..quadrature.) at ambient reaction temperatures. The materials formed exhibit a disordered assembly of worm-like channels of regular diameter owing to the specific mechanism of self-assembly, producing highly stable materials and particles incorporating large numbers of the channels. This (N.degree. I.degree.) templating approach introduces several new concepts to mesostructure synthesis. The application of the low-cost, non-toxic and biodegradable surfactants and ambient reaction temperatures, introduces environmentally clean synthetic techniques to the formation of mesostructures. Recovery of the template can be achieved through solvent extraction where the solvent may be water or ethanol.
    Type: Grant
    Filed: May 2, 1996
    Date of Patent: August 18, 1998
    Assignee: Board of Trustees operating Michigan State University
    Inventors: Thomas J. Pinnavaia, Stephen A. Bagshaw
  • Patent number: 5792723
    Abstract: A platinum catalyst containing (A) a platinum complex having a vinyl-containing organosiloxane ligand and (B) a vinyl-containing organopolysiloxane is prepared by mixing components (A) and (B) such that at least 2 mol of vinyl group in component (B) is available per mol of platinum atom in component (A) and heating the mixture at 40.degree.-100.degree. C. for at least 1 hour. When blended in an addition reaction curing type organosiloxane composition, the platinum catalyst has the advantage that even after long-term storage at elevated temperatures, it remains stable and active enough to cause the organosiloxane composition to cure.
    Type: Grant
    Filed: November 20, 1996
    Date of Patent: August 11, 1998
    Assignee: Shin-Estu Chemical Co., Ltd.
    Inventors: Masayuki Ikeno, Hideki Sugahara, Hironao Fujiki
  • Patent number: 5789333
    Abstract: The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.
    Type: Grant
    Filed: March 5, 1997
    Date of Patent: August 4, 1998
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Robert J. Angelici, Hanrong Gao
  • Patent number: 5710093
    Abstract: A catalyst support includes substantially spherical particles of a substantially homogeneous mixture of at least two compounds selected from the group consisting of refractory inorganic oxides, refractory inorganic carbides, refractory inorganic nitrides and mixtures thereof, wherein said particles have a surface area of at least about 30 m.sup.2 /g, an average pore diameter of at least about 150 .ANG., and a particle size of at least about 0.1 mm. The support may be used in a catalyst system to support a Group IVb and a Group VIII metal in a catalyst system useful for hydrogenation of carbon monoxide into C.sub.2 + hydrocarbons. A method is also provided for preparing the catalyst support and system.
    Type: Grant
    Filed: September 20, 1996
    Date of Patent: January 20, 1998
    Assignee: Intevep, S.A.
    Inventors: Luis A. Rivas, Enzo Peluso, Daisy Rojas, Juan Jose Garcia
  • Patent number: 5700751
    Abstract: A fixed-bed catalyst is used for treating waste plastics to produce hydrocarbon fractions, gasoline and diesel oil. The catalyst comprises a silica carrier and active components having the formula of A.sub.a B.sub.b Al.sub.c M.sub.d Na.sub.e Ca.sub.f Fe.sub.g O.sub.x. In the formula, A represents potassium, barium, phosphorus, vanadium, chromium, rare earth elements or their mixture. B represents elements of tungsten, molybdenum, nickel, germanium and platinum series. This catalyst has very high selectivity and activity and can be used for reaction at a relatively low temperature, thereby reducing energy consumption, and ensuring good yield of product. The mixed hydrocarbons generated by catalytic reaction using this catalyst may comprise more than 30 percent of aromatics and cyclanes in content.
    Type: Grant
    Filed: February 27, 1996
    Date of Patent: December 23, 1997
    Assignee: Plastic Advanced Recycling Corp.
    Inventor: Yali Yang
  • Patent number: 5677257
    Abstract: A catalyst support includes substantially spherical particles of a substantially homogeneous mixture of at least two compounds selected from the group consisting of refractory inorganic oxides, refractory inorganic carbides, refractory inorganic nitrides and mixtures thereof, wherein said particles have a surface area of at least about 30 m.sup.2 /g, an average pore diameter of at least about 150 .ANG., and a particle size of at least about 0.1 mm. The support may be used in a catalyst system to support a Group IVb and a Group VIII metal in a catalyst system useful for hydrogenation of carbon monoxide into C.sub.2 + hydrocarbons. A method is also provided for preparing the catalyst support and system.
    Type: Grant
    Filed: April 12, 1996
    Date of Patent: October 14, 1997
    Assignee: Intevep, S.A.
    Inventors: Luis A. Rivas, Enzo Peluso, Daisy Rojas, Juan Jose Garcia
  • Patent number: 5667751
    Abstract: This invention relates to a catalytic fuel composition capable of reducing pollutants in the combustion gasses generated upon combustion of the same. A catalytic material is combined with a liquid, petroleum-based fuel, mixed and solid particles are separated out to give the catalytic fuel product. The catalytic material predominantly comprises a plagioclase feldspar belonging mainly to the albite-anorthite series, and contains small amount of mica, kaolinite and serpentine, and optionally contains magnetite. An alloy material is also disclosed, comprising a mixture of the above-described catalytic material and a metal. The alloy material exhibits unique properties relative to the metal component alone, such as increased tensile strength, improved heat resistance, improved acid resistance, improved corrosion resistance, as well as exhibiting unusual conductive properties.
    Type: Grant
    Filed: July 17, 1996
    Date of Patent: September 16, 1997
    Inventor: Jack H. Taylor, Jr.
  • Patent number: 5654253
    Abstract: The present invention is a process of hydrogenating high molecular weight aromatic polymers comprising hydrogenating the high molecular weight aromatic polymer in the presence of a silica supported metal hydrogenation catalyst, characterized in that the silica has a pore size distribution such that at least 98 percent of the pore volume is defined by pores having diameter of greater than 600 angstroms.
    Type: Grant
    Filed: April 3, 1996
    Date of Patent: August 5, 1997
    Assignee: The Dow Chemical Company
    Inventors: Dennis A. Hucul, Stephen F. Hahn
  • Patent number: 5607890
    Abstract: A supported Lewis acid catalyst system for catalyzing hydrocarbon conversion reactions including cationic polymerization, alkylation, isomerization and cracking reactions is disclosed, wherein the catalyst system comprises an inorganic oxide support having immobilized thereon a least one strong Lewis acid comprising at least one metal salt of a strong Bronsted acid wherein the metal is selected from the group consisting of aluminum, boron gallium, antimony, tantalum, niobium, yttrium, cobalt, nickel, iron, tin, zinc, magnesium barium strontium, calcium, tungsten, molybdenum and the metals of the lanthanide series and wherein the strong Bronsted acid is selected from the group consisting of mineral and organic acids stronger than 100% sulfuric acid.
    Type: Grant
    Filed: July 15, 1996
    Date of Patent: March 4, 1997
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Frank J. Chen, Alain Guyot, Thierry Hamaide, Christophe Le Deore
  • Patent number: 5580839
    Abstract: A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: December 3, 1996
    Assignee: University of Kentucky Research Foundation
    Inventors: Gerald P. Huffman, Jianmin Zhao, Zhen Feng
  • Patent number: 5518978
    Abstract: A difunctional catalyst is disclosed which is constituted by:(a) silica particles partially coated with zirconia, acidified by means of the introduction of sulfate moieties,(b) one or more metal(s) from Group VIIIA.The preparation of said catalyst and its use in wax hydroisomerization are disclosed as well.
    Type: Grant
    Filed: May 12, 1994
    Date of Patent: May 21, 1996
    Assignees: Eniricerche S.p.A., Agip Petroli S.p.A.
    Inventors: Cristina Flego, Laura Zanibelli
  • Patent number: 5510555
    Abstract: A catalyst, which is active in the oligomerization of olefins is an X-ray-amorphous silica-alumina-nickel oxide gel having an SiO.sub.2 /Al.sub.2 O.sub.3 molar ratio of from 30/1 to 500/1, and NiO/SiO.sub.2 molar ratio of from 0.001/1 to 0.01/1, a superficial area of from 500 m.sup.2 /g to 1.000 m.sup.2 /g, and a porosity of from 0.3 ml/g to 0.6 ml/g, the means pore diameter being 1 nm (10 Angstrom), and devoid of pores having a diameter over 3 nm (30 Angstrom). The catalyst selectively dimerizes isobutene into alpha- and beta-isobutene and oligomerizes propylene into its relative dimers and trimers. A process is described for preparing the silica-alumina-nickel oxide gel.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: April 23, 1996
    Assignee: Eniricerche, S.p.A.
    Inventors: Maurizio Brunelli, Walter Castelvetro, Giuseppe Bellussi, Stefano Peratello
  • Patent number: 5494879
    Abstract: The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.
    Type: Grant
    Filed: February 26, 1993
    Date of Patent: February 27, 1996
    Assignee: Regents, University of California
    Inventors: Yun Jin, Qiquan Yu, Shih-Ger Chang
  • Patent number: 5422327
    Abstract: The invention is directed to a catalyst composition comprising a Group VIII metal, preferably a Group VIII noble metal, and a zirconia support impregnated with silica and tungsten oxide and its use in an isomerization process.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: June 6, 1995
    Assignee: Exxon Research and Engineering Company
    Inventors: Stuart L. Soled, William E. Gates, Enrique Iglesia
  • Patent number: 5409876
    Abstract: Process for oxidating paraffinic compounds into their corresponding alcoholic and/or ketonic derivatives, which process consists in causing said paraffins to react, at a temperature comprised within the range of from 0.degree. C. to 100.degree. C., preferably in an acidic medium, with a mixture of oxygen and hydrogen, in the presence of a catalyst on the basis of titanium-silicalite and of a noble metal and/or a derivative of such a metal.
    Type: Grant
    Filed: March 25, 1993
    Date of Patent: April 25, 1995
    Assignees: Eniricerche S.p.A., Snamprogetti S.p.A.
    Inventors: Mario G. Clerici, Giuseppe Bellussi
  • Patent number: 5407886
    Abstract: A molded catalyst body that contains in a reduced state a metal of the ferrous group and/or copper on a support and is characterized by the following features:(a) Metal content: about 5 to about 40 weight percent, based on the total weight of the catalyst;(b) Metal-crystal size: .ltoreq.3 nm;(c) Volume of the pores with a diameter of 7.5 nm to 15 .mu.m: 0.05 to 0.9 ml/g catalyst;(d) BET surface area: 80-400 m.sup.2 /g catalyst;(e) Fracture strength: >30N (based on cylindrical molded body with a diameter of 1.5 mm and a length of 5 mm);(f) Bulk density: 250-350 g/l.
    Type: Grant
    Filed: February 22, 1994
    Date of Patent: April 18, 1995
    Assignee: Sud-Chemie Aktiengesellschaft
    Inventors: Michael Schneider, Karl Kochloefl, Gerhardt Maletz
  • Patent number: 5407887
    Abstract: A porous carrier for a catalyst comprising metal coated with metal oxide grains having a mean grain size of 150 nm or less and a mean pore diameter of 5.5 nm or less, is obtained by subjecting:(a) stainless steel;(b) (i) a metal alkoxide or (ii) a metal alkoxide and a metal acetate salt, both being soluble in alcohols;(c) a diol, cellosolve, or polyether which has coordinating capacity with the (i) metal alkoxide or (ii) metal alkoxide and metal acetate salt and which is soluble in alcohols; and(d) an alcohol solvent to hydrolysis and polycondensation, whereby the stainless steel is coated with an oxygen-containing organic metal compound and, subsequently, heat-treated to form a metal oxide. A method of preparing the catalyst is also provided.
    Type: Grant
    Filed: July 27, 1993
    Date of Patent: April 18, 1995
    Assignee: Merck Patent Gesellschaft Mit Beschrankter Haftung
    Inventors: Tsuyoshi Miyashita, Tamio Noguchi
  • Patent number: 5399541
    Abstract: The present invention provides a catalyst used in wastewater treatment process wherein not only an organic compound not containing nitrogen, sulfur or halogen is decomposed, but also a nitrogen-containing compound, a sulfur-containing compound and an organic halogeno compound are effectively decomposed, thereby wastewater are treated with excellent efficiency for a long period of time. The invention also provides a production process for the catalyst and said wastewater treatment process. The first catalyst comprises: an oxide of iron as an A component; and at least one kind of element as a B component selected from a group consisting of cobalt, nickel, cerium, silver, gold, platinum, palladium, rhodium, ruthenium and iridium.
    Type: Grant
    Filed: May 6, 1992
    Date of Patent: March 21, 1995
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Tohru Ishii, Kiichiro Mitsui, Kunio Sano, Keniti Shishida, Yusuke Shiota
  • Patent number: 5391533
    Abstract: A catalyst contains at least one Group VIII metal and/or Group VIII metal oxide deposited on internal surfaces of a support which contains a sintered agglomerate substrate which is preferably coated with a hydrated metal oxide.
    Type: Grant
    Filed: February 19, 1993
    Date of Patent: February 21, 1995
    Assignee: AMTX, Inc.
    Inventors: Thomas H. Peterson, James V. Griepenburg, Kevin F. Keating
  • Patent number: 5387565
    Abstract: This invention relates to an emission control device containing a catalytic material capable of reducing pollutants in the combustion gases generated from an internal combustion engine, as well as from other combusted solid and liquid fossil fuels such as coal, and is also useful for treating combustion gases generated from the incineration of landfill garbage and tire rubber, among others. The catalytic material of the present invention is highly resistant to deactivation or poisoning from contaminants in the combusted material such as leaded gasoline. The catalytic material predominantly comprises a plagioclase feldspar belonging mainly to the albite-anorthite series and contains small amounts of mica, kaolinite and serpentine, and optionally contains magnetite. A catalytic alloy material is also disclosed, comprising a mixture of the above-described catalytic material and a metal. The alloy material likewise exhibits unique catalytic properties.
    Type: Grant
    Filed: February 17, 1994
    Date of Patent: February 7, 1995
    Inventor: Jack H. Taylor, Jr.