Of Group Viii (i.e., Iron Or Platinum Group) Patents (Class 502/258)
  • Publication number: 20110073522
    Abstract: The present invention concerns a catalyst comprising at least one amorphous material comprising silicon with a hierarchical and organized porosity and at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and/or group VIII of the periodic table of the elements. Said amorphous material comprising silicon with a hierarchical and organized porosity is constituted by at least two spherical elementary particles, each of said spherical particles comprising a matrix based on oxide of silicon, which is mesostructured, with a mesopore diameter in the range 1.5 to 30 nm and having amorphous and microporous walls with a thickness in the range 1.5 to 50 nm, said elementary spherical particles having a maximum diameter of 200 microns. The invention also concerns hydrocracking/hydroconversion and hydrotreatment processes employing said catalyst.
    Type: Application
    Filed: May 13, 2009
    Publication date: March 31, 2011
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Audrey Bonduelle, Alexandra Chaumonnot
  • Patent number: 7910518
    Abstract: A geometrically shaped solid carrier is provided that improves the performance and effectiveness of an olefin epoxidation catalyst for epoxidizing an olefin to an olefin oxide. In particular, improved performance and effectiveness of an olefin epoxidation catalyst is achieved by utilizing a geometrically shaped refractory solid carrier in which at least one wall thickness of said carrier is less than 2.5 mm.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: March 22, 2011
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventors: Serguei Pak, Andrzej Rokicki, Howard Sachs
  • Patent number: 7910511
    Abstract: The invention relates to a method of preparing metallic nanoparticles and to the materials thus obtained. More specifically, the invention relates to a method of preparing metallic nanoparticles consisting in: selecting a precursor from the salts, hydroxides and oxides of metallic elements that can be reduced at temperatures below the clay silicate network destruction temperature; and depositing said precursor on a support selected from pseudolaminar phyllosilicate clays. According to the invention the method comprises: (i) a deposition step in which the precursor is deposited on the support: (ii) when the precursor is selected from among salts and hydroxides, a thermal decomposition step in a controlled atmosphere, in which the precursor is subjected to a decomposition process and is transformed into an oxide of the metallic element: and (iii) a reduction step in which the oxide of the metallic element is subjected to a reduction process in a controlled atmosphere.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: March 22, 2011
    Assignee: Tolsa, S.A.
    Inventors: Julio Santarén Romé, Francisco Javier Limpo Orozco, Eduardo Aguilar Díez, Antonio Álvarez Berenguer, José Moya Corral, Carlos Pecharroman Garcia
  • Publication number: 20110065572
    Abstract: The present invention is an improved method for preparing a heterogeneous, supported hydrogenation catalyst that comprises a Group VIII A metal and a catalyst support (for example, SiO2, with either a hydrophilic or a hydrophobic surface) via aqueous deposition precipitation as well as the catalyst prepared by said method.
    Type: Application
    Filed: May 8, 2009
    Publication date: March 17, 2011
    Applicant: DOW GLOBAL TECHNOLOGIES INC.
    Inventors: Michael M. Olken, Edward M. Calverley
  • Patent number: 7906689
    Abstract: A catalyst composition for use in manufacturing methacrolein by reacting with one of isobutene and t-butanol, the catalyst composition being represented by the formula of: x (Mo12BiaFebCocAdBeOf)/y Z. Mo12BiaFebCocAdBeOf is an oxide compound. Z is a catalyst carrier is one of graphite, boron, silicon, germanium powder, and a mixture thereof. Mo, Bi, Fe, Co, and O are chemical symbols of molybdenum, bismuth, iron, cobalt, and oxygen respectively. A is one of W, V, Ti, Zr, Nb, Ni, and Re. B is one of K, Rb, Cs, Sr, and Ba. The catalyst is adapted to not only enhance the production of methacrolein with high activeness and high selectivity but also effectively control the heat point of the catalyst during the methacrolein manufacturing process to prolong the catalyst life.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: March 15, 2011
    Inventors: Yan Zhuang, Chunlei Zhang, Xin Wen, Jun Li, Jingming Shao, Peizhang Zhang
  • Patent number: 7902104
    Abstract: This invention relates to a solid divided composition comprising grains whose mean size is greater than 25 ?m and less than 2.5 mm, wherein each grain is provided with a solid porous core and a homogeneous continuous metal layer consisting of at least one type of transition non-oxidised metal and extending along a gangue coating the core in such a way that pores are inaccessible. A method for the production of said composition and for the use thereof in the form of a solid catalyst is also disclosed.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 8, 2011
    Assignees: Arkema France, Institut National Polytechnique de Toulouse
    Inventors: Philippe Kalck, Philippe Serp, Massimiliano Corrias
  • Publication number: 20110053020
    Abstract: Nanostructured catalysts and related methods are described. The nanostructured catalysts have a hierarchical structure that facilitates modification of the catalysts for use in particular reactions. Methods for generating hydrogen from a hydrogen-containing molecular species using a nanostructured catalyst are described. The hydrogen gas may be collected and stored, or the hydrogen gas may be collected and consumed for the generation of energy. Thus, the methods may be used as part of the operation of an energy-consuming device or system, e.g., an engine or a fuel cell. Methods for storing hydrogen by using a nanostructured catalyst to react a dehydrogenated molecular species with hydrogen gas to form a hydrogen-containing molecular species are also described.
    Type: Application
    Filed: November 7, 2008
    Publication date: March 3, 2011
    Applicants: WASHINGTON STATE UNIVERSITY RESEARCH FOUNDATION, IDAHO RESEARCH FOUNDATION, INC.
    Inventors: M. Grant Norton, David N. McIlroy
  • Patent number: 7888283
    Abstract: A composition for catalyzing the auto-thermal reformation of ethanol, including a porous refractory substrate with a nickel-iron-aluminum oxide material at least partially filling the pores. The substrate is typically an alumina-based ceramic, such as gamma alumina or mullite. The catalyst composition is typically produced by identifying a refractory substrate having a relatively high surface area, such as through the existence of a pore network, infiltrating the refractory substrate with iron oxide and nickel oxide precursors, and combining the iron oxide and nickel oxide precursors with aluminum oxide to form a hybrid nickel-iron-aluminum oxide material at least partially coating the refractory substrate.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: February 15, 2011
    Inventors: Lihong Huang, Jian Xie
  • Patent number: 7850842
    Abstract: The invention relates to a process for preparing a catalyst support, in which zirconium dioxide powder is mixed with a binder, if desired a pore former, if desired an acid, water and, if desired, further additives to give a kneadable composition and the composition is homogenized, shaped to produce shaped bodies, dried and calcined, wherein the binder is a monomeric, oligomeric or polymeric organosilicon compound. Suitable binders are monomeric, oligomeric or polymeric silanes, alkoxysilanes, aryloxysilanes, acryloxysilanes, oximinosilanes, halosilanes, aminoxysilanes, aminosilanes, amidosilanes, silazanes or silicones. The invention also provides the catalyst support which has been prepared in this way, a catalyst comprising the support and its use as dehydrogenation catalyst.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: December 14, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Otto Hofstadt, Michael Hesse, Götz-Peter Schindler, Klaus Harth, Falk Simon
  • Patent number: 7846867
    Abstract: A method for the production of a composition comprising a metal containing compound, a silica containing material, a promoter, and alumina is disclosed. The composition can then be utilized in a process for the removal of sulfur from a hydrocarbon stream.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 7, 2010
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Uday T. Turaga, Tushar V. Choudhary, Glenn W. Dodwell, Marvin M. Johnson, Deborah K. Just
  • Patent number: 7846977
    Abstract: The present invention relates to a catalyst comprising a preferably oxidic, core material, a shell of zinc oxide around said core material, and a catalytically active material in or on the shell, based on one or more of the metals cobalt, iron, ruthenium and/or nickel, preferably a Fischer-Tropsch catalyst, to the preparation of such a catalyst and the use thereof in GTL processes.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: December 7, 2010
    Assignee: BASF Corporation
    Inventors: Cornelis Roeland Baijense, Geoffrey Johnson, Ahmad Moini
  • Publication number: 20100285656
    Abstract: The present invention relates to a method for forming metal-silicide catalyst nanoparticles with controllable diameter. The method according to embodiments of the invention leads to the formation of ‘active’ metal-suicide catalyst nanoparticles, with which is meant that they are suitable to be used as a catalyst in carbon nanotube growth. The nano-particles are formed on the surface of a substrate or in case the substrate is a porous substrate within the surface of the inner pores of a substrate. The metal-silicide nanoparticles can be Co-silicide, Ni-silicide or Fe-silicide particles. The present invention relates also to a method to form carbon nanotubes (CNT) on metal-silicide nanoparticles, the metal-silicide containing particles hereby acting as catalyst during the growth process, e.g. during the chemical vapour deposition (CVD) process. Starting from very defined metal-containing nanoparticles as catalysts, the diameter of grown CNT can be well controlled and a homogeneous set of CNT will be obtained.
    Type: Application
    Filed: June 16, 2006
    Publication date: November 11, 2010
    Applicant: Interuniversitair Microelektronica Centrum (IMEC)
    Inventors: Santiago Cruz Esconjauregui, Caroline Whelan, Karen Maex
  • Patent number: 7829493
    Abstract: The invention relates to a method of preparing metallic nanoparticles and to the materials thus obtained. More specifically, the invention relates to a method of preparing metallic nanoparticles consisting in: selecting a precursor from the salts, hydroxides and oxides of metallic elements that can be reduced at temperatures below the clay silicate network destruction temperature; and depositing said precursor on a support selected from pseudolaminar phyllosilicate clays. According to the invention the method comprises: (i) a deposition step in which the precursor is deposited on the support: (ii) when the precursor is selected from among salts and hydroxides, a thermal decomposition step in a controlled atmosphere, in which the precursor is subjected to a decomposition process and is transformed into an oxide of the metallic element: and (iii) a reduction step in which the oxide of the metallic element is subjected to a reduction process in a controlled atmosphere.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: November 9, 2010
    Assignee: Tolsa, S.A.
    Inventors: Julio Santarén Romé, Francisco Javier Limpo Orozco, Eduardo Aguilar Díez, Antonio Álvarez Berenguer, José Moya Corral, Carlos Pecharroman Garcia
  • Publication number: 20100261601
    Abstract: A modified catalyst support exhibiting attrition resistance and/or deaggregation resistance is provided. A catalyst composition including the modified catalyst support is also provided. A process to produce a modified catalyst support including treatment of a support slurry with a solution of monosilicic acid is provided. A process to use a catalyst including the modified catalyst support in a Fischer-Tropsch synthesis is provided.
    Type: Application
    Filed: June 25, 2010
    Publication date: October 14, 2010
    Inventors: Heinz J. Robota, Shelly Goodman
  • Patent number: 7811966
    Abstract: A catalyst, catalyst precursor, or catalyst carrier formed as an elongated shaped particle having a cross section comprising three protrusions each extending from and attached to a central position. The central position is aligned along the longitudinal axis of the particle. The cross-section of the particle occupies the space encompassed by the outer edges of six outer circles around a central circle, each of the six outer circles contacting two neighbouring outer circles, the particle occupying three alternating outer circles equidistant to the central circle and the six interstitial regions, the particle not occupying the three remaining outer circles which are between the alternating occupied outer circles. The ratio of the diameter of the central circle to the diameter of the outer occupied circle is more than 1, and the ratio of the diameter of the outer unoccupied circle to the diameter of the outer occupied circle is more than 1.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: October 12, 2010
    Assignee: Shell Oil Company
    Inventors: Hans Peter Alexander Calis, Guy Lode Magda Maria Verbist
  • Patent number: 7811963
    Abstract: An elongated-shaped particle having two protrusions; each extending from and attached to a central position, wherein the central position is aligned along the longitudinal axis of the particle, the cross-section of the particle occupying the space encompassed by the outer edges of six circles around a central circle, in which each of the six circles touches two neighboring circles and two alternating circles are equidistant to the central circle and may be attached to the central circle, and the two circles adjacent to the two alternating circles (but not the common circle) touching the central circle, minus the space occupied by the four remaining outer circles and including four remaining interstitial regions.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: October 12, 2010
    Assignee: Shell Oil Company
    Inventors: Hilbrand Klaver, Carolus Matthias Anna Maria Mesters, Gerardus Petrus Lambertus Niesen, Guy Lode Magda Maria Verbist
  • Publication number: 20100240936
    Abstract: A catalyst and a method for selective hydrogenation of acetylene and dienes in light olefin feedstreams are provided. The catalyst retains higher activity and selectivity after regeneration than conventional selective hydrogenation catalysts. The catalyst contains a first component and a second component supported on an inorganic support. The inorganic support contains at least one salt or oxide of zirconium, a lanthanide, or an alkaline earth.
    Type: Application
    Filed: June 1, 2010
    Publication date: September 23, 2010
    Inventors: Yongqing Zhang, Stephen J. Golden
  • Patent number: 7797931
    Abstract: A catalyst composition is provided for use on a diesel particulate filter which facilitates the oxidation of soot from diesel engine exhaust and which generates low NO2 emissions during regeneration of the filter. The catalyst composition includes a catalytic metal comprising a platinum group metal selected from Pt, Pd, Pt—Pd, or combinations thereof, an active metal oxide component containing Cu and La; and an oxide component selected from oxides of Co, Fe, or combinations thereof. The catalyst composition includes a support selected from alumina, silica, zirconia, or combinations thereof. The catalyst composition may be provided on a diesel particulate filter by impregnating the filter with an alumina, silica or zirconia sol solution modified with glycerol and/or saccharose, impregnating the filter with a stabilizing solution, and impregnating the filter with a solution containing the catalyst metal precursor(s), the active metal oxide precursor(s) and the Co or Fe oxide(s).
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: September 21, 2010
    Assignee: Ford Global Technologies, LLC
    Inventors: Alexei A Dubkov, Albert N Chigapov, Brendan Patrick Carberry
  • Patent number: 7799729
    Abstract: In one embodiment, a reforming catalyst can include indium, tin, and a catalytically effective amount of a group VIII element for one or more reforming reactions. Typically, at least about 25%, by mole, of the indium is an In(3+) species based on the total moles of indium after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C. Usually, no more than about 25%, by mole, of the tin is a Sn(4+) species based on the total moles of tin after exposure for about 30 minutes in an atmosphere including about 100% hydrogen, by mole, at a temperature of about 565° C.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Gregory J. Gajda, Mark Paul Lapinski, Jeffry Thurston Donner, Simon Russell Bare
  • Patent number: 7794680
    Abstract: A first catalyst for reducing nitrogen oxides comprising a crystalline silicate containing an iron in ?-framework structure wherein a SiO2/Fe2O3 mol ratio is 20-300 and at least 80% of the contained iron is an isolated iron ion Fe3+. A second catalyst for reducing nitrogen oxides comprising a crystalline silicate containing an iron in ?-framework structure wherein a SiO2/Fe2O3 mol ratio is 20-300 and log(SiO2/Al2O3) by mol is at least 2. A predominant part of the contained iron is isolated iron ion Fe3+ and at least a part thereof preferably has a tetrahedral coordination. These catalysts have high hydrothermal stability and exhibit enhanced activity for reducing nitrogen oxides by a reaction with a reducing agent such as ammonia, urea or an organic amine in a broad temperature range between lower temperature and higher temperature.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: September 14, 2010
    Assignee: Tosoh Corporation
    Inventors: Yusuke Naraki, Kou Ariga, Hidekazu Aoyama
  • Patent number: 7790019
    Abstract: The invention relates to a catalyst including at least one hydro-dehydrogenating element chosen from the group formed by the group VIB and group VIII elements of the periodic table and a substrate based on a silica-alumina matrix with a reduced content of macropores containing a quantity greater than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and based on at least one zeolite. The invention also relates to a substrate based on a silica-alumina matrix with a reduced content of macropores containing a quantity greater than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and based on at least one zeolite. The invention also relates to hydrocracking and/or hydroconversion processes and hydrotreating processes utilizing a catalyst according to the invention.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 7, 2010
    Assignee: IFP Energies Nouvelles
    Inventors: Patrick Euzen, Patrick Bourges, Hugues Dulot, Christophe Gueret
  • Patent number: 7790648
    Abstract: The invention relates to a process for preparing a catalyst. The process allows the delamination of layered crystals which are used as a starting material for a catalyst. The starting material is subsequently converted into an active portion of a catalyst with an increased dispersion resulting in a higher activity. Preferred delaminating agents are di-carboxylic acids and one particular example is citric acid. Preferably at least 0.75 wt %, more preferably at least 1.5 wt % of a delaminating agent is added to the catalyst starting material.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: September 7, 2010
    Assignee: Shell Oil Company
    Inventors: Ronald Jan Dogterom, Robert Martijn Van Hardeveld, Marinus Johannes Reynhout, Bastiaan Anton Van De Werff
  • Publication number: 20100210457
    Abstract: Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (—COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 19, 2010
    Applicant: BABCOCK & WILCOX TECHNICAL SERVICES Y-12, LLC
    Inventors: Roland D. Seals, Paul A. Menchhofer, Jane Y. Howe, Wei Wang
  • Publication number: 20100210456
    Abstract: Nano-catalysts that have utility for forming nanostructures and manufacturing nanomaterials are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. Methods of forming the nano-catalysts are disclosed. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (—COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 19, 2010
    Applicant: BABCOCK & WILCOX TECHNICAL SERVICES Y-12, LLC
    Inventors: Roland D. Seals, Paul A. Menchhofer, Jane Y. Howe, Wei Wang
  • Patent number: 7772147
    Abstract: A solid catalyst carrier substrate coated with a surface area-enhancing washcoat composition including a catalytic component, a metal oxide and a refractory fibrous or whisker-like material having an aspect ratio of length to thickness in excess of 5:1.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: August 10, 2010
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul John Collier, Alison Mary Wagland
  • Patent number: 7759277
    Abstract: The present invention provides a catalyst having high activity and excellent stability, a process for preparation of the catalyst, a membrane electrode assembly, and a fuel cell. The catalyst of the present invention comprises an electronically conductive support and catalyst fine particles. The catalyst fine particles are supported on the support and are represented by the formula (1): PtuRuxGeyTz (1). In the formula, u, x, y and z mean 30 to 60 atm %, 20 to 50 atm %, 0.5 to 20 atm % and 0.5 to 40 atm %, respectively. When the element represented by T is Al, Si, Ni, W, Mo, V or C, the content of the T-element's atoms connected with oxygen bonds is not more than four times as large as that of the T-element's atoms connected with metal bonds on the basis of X-ray photoelectron spectrum (XPS) analysis.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taishi Fukazawa, Wu Mei, Yoshihiko Nakano, Tsuyoshi Kobayashi, Itsuko Mizutani, Hiroyasu Sumino
  • Patent number: 7749937
    Abstract: An unsupported catalyst composition which comprises one or more Group VIb metals, one or more Group VIII metals, and a refractory oxide material which comprises 50 wt % or more titania, on oxide basis, which is prepared by precipitation techniques, finds use in the hydroprocessing of hydrocarbonaceous feedstocks.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: July 6, 2010
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Willem Hartman Jurriaan Stork, Johanna Maria Helena Van Den Tol-Kershof
  • Publication number: 20100168485
    Abstract: In one embodiment, a catalyst composition comprises from about 5 weight percent to about 70 weight percent of silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal. In another embodiment, a method for processing hydrocarbons comprises hydro-treating the hydrocarbons in the presence of a catalyst composition, wherein the catalyst comprises from about 5 weight percent to about 70 weight percent silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal.
    Type: Application
    Filed: December 26, 2008
    Publication date: July 1, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Gregg Anthony Deluga, Daniel Lawrence Derr
  • Publication number: 20100160156
    Abstract: A system for activating Fischer-Tropsch catalyst comprising a reactor having a reactor outlet for overhead gas and operable under suitable conditions whereby a catalyst in a volume of liquid carrier comprising Fischer-Tropsch diesel, hydrocracking recycle oil, or a combination thereof may be activated in the presence of an activation gas; a condenser comprising an inlet fluidly connected to the reactor outlet for overhead gas and comprising a condenser outlet for condensed liquids; and a separation unit comprising an inlet fluidly connected to the condenser outlet and a separator outlet for a stream comprising primarily Fischer-Tropsch diesel; and a recycle line fluidly connecting the separator outlet, a hydrocracking unit, or both to the reactor, whereby Fischer-Tropsch diesel recovered from the reactor overhead gas, hydrocracking recycle oil, or a combination thereof may serve as liquid carrier for catalyst in the reactor. A method for activating Fischer-Tropsch catalyst is also provided.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 24, 2010
    Applicant: RENTECH, INC.
    Inventors: Mark Ibsen, Sergio Mohedas
  • Patent number: 7740817
    Abstract: A catalyst which efficiently removes particulate matter, SOF, sulfate, and SOOT and the like from the exhaust gas from such an internal combustion engine as a diesel engine without inducing a rise in the back pressure of the engine is provided. The catalyst for the purification of the exhaust gas of an internal combustion engine is formed by using an open flow honeycomb containing in the channel walls thereof such pores as possess an average diameter in the range of 10-40 ?m.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: June 22, 2010
    Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.
    Inventors: Takeshi Matsumoto, Takao Kobayashi, Takuji Nakane, Takahiro Uno, Makoto Horiuchi
  • Patent number: 7737077
    Abstract: This is to provide a catalyst for purifying exhaust gases, catalyst which are good in terms of the purifying performance.
    Type: Grant
    Filed: November 25, 2004
    Date of Patent: June 15, 2010
    Assignee: Cataler Corporation
    Inventors: Ichiro Kitamura, Akimasa Hirai, Kenichi Taki
  • Patent number: 7713911
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a transition metal particle and a base-metal compound in a reversed micelle substantially simultaneously, and a step of precipitating a noble metal particle in the reversed micelle. By this method, it is possible to obtain catalyst powder which restricts an aggregation of noble metal particles even at the high temperature and is excellent in the catalytic activity.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: May 11, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hironori Wakamatsu, Masanori Nakamura, Kazuyuki Shiratori, Hirofumi Yasuda, Katsuo Suga, Toru Sekiba
  • Publication number: 20100111796
    Abstract: Catalysts, methods of preparing catalyst, and methods for treating exhaust gas streams are described. In one or more embodiments, a catalyst system includes an upstream zone effective to catalyze the conversion of a mixture of NOx and NH3 to N2, and a downstream zone effective for the conversion of ammonia to N2 in the presence or absence of NOx. In an embodiment, a method for preparing a catalyst system includes: first coating one end of a substrate along at least 5% of its length with an undercoat washcoat layer containing a material composition effective to catalyze the removal of ammonia; second coating with an overcoat layer containing a material composition effective to catalyze the conversion of a mixture of NOx and NH3 to N2.
    Type: Application
    Filed: November 3, 2008
    Publication date: May 6, 2010
    Applicant: BASF Catalysts LLC
    Inventors: Matthew Tyler Caudle, Martin Dieterle, Scott E. Buzby
  • Patent number: 7700520
    Abstract: This invention relates to the preparations of noble metal catalysts, i.e., platinum and platinum alloys, on suitable supports with nanonetwork structures and high catalytic efficiencies. A compact structure of a monolayer or a few layers is formed by self-assembly of organic polymer, e.g., polystyrene (PS), nanospheres or inorganic, i.e., silicon dioxide (SiO2), nanospheres on a support surface. In the void spaces of such a compact arrangement, catalyst is formed by filling with catalyst metal ion-containing aqueous solution and reduced by chemical reduction, or formed by vacuum sputtering. When using organic polymer nanospheres as the starting or structure-directing material, the polymer particles are removed by burning at a high temperature and the catalyst having a nanonetwork structure is obtained.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: April 20, 2010
    Assignee: Institute of Nuclear Energy Research
    Inventors: Chun Ching Chien, King Tsai Jeng, Shean Du Chiou, Su Hsine Lin
  • Patent number: 7696125
    Abstract: A catalyst and a process for preparing carboxylic acid esters from an aldehyde and an alcohol in the presence of molecular oxygen are disclosed. The catalyst comprises metals supported on a silica-containing support, wherein the metals consist essentially of palladium, lead, an alkali or alkaline earth metal, and at least one of niobium and zirconium. The process for preparing a carboxylic acid ester comprises reacting an aldehyde with an alcohol in the presence of molecular oxygen and the aforementioned catalyst.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: April 13, 2010
    Assignee: Lee Chang Yung Chemical Industry Corporation
    Inventors: Kindtoken Hwaider Liu, Man-Yin Lo, Wen-Chyi Lin, Mei-Yuan Chang
  • Patent number: 7674367
    Abstract: The present invention relates to an iron-containing crystalline aluminosilicate, a hydrocracking catalyst comprising the same and a process for hydrocracking utilizing the catalyst, and employing the catalyst in hydrocracking for heavy oil results in easy production of great quality kerosene and gas oil having low contents of sulfur and nitrogen as well as increased production thereof.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: March 9, 2010
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Kazuhiro Inamura, Hiroshi Iida, Yoshihiro Okazaki, Akira Iino
  • Patent number: 7674744
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a carrier in a reversed micelle, and a step of precipitating at least one of a noble metal particle and a transition metal particle in the reversed micelle in which the carrier is precipitated. By this method, it is possible to obtain catalyst powder excellent in heat resistance and high in the catalytic activity.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: March 9, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Shiratori, Toru Sekiba, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Hirofumi Yasuda
  • Patent number: 7666296
    Abstract: The invention relates to a process for converting heavy hydrocarbonaceous feedstocks carried out in a slurry reactor in the presence of hydrogen and in the presence of a catalytic composition obtained by: injecting a catalytic precursor of at least one metal of Group VIB and/or Group VIII in at least part of the feedstock to be treated in the absence of an oxide substrate, thermal treatment at a temperature of 400° C.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 23, 2010
    Assignee: Institut Francais du Petrole
    Inventor: Magalie Roy-Auberger
  • Patent number: 7655594
    Abstract: Briefly described, compositions, materials including the compositions, methods of using the compositions, and methods of degrading contaminants, are described herein. The composition can include a polyoxometalate/ cationic silica material. In addition, the compositions can be made of a polyoxometalate/cationic silica material, a copper (II) salt having a weakly bound anion, and a nitrate salts. Further, the compositions can be made of a polyoxometalate/cationic silica material, a copper (II) salt having a weakly bound anion, a compound selected from tetraethylammonium (TEA) nitrate, tetra-n-butylammonium (TBA) nitrate, and combinations thereof.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: February 2, 2010
    Assignee: Emory University
    Inventors: Neyla Okun, Craig L. Hill
  • Publication number: 20090325788
    Abstract: The present invention is related to single and/or multiple-wall carbon nanotubes which may contain interstitial metals obtainable by a preparation process, comprising a catalytic step using a catalytic system, said catalytic system comprising a catalyst and a support, said support comprising hydroxides and/or carbonates or mixtures thereof with or without metal oxides. The present invention is also related to carbon fibers obtainable by said preparation process. The present invention also pertains in particular to said catalytic system and to said preparation process. Another aspect concerns the use of the nanotubes and of the catalytic system according to the invention.
    Type: Application
    Filed: July 20, 2009
    Publication date: December 31, 2009
    Applicant: FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX
    Inventors: Janos B. Nagy, Narasimaiah Nagaraju, Isabelle Willems, Antonio Fonseca
  • Publication number: 20090325790
    Abstract: A metal-substituted mesoporous oxide framework, such as Co-MCM-41, are disclosed which includes more than one ion species with different reduction kinetics. The reducibility correlates strongly with the pore radius of curvature, with the metal ions incorporated in smaller pores more resistant to complete reduction. The metal-ion substituted oxide framework improves catalytic processes by controlling the size of the catalytic particles forming in the pores. The metal-substituted mesoporous oxide framework can be employed in selective hydrogenation of organic chemicals, in ammonia synthesis, and in automotive catalytic exhaust systems.
    Type: Application
    Filed: June 17, 2005
    Publication date: December 31, 2009
    Applicant: Yale University
    Inventors: Gary L. Haller, Sangyun Lim, Dragos Ciuparu, Yuan Chen, Yanhui Yang, Lisa Pfefferle
  • Patent number: 7638460
    Abstract: An exhaust gas purifying catalyst of the present invention has a substrate, and a catalyst layer formed on an inner wall of the substrate and composed of at least a single layer. The catalyst layer contains a carrier supporting noble metal. Further, a maximum height of profile of a surface of a top layer in the catalyst layer is not less than 2 ?m and not more than 50 ?m, and the top layer contains the carrier supporting noble metal.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: December 29, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masanori Nakamura, Katsuo Suga, Kiyoshi Miyazaki, Jun Ikezawa
  • Patent number: 7635461
    Abstract: Composite combustion catalyst particles are described and disclosed. A metal core of a combustible metal can be coated with a metal oxide coating. Additionally, a catalyst coating can at least partially surround the metal oxide coating to form a composite catalyst particle. The composite catalyst particles can be dispersed in a variety of fuels such as propulsion fuels and the like to form an enhanced fuel. During initial stages of combustion, the catalyst coating acts to increase combustion of the fuel. As combustion proceeds, the metal core heats sufficiently to disturb the metal oxide coating. The metal core then combusts in highly exothermic reactions with an oxidizer and the catalyst coating to provide improved energy densities to the enhanced fuel.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: December 22, 2009
    Assignee: University of Utah Research Foundation
    Inventor: Scott L. Anderson
  • Publication number: 20090298681
    Abstract: A method of producing stable ferrous nitrate solution by dissolving iron in nitric acid to form a ferrous nitrate solution and maintaining the solution at a first temperature for a first time period, whereby the Fe(II) content of the ferrous nitrate solution changes by less than about 2% over a second time period. A method of producing stable Fe(II)/Fe(III) nitrate solution comprising ferrous nitrate and ferric nitrate and having a desired ratio of ferrous iron to ferric iron, including obtaining a stable ferrous nitrate solution; dissolving iron in nitric acid to form a ferric nitrate solution; maintaining the ferric nitrate solution at a second temperature for a third time period; and combining amounts of stable ferrous nitrate solution and ferric nitrate solution to produce the stable Fe(II)/Fe(III) nitrate solution. A method of preparing an iron catalyst is also described.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 3, 2009
    Applicant: RENTECH, INC.
    Inventors: Pandurang V. Nikrad, Jesse W. Taylor, Richard A. Bley, Danny M. Dubuisson, Sara L. Rolfe, Belma Demirel, Dawid J. Duvenhage, Harold A. Wright
  • Patent number: 7625835
    Abstract: A composite photocatalyst includes a semiconducting core and a nanoscale particle disposed on a surface of the semiconducting core, wherein the nanoscale particle is an electron carrier, and wherein the photocatalyst is sensitive to visible light irradiation.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: December 1, 2009
    Assignees: GM Global Technology Operations, Inc., Pohang University of Science and Technology
    Inventors: Wei Li, Se H. Oh, Jae S. Lee, Jum S. Jang
  • Publication number: 20090275466
    Abstract: A metallo-organic decomposition process for the preparation of intermetallic powders and films. A liquid mixture containing a first metal precursor and a second metal is heated to a temperature in a first temperature range so as to convert the first metal precursor to a first metal followed by heating to a temperature in a second temperature range so as to form an intermetallic compound by a solid state reaction between the first and second metals. The intermetallic compound can be used as a catalyst in cut filler and/or the filter of a cigarette.
    Type: Application
    Filed: June 19, 2009
    Publication date: November 5, 2009
    Applicant: Philip Morris USA, Inc.
    Inventors: Sarojini Deevi, Yezdi B. Pithawalla
  • Publication number: 20090264277
    Abstract: A catalyst for hydrogen generation from an alkaline aqueous solution of hydrogen containing salts comprising a silicon-based ceramic surface covered with a mixture of metals known as transition metals and noble metals. The silicon-based ceramic surface may be self-supporting or may be deposited as a thin film on a carbonaceous substrate. The carbonaceous surface may be self-supporting or be in the form of a film that is supported on a substrate of a fourth material, where the fourth material has the function of providing physical support to the substrate. The said carbonaceous substrate can be made from a solid material or from a porous structure, of which carbon nanotube paper, also known as Bucky paper, is one example.
    Type: Application
    Filed: April 17, 2008
    Publication date: October 22, 2009
    Inventors: RISHI RAJ, GIOVANNI CARTURAN, RAQUEL de la PENA-ALONSO
  • Patent number: 7605110
    Abstract: A ceramic body, a ceramic catalyst body, a ceramic catalyst body and related manufacturing methods are disclosed wherein a cordierite porous base material has a surface, formed with acicular particles made of a component different from that of cordierite porous base material, which has an increased specific surface area with high resistance to a sintering effect. The ceramic body is manufactured by preparing a slurry containing an acicular particle source material, preparing a porous base material, applying the slurry onto a surface of the porous base material and firing the porous base material, whose surface is coated with the slurry, to cause acicular particles to develop on the surface of the porous base material. A part of or a whole of surfaces of the acicular particles is coated with a constituent element different from that of the acicular particles.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: October 20, 2009
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Keiichi Yamada, Kazuhiko Koike, Katsumi Yoshida, Hideki Kita, Naoki Kondo, Hideki Hyuga
  • Patent number: 7605107
    Abstract: This invention relates to supported multi-metallic catalysts for use in the hydroprocessing of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor comprised of at least one Group VIII metal and a Group VI metal and an organic agent selected from the group consisting of amino alcohols and amino acids. The catalyst precursor is thermally treated to partially decompose the organic agent, then sulfided.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: October 20, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Joseph E. Baumgartner, Christine E. Kliewer, Andrzej Malek, Andrew C. Moreland
  • Patent number: 7601671
    Abstract: A method for preparing an exhaust gas catalyst includes preparing a washcoat comprising a catalytically effective amount of at least one catalytically active metal disposed upon an oxide support; disposing the catalytically active metal-oxide support washcoat upon a catalyst substrate; drying the washcoated catalyst substrate using microwave energy to affix the precious metals to the oxide support; and conventionally calcining the dried washcoated catalyst substrate. The catalysts comprising a substrate having dispersed thereon an inorganic oxide washcoat, the washcoat having been affixed to the substrate by microwave drying, exhibit high exhaust gas purifying performance and long durability. The catalysts thus produced further provide a long in-service lifetime for reforming organic fuel species into hydrogen, carbon monoxide and light hydrocarbons used in the nitrogen oxides reduction process.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: October 13, 2009
    Assignee: Umicore AG & Co. KG
    Inventor: William J. LaBarge