Lanthanum Patents (Class 502/303)
  • Patent number: 8158554
    Abstract: A high heat-resistant catalyst includes: noble metal particles; first compounds which contact the noble metal particles and suppress movement of the noble metal particles; and second compounds which envelop the noble metal particles and the first compounds, suppress the movement of the noble metal particles, and suppress coagulation of the first compounds following mutual contact of the first compounds. The first compounds support the noble metal particles, and single piece or aggregate of the first compounds supporting the noble metal particles are included in a section partitioned by the second compounds. A coefficient of linear thermal expansion of the second compounds is 1.2×10?5 [K?1] or less.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: April 17, 2012
    Assignees: Nissan Motor Co., Ltd., RENAULT s.a.s.
    Inventors: Hironori Wakamatsu, Masanori Nakamura, Masahiro Takaya, Katsuo Suga, Hiroto Kikuchi, Jun Ikezawa
  • Patent number: 8158550
    Abstract: The invention relates to a multilayer catalyst for the partial oxidation of hydrocarbons in gaseous phase, comprising a monolithic ceramic or metallic substrate having a solid macroporous structure consisting of one or more structures, on which a first active layer with a crystal-line perovskitic structure is deposited, having general formula AxA? 1-xByB? 1-YO3±? wherein: A is a cation of at least one of the rare earth elements, A? is a cation of at least one element selected from groups Ia, IIa and VIa of the periodic table of elements, B is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb, or VIII of the periodic table of elements, B? is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb or VIII of the periodic table of elements Mg2+ or Al3+, x is a number which is such that 0?x?1, y is a number which is such that 0?y?1, and ? is a number which is such that 0???0, 5, a second more external active layer consisting of a dispersion of a noble metal and a possible s
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: April 17, 2012
    Assignee: Consiglio Nazionale Delle Ricerche
    Inventors: Stefano Cimino, Francesco Donsi, Raffaele Pirone, Gennaro Russo
  • Publication number: 20120088936
    Abstract: In Suzuki Cross-Couplings, a palladium-containing perovskite-type composite oxide represented by the following general formula (1) is used as a catalyst for synthesis reaction: Ln2MyCu1-x-yPdxO4±???(1) wherein Ln represents elements composed of at least one essential element selected from La, Pr, Nd, Sm, Eu, and Gd and at least one optional element selected from Y, Ce, Yb, Ca, Sr, and Ba; M represents at least one element selected from Cr, Mn, Fe, Co, Ni, and Al; x, indicating an atomic proportion, is 0.001?x?0.4; y, indicating an atomic proportion, is 0?y?0.5; and ? indicates an oxygen excess amount or an oxygen deficiency amount.
    Type: Application
    Filed: June 24, 2010
    Publication date: April 12, 2012
    Applicants: DAIHATSU MOTOR CO., LTD., HOKKO CHEMICAL INDUSTRY CO., LTD.
    Inventors: Kimiyoshi Kaneko, Hirohisa Tanaka
  • Patent number: 8153549
    Abstract: A catalyst for treating an exhaust gas has at least a carrier and plural layers formed on the carrier, wherein at least one layer of the above plural layers has an interstice in the layer, and at least one layer of the above plural layers contains a catalyst component. The above catalyst for treating an exhaust gas allows the enhancement of the diffusion of an exhaust gas in a catalyst layer, which results in the improvement of catalyst efficiency.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: April 10, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Jin Cho, Kenji Tanikawa
  • Patent number: 8143188
    Abstract: A dehydrogenation catalyst is described that comprises an iron oxide, an alkali metal or compound thereof, and rhenium or a compound thereof. A process for preparing a dehydrogenation catalyst comprising preparing a mixture of iron oxide, an alkali metal or compound thereof, and rhenium or a compound thereof is also described. Additionally, a dehydrogenation process using the catalyst and a process for preparing polymers are described.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: March 27, 2012
    Assignee: BASF Corporation
    Inventor: Ruth Mary Kowaleski
  • Publication number: 20120060418
    Abstract: A catalyst system including at least one metal and an oxide support, said oxide support including at least one of Al2O3, MnxOy, MgO, ZrO2, and La2O3, or any mixtures thereof; said catalyst being suitable for catalyzing at least one reaction under supercritical water conditions is disclosed. Additionally, a system for producing a high-pressure product gas under super-critical water conditions is provided. The system includes a pressure reactor accommodating a feed mixture of water and organic matter; a solar radiation concentrating system heating the pressure reactor and elevating the temperature and the pressure of the mixture to about the water critical temperature point and pressure point or higher. The reactor is configured and operable to enable a supercritical water process of the mixture to occur therein for conversion of the organic matter and producing a high-pressure product fuel gas.
    Type: Application
    Filed: May 20, 2010
    Publication date: March 15, 2012
    Applicants: Ramot At Tel-Aviv University Ltd., Yeda Research and Development Co. Ltd.
    Inventors: Michael Epstein, Abraham Kribus, Alexander Berman
  • Publication number: 20120064787
    Abstract: A method is disclosed of producing stable nanosized colloidal suspensions of particles with limited crystallinity loss, products thereof, use of the products and an apparatus for the method. In particular the present invention relates to a wet milling method with small beads wherein the size of the final particles in suspension are stabilized in the nanorange (D50<75 nm) and at the same time the particles substantially maintain the crystallinity.
    Type: Application
    Filed: March 22, 2010
    Publication date: March 15, 2012
    Applicant: VALINGE PHOTOCATALYTIC AB
    Inventors: Steen Brummerstedt Iversen, Hans Rasmussen, Christian Ausig Christensen, Henrik Jensen, Theis Reenberg
  • Publication number: 20120063989
    Abstract: The present invention relates to a highly active water gas shift catalyst and a process for producing it, and also a process for converting a gas mixture comprising at least carbon monoxide and water into hydrogen and carbon dioxide in a wide temperature range using this catalyst.
    Type: Application
    Filed: August 26, 2011
    Publication date: March 15, 2012
    Applicant: BASF SE
    Inventors: Stephan Hatscher, Markus Hölzle, Thorsten von Fehren, Alexander Schäfer
  • Patent number: 8133836
    Abstract: To provide a process for producing ceria-zirconia solid solution crystal fine particles having high crystallinity, being excellent in uniformity of composition and particle size, having a small particle size and a high specific surface area and being excellent in heat resistance, and such solid solution crystal fine particles. A process comprises a step of obtaining a melt containing, as represented by mol % based on oxides, from 5 to 50% of (ZrO2+CeO2), from 10 to 60% of RO (wherein R is at least one member selected from the group consisting of Mg, Ca, Sr and Ba) and from 25 to 70% of B2O3, a step of quenching the melt to obtain an amorphous material, a step of heating the amorphous material at a temperature of from 550 to 1000° C.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: March 13, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Yoshihisa Beppu, Kazuo Sunahara
  • Publication number: 20120055141
    Abstract: Described is a catalyst comprising a substrate and a catalyst coating of two or more layers: (a) a first layer comprising Pt and/or Pd on the substrate; and (b) a second layer comprising Pt on the first layer; these layers each further comprising: one or more particulate support materials; one or more oxygen storage component (OSC) materials; and one or more nitrogen oxide storage materials comprising one or more elements selected from the group of alkali and/or alkaline earth metals, wherein the total amount of alkali and alkaline earth metals ranges from 0.18 to 2.5 g/in3 calculated as the respective alkali metal oxides M2O and alkaline earth metal oxides MO. Also described is a method for the production of a catalyst, as well as a process for the treatment of a gas stream comprising nitrogen oxide, in particular of an exhaust gas stream resulting from an internal combustion engine.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 8, 2012
    Applicant: BASF SE
    Inventor: Marcus Hilgendorff
  • Publication number: 20120059208
    Abstract: A catalyst for oxidative dehydrogenation of organic compounds is provided by forming a solution of catalyst precursor components comprised of Fe+3 and Zn+2 cations and at least one other modifier element cation in water to form an aqueous solution of the catalyst precursor components. The modifier element cation has a standard reduction potential of from greater than about ?2.87 E° (V) to less than about ?0.036 E° (V) with a valence of +2. A base is separately and simultaneously added to the aqueous solution in amounts to maintain the pH of the aqueous solution at a pH of from about 8.5 to about 9.5 as the catalyst precursor components. The catalyst precursor components are allowed to react and precipitate out of solution as a precipitate. The resulting precipitate is calcined to form a modified zinc ferrite catalyst compound.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 8, 2012
    Inventors: Aghaddin Mamedov, Shahid Shaikh, Clark Rea, Xiankuan Zhang
  • Publication number: 20120055142
    Abstract: Described is a catalyst comprising a substrate and a catalyst coating of two or more layers: (a) a first layer comprising Pd and Rh on the substrate; and (b) a second layer comprising Pt and/or Pd on the first layer; these layers each further comprising: one or more particulate support materials; one or more oxygen storage component (OSC) materials; and one or more nitrogen oxide storage materials comprising one or more elements selected from the group of alkali and/or alkaline earth metals, wherein the total amount of alkali and alkaline earth metals ranges from 0.18 to 2.0 g/in3 calculated as the respective alkali metal oxides M2O and alkaline earth metal oxides MO. Also described is a method for the production of a catalyst, as well as a process for the treatment of a gas stream, in particular of an exhaust gas stream resulting from an internal combustion engine.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 8, 2012
    Applicant: BASF SE
    Inventor: Marcus Hilgendorff
  • Publication number: 20120053045
    Abstract: A pyrochlore-type oxide represented by a general formula A2B2O7-Z is prepared by precipitate formation, where A and B each represent a metal element, where Z represents a number of at least 0 and at most 1, where A contains at least one element selected from a group consisting of Pb, Sn, and Zn, and where B contains at least one element selected from a group consisting of Ru, W, Mo, Ir, Rh, Mn, Cr, and Re. Impurities are then sufficiently removed through washing and drying processes, and the pyrochlore-type oxide is calcined under controlled conditions. This allows the crystallinity of the pyrochlore-type oxide, which contained amorphous parts immediately after the production of the precipitate, to be increased so that the resistance to acid can be improved while preventing particle aggregation.
    Type: Application
    Filed: August 30, 2011
    Publication date: March 1, 2012
    Applicant: JX Nippon Oil & Energy Corporation
    Inventors: Yasushi Sato, Keitaro Fujii
  • Publication number: 20120046163
    Abstract: A composition is described that includes a perovskite of the formula LaMO3, where M is at least one element selected from among iron, aluminium or manganese, in the form of particles dispersed on an alumina or aluminium oxyhydroxide substrate, wherein after calcination at 700° C. for 4 hours, the perovskite is in the form of a pure crystallographic phase, and in that the size of the perovskite particles does not exceed 15 nm. The described composition can be used in the field of catalysis.
    Type: Application
    Filed: February 25, 2010
    Publication date: February 23, 2012
    Applicant: RHODIA OPERATIONS
    Inventors: Simon Ifrah, Olivier L'archer, Rui Jorge Coelho Marques, Michael Lallemand, Julien Hernandez
  • Patent number: 8119558
    Abstract: A water gas shift catalyst for use at temperatures above about 450° C. up to about 900° C. or so comprising rhenium deposited on a support, preferably without a precious metal, wherein the support is prepared from a high surface area material, such as a mixed metal oxide, particularly a mixture of zirconia and ceria, to which may be added one or more of a high surface area transitional alumina, an alkali or alkaline earth metal dopant and/or an additional dopant selected from Ga, Nd, Pr, W, Ge, Fe, oxides thereof and mixtures thereof.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: February 21, 2012
    Assignees: Süd-Chemie Inc., L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Jon P. Wagner, Michael W. Balakos, Chandra Ratnasamy
  • Publication number: 20120041246
    Abstract: Nanowires useful as heterogeneous catalysts are provided. The nanowire catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to ethylene. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: May 24, 2011
    Publication date: February 16, 2012
    Applicant: Siluria Technologies, Inc.
    Inventors: Erik C. Scher, Fabio R. Zurcher, Joel M. Cizeron, Wayne P. Schammel, Alex Tkachenko, Joel Gamoras, Dmitry Karshtedt, Greg Nyce
  • Publication number: 20120035048
    Abstract: The composition is based on zirconium oxide and at least one additive selected from zirconium oxide and at least one additive chosen from praseodymium, lanthanum or neodymium oxides, has a specific surface of at least 29 m 2/g after calcination at 1000° C. during a period of 10 hours and is obtained by a method wherein a mixture of zirconium compounds and additive is precipitated with a base; the medium thus obtained, containing a precipitate, is heated and a compound chosen from anionic surfactants, non-ionic surfactants, polyethylene glycols, carboxylic acids and the salts thereof and surfactants such as the ethoxylates of caroboxymethyl fatty alcohols is added to the compound and the precipitate is calcinated; the composition can be used as a catalyst.
    Type: Application
    Filed: October 18, 2011
    Publication date: February 9, 2012
    Applicant: Rhodia Chimie
    Inventors: Olivier Larcher, Philippe Moissonnier, Emmanuel Rohart
  • Publication number: 20120027670
    Abstract: A method and system for the reduction of pollutant NOx gases from automobile exhaust, as well as a method of reforming hydrocarbons, using a self-sustaining catalyst comprising an ion conductive support, a dispersed cathodic phase, a dispersed anodic phase, and a dispersed sacrificial phase, and a method of forming the self-sustaining catalyst.
    Type: Application
    Filed: April 6, 2010
    Publication date: February 2, 2012
    Applicant: University of Miami
    Inventor: Xiangyang Zhou
  • Publication number: 20120029218
    Abstract: A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO—CeO2ZLa2O3 or CaO—La2O3/CeO2. Optionally, the catalyst may further include additional metal oxides, such as CaO—La2O3—GdOxZLa2O3.
    Type: Application
    Filed: March 9, 2010
    Publication date: February 2, 2012
    Inventors: Manhoe Kim, Shuli Yan, Steven O Salley, K.Y. Simon NG
  • Publication number: 20120028794
    Abstract: The invention provides a bio-based feedstock steam reforming catalyst comprising: a modified support; a metal component; and a promoter. The process also provides a method of preparing a bio-based feedstock steam reforming catalyst comprising: providing a support material comprising a transition metal oxide; providing a modifier comprising an alkaline earth element; contacting the support material with the modifier to form a modified support; providing a metal component comprising a Group VIII transition metal; contacting the support material, the modified support or combinations thereof with the metal component to form the steam reforming catalyst; and contacting the modified support, the metal component, the steam reforming catalyst or combinations thereof with a promoter.
    Type: Application
    Filed: December 17, 2009
    Publication date: February 2, 2012
    Inventors: Khiet Thanh Lam, Brendan Dermot Murray, Narayana Mysore, Scott Lee Wellington
  • Publication number: 20120027654
    Abstract: PROBLEM The present invention is directed to provide a catalyst for purifying exhaust gas capable of maintaining a superior catalytic performance even when the catalyst is exposed to an exhaust gas at a high temperature of 800° C. or higher. SOLUTION The catalyst for purifying exhaust gas of the present invention comprises a catalytically active component containing a noble metal and a promoter containing an oxygen storage material both being supported on a carrier. The oxygen storage material comprises cerium, zirconium, and iron, and content of iron in the oxygen storage material is 0.01% by mass or more and less than 0.70% by mass (Fe2O3 conversion) relative to the total mass of the oxygen storage material. And the oxygen storage material is (a) a complex oxide or a solid solution of iron and a metal comprising cerium and zirconium; or (b) an iron is supported on a complex oxide or a solid solution of a metal comprising cerium and zirconium.
    Type: Application
    Filed: March 4, 2010
    Publication date: February 2, 2012
    Applicants: International Catalyst Technology, Inc., ICT Co., Ltd.
    Inventors: Kosuke Mikita, Takahiro Ikegami, Masanori Ikeda, Hideki Goto
  • Patent number: 8105972
    Abstract: A catalyst for the oxidative dehydrogenation of a paraffin to form an olefin, the catalyst having a general formula MoaVbXcYdOn wherein: X=at least one of Nb and Ta; Y=at least one of Te, Sb, Ga, Pd, W, Bi and Al; a=1.0; b=0.05 to 1.0; c=0.001 to 1.0; d=0.001 to 1.0; and n is determined by the oxidation states of the other elements. The catalyst may have a selectivity to the olefin of at least 90 mole % at a paraffin conversion of at least 65%.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 31, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Anne Mae Gaffney, Ruma Ghosh, Ruozhi Song, Chuen Yuan Yeh, Tadeusz Langner
  • Patent number: 8105971
    Abstract: A process for forming a catalyst useful for the production of an olefin from a hydrocarbon is disclosed. The process may include: admixing at least one of elemental metals and compounds to form a multi-metal composition comprising Mo, V, Nb, Te and at least one of Ni and Sb; adjusting the pH of the multi-metal composition by adding nitric acid; drying the acidified multi-metal composition; calcining the dried multi-metal composition; and grinding the calcined multi-metal composition. The ground multi-metal composition may then be sized or shaped to form a mixed metal oxide catalyst. Alternatively, the ground multi-metal composition may be treated with an acid, optionally annealed, and sized or shaped to form a mixed metal oxide catalyst.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 31, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Anne Mae Gaffney, Ruma Ghosh, Ruozhi Song, Chuen Yuan Yeh, Tadeusz Langner
  • Patent number: 8105561
    Abstract: A catalyst for purification of exhaust gas in which a noble metal is supported on a metal-oxide support wherein, in a oxidation atmosphere, the noble metal exists on the surface of the support in high oxidation state, and the noble metal binds with a cation of the support via an oxygen atom on the surface of the support to form a surface oxide layer and, in a reduction atmosphere, the noble metal exists on the surface of the support in a metal state, and an amount of noble metal exposed at the surface of the support, measured by CO chemisorption, is 10% or more in atomic ratio to a whole amount of the noble metal supported on the support.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: January 31, 2012
    Assignees: Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha
    Inventors: Miho Hatanaka, Toshitaka Tanabe, Yasutaka Nagai, Toshio Yamamoto, Kazuhiko Dohmae, Nobuyuki Takagi, Masahide Miura, Yasuo Ikeda
  • Patent number: 8101539
    Abstract: A purifying catalyst includes catalyst powder composed of a transition metal oxide of which an average particle diameter is within 1 nm to 2 ?m and in which an electron binding energy of oxygen is shifted to an energy side lower than 531.3 eV. The purifying catalyst shows good purification performance even when noble metal is not contained as an essential component.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: January 24, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hirofumi Yasuda, Yasunari Hanaki, Toru Sekiba, Shigeru Chida, Junji Ito
  • Publication number: 20120015802
    Abstract: Disclosed is a catalyst which can be used in the process for producing hydrogen by decomposing ammonia, can generate heat efficiently in the interior of a reactor without requiring excessive heating the reactor externally, and can decompose ammonia efficiently and steadily by utilizing the heat to produce hydrogen. Also disclosed is a technique for producing hydrogen by decomposing ammonia efficiently utilizing the catalyst. Specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising an ammonia-combusting catalytic component and an ammonia-decomposing catalytic component. Also specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising at least one metal element selected from the group consisting of cobalt, iron, nickel and molybdenum.
    Type: Application
    Filed: March 17, 2010
    Publication date: January 19, 2012
    Inventors: Junji Okamura, Masanori Yoshimune, Masaru Kirishiki, Hideaki Tsuneki, Shinya Kitaguchi
  • Publication number: 20120007025
    Abstract: The present invention relates to a nickel/lanthana-(Ni/La203) catalyst for producing syngas from a hydrocarbon feedstream that is prepared in situ by depositing nickel (Ni) on a lanthana (La2O3) support by contacting said La2O3 support with an aqueous nickel-salt (Ni-salt) solution in the presence of an oxygen-comprising gas stream which is followed by reducing the deposited Ni. The catalyst of the present invention is characterized in that it can be continuously operated for more than 14 days in a process for producing syngas from a hydrocarbon feedstream without showing a significant loss of catalyst activity.
    Type: Application
    Filed: March 15, 2010
    Publication date: January 12, 2012
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventor: Agaddin Mamedov
  • Publication number: 20120003132
    Abstract: Deoxygenation catalyst for coal mine methane, its preparation method and application in catalytic deoxygenation of coal mine methane in oxygen-containing environment. The catalyst comprises a first composition serving as the active content and a second composition serving as the additive. The first composition consists of one or more platinum group noble metals selecting from the group consisting of Pd, Pt, Ru, Rh and Ir. The second composition consists of one or more alkaline metals or alkaline earth metals selected from the group consisting of Na2O, K2O, MgO, CaO, SrO and BaO; CeO2 and lanthanides rare earth metals such as Pr, Nd, Sm, Eu, Gd, etc.; and/or transition metals such as Y, Zr, La, etc.; and/or Al2O3 oxides complexes. Said catalyst can effectively eliminate the oscillatory behavior during catalytic combustion under oxyen-lean condition.
    Type: Application
    Filed: April 19, 2010
    Publication date: January 5, 2012
    Inventors: Shudong Wang, Sheng Wang, Zhongshan Yuan, Chunxi Zhang, Changjun Ni, Deyi Li
  • Publication number: 20110311392
    Abstract: A quaternary oxide foam, comprises an open-cell foam containing (a) a dopant metal, (b) a dopant nonmetal, (c) titanium, and (d) oxygen. The foam has the advantages of a high surface area and a low back pressure during dynamic flow applications. The inactivation of Escherichia coli (E. coli) was demonstrated in a simple photoreactor.
    Type: Application
    Filed: December 18, 2008
    Publication date: December 22, 2011
    Inventors: Jian-Ku Shang, Pinggui Wu, Rong-Cai Xie
  • Patent number: 8080494
    Abstract: A catalyst 1 has a heat-resistant support 2 selected from among Al2O3, SiO2, ZrO2, and TiO2, and a first metal 4 supported on an outer surface of the support 2, and included by an inclusion material 3 containing a component of the support 2.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: December 20, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hirofumi Yasuda, Katsuo Suga, Makoto Aoyama, Toshiharu Miyamura
  • Publication number: 20110301025
    Abstract: An exhaust gas purification catalyst includes a catalytic layer containing a particle component A-1 and a particle component A-2 with different catalytic metal contents, each of which is composed of catalytic-metal-doped CeZr-based mixed oxide powder. The particle component A-1 having the lower catalytic metal content is supported on a particle component B composed of Zr-based-oxide-supported alumina powder, and the particle component A-2 having the higher catalytic metal content is supported on a particle component C composed of CeZr-based mixed oxide powder in which catalytic metal is not solid-dissolved.
    Type: Application
    Filed: May 25, 2011
    Publication date: December 8, 2011
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Masaaki AKAMINE, Masahiko SHIGETSU, Yasuhiro OCHI, Yuki MURAKAMI
  • Patent number: 8071498
    Abstract: An exhaust gas purifying catalyst wherein the catalytic activity can be recovered over a wide temperature range is provided. Also provided are a method for recovering an exhaust gas purifying catalyst, and a catalyst system for exhaust gas purification. The exhaust gas purifying catalyst is characterized by containing an oxide A containing an oxide (A-1) containing an alkaline earth metal and/or a rare earth metal and an inorganic oxide (A-2), and a noble metal B supported by the oxide A. This exhaust gas purifying catalyst is also characterized in that the weight ratio of the oxide (A-1) containing an alkaline earth metal and/or a rare earth metal to the noble metal B is from 1:10 to 1:500.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: December 6, 2011
    Assignee: Cataler Corporation
    Inventors: Norihiko Aono, Yoshinori Yamashita
  • Patent number: 8071502
    Abstract: An exhaust gas purifying catalyst is provided in which alloying of precious metals is prevented even at high temperatures so that degradation of catalyst can be inhibited. The exhaust gas purifying catalyst comprises a substrate serving as a passage of exhaust gas; and a catalyst coating layer formed on the internal surface of the through hole and including precious metals and a refractory inorganic oxide. The catalyst coating layer formed in the area A located on the upstream portion of the passage with respect to the flow direction of exhaust gas contains a precious metal, Rh. The weight ratio of Rh and the precious metal other than Rh is 1:0 to 0.5. The catalyst coating layer formed in the area B located on the downstream portion of the passage contains precious metal other than Rh. The weight of the precious metal other than Rh is larger than the weight of Rh.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: December 6, 2011
    Assignee: Cataler Corporation
    Inventors: Masanori Shimizu, Michio Tanaka
  • Publication number: 20110294652
    Abstract: The present invention provides a method for preparing a pyrochlore type oxide having a larger specific surface area, a polymer electrolyte fuel cell and a fuel cell system improved in power generation efficiency and capable of being produced more inexpensively, and a method for producing an electro catalyst for a fuel cell, which electro catalyst has a larger specific surface area, is relatively inexpensive, and has high electrode activity per unit mass. A method for preparing a pyrochlore type oxide represented by A2B2O7-Z wherein A and B represent a metal element, Z represents a number of 0 or more and 1 or less, A includes at least one selected from the group consisting of Pb, Sn, and Zn, and B includes at least one selected from the group consisting of Ru, W, Mo, Ir, Rh, Mn, Cr, and Re, wherein the pyrochlore type oxide is produced by a reaction of a halide or nitrate of A with an alkali salt of a metal acid of B.
    Type: Application
    Filed: February 10, 2010
    Publication date: December 1, 2011
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yasushi Sato, Tamaki Mizuno, Yuri Seki
  • Patent number: 8067330
    Abstract: Disclosed is a catalytic material for purifying an exhaust gas component. The catalytic material comprises a composite oxide which contains, as essential components, zirconium (Zr) and neodymium (Nd), and further contains a rare-earth metal R other than cerium (Ce) and neodymium (Nd), wherein each of the zirconium, neodymium and rare-earth metal R constituting the composite oxide is contained, in the form of oxide, in such a manner that a ratio of Nd2O3/(ZrO2+Nd2O3+RO) is 3 mol % or more, and a ratio of (Nd2O3+RO)/(ZrO2+Nd2O3+RO) is 33 mol % or less. The catalytic material of the present invention can oxidize/burn PM in a short period of time, while suppressing CO emission during the burning of the PM, and can achieve further enhanced NOx conversion performance.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: November 29, 2011
    Assignee: Mazda Motor Corporation
    Inventors: Kenji Suzuki, Koichiro Harada, Hiroshi Yamada, Kenji Okamoto, Akihide Takami
  • Publication number: 20110271658
    Abstract: The use of nitrogen oxide storage catalysts in a close-coupled position for the cleaning of the exhaust gases from gasoline engines with direct gasoline injection which are operated with a predominantly lean air/fuel mixture places particular demands on the thermal stability and aging stability of the catalysts to be used. A nitrogen oxide storage catalyst is provided, which is suitable for this use and has two catalytically active coatings on a support body. The lower coating applied directly to the support body has a nitrogen oxide storage function and comprises platinum as a catalytically active component applied to a homogeneous magnesium-aluminum mixed oxide in combination with a nitrogen oxide storage material, in which a nitrogen oxide storage component is likewise present applied to a homogeneous magnesium-aluminum mixed oxide. The compositions of the magnesium-aluminum mixed oxides uses are different.
    Type: Application
    Filed: January 27, 2010
    Publication date: November 10, 2011
    Applicant: UMICORE AG & CO. KG
    Inventors: Ruediger Hoyer, Stephan Eckhoff, Thomas R. Pauly
  • Patent number: 8053386
    Abstract: The present invention relates to a heteropoly acid catalyst which is used for the production of methacrylic acid by gas phase oxidation of methacrolein and a preparing method thereof. The present invention, thereby, provides a novel heteropoly acid catalyst having excellent methacrolein conversion rate, methacrylic acid selectivity and yield.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: November 8, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Gyo-hyun Hwang, Min-ho Kil, Hyun-kuk Noh, Won-ho Lee, Min-suk Kim
  • Patent number: 8053387
    Abstract: The invention contemplates a method of making a catalytic material, and uses of the material. The catalytic material is made by depositing catalytic metals, such as gold or platinum, on substrate materials, such as lanthanum-doped ceria or other oxides. The catalytic metal, which comprises both crystalline and non-crystalline structures, is treated, for example with aqueous basic NaCN solution, to leach away at least some of the crystalline metallic component. The remaining noncrystalline metallic component associated with the substrate exhibits catalytic activity that is substantially similar to the catalyst as prepared. The use of the catalyst in an apparatus such as a reactor or analytic instrument is contemplated, as is the use of the catalyst in efficient, cost-effective reactions, such as removal of carbon monoxide from fuel gases, for example by performing the water gas shift reaction.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: November 8, 2011
    Assignee: Tufts University
    Inventors: Maria Flytzani-Stephanopoulus, Howard M. Saltsburg, Qi Fu
  • Patent number: 8052937
    Abstract: A catalyst composition for facilitating the oxidation of soot from diesel engine exhaust is provided. The catalyst composition includes a catalytic metal selected from Pt, Pd, Pt—Pd, Ag, or combinations thereof, an active metal oxide component containing Cu and La, and a support selected from alumina, silica, zirconia, or combinations thereof. The platinum group metal loading of the composition is less than about 20 g/ft3. The catalyst composition may be provided on a diesel particulate filter by impregnating the filter with an alumina, silica or zirconia sol solution modified with glycerol and/or saccharose, impregnating the filter with a stabilizing solution, and impregnating the filter with a solution containing the active metal oxide precursor(s) and the catalytic metal precursor(s). The resulting catalyst coated diesel particulate filter provides effective soot oxidation, exhibits good thermal stability, has a high BET surface area, and exhibits minimal backpressure.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: November 8, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: Albert Chigapov, Alexei Dubkov, Brendan Carberry
  • Patent number: 8052936
    Abstract: In a particulate filter, a catalyst layer containing Pt-carried activated alumina particles, CeZr-based mixed oxide particles and ZrNd-based mixed oxide particles is formed, the proportion of the total amount of the CeZr-based mixed oxide particles and the ZrNd-based mixed oxide particles in the total amount of the Pt-carried activated alumina particles, the CeZr-based mixed oxide particles and the ZrNd-based mixed oxide particles is 10% to 60% by mass, both inclusive, and the mass ratio of the CeZr-based mixed oxide particles to the ZrNd-based mixed oxide particles is 20/80 to 80/20, both inclusive. This configuration enhances the particulate burning property and the low-temperature exhaust gas conversion efficiency.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: November 8, 2011
    Assignee: Mazda Motor Corporation
    Inventors: Koichiro Harada, Kenji Suzuki, Kenji Okamoto, Hiroshi Yamada, Akihide Tamani
  • Patent number: 8048389
    Abstract: The present invention provides a cerium oxide-zirconium oxide-based mixed oxide having superior platinum dispersibility and a suitable OSC, and a simple production process thereof. The cerium oxide-zirconium oxide-based mixed oxide comprises cerium oxide and zirconium oxide, wherein (1) the weight ratio of CeO2:ZrO2 is 60:40 to 90:10, and (2) the cerium oxide and the zirconium oxide are present as a mixture, the zirconium oxide being composed of a solid solution in which tetragonal or cubic zirconium oxide contains cerium.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: November 1, 2011
    Assignee: Daiichi Kigenso Kagaku Kogyo Co., Ltd.
    Inventors: Hiroshi Okamoto, Masatoshi Maruki
  • Patent number: 8043992
    Abstract: A particulate inorganic mixed oxide comprising: aluminum; zirconium; cerium; lanthanum and an additional element selected from the group consisting of neodymium and praseodymium, wherein the inorganic mixed oxide has at least 80% of primary particles with article diameters of 100 nm or less, and at least a part of the primary particles have an enriched surface region where the additional element is locally increased in a surface layer portion thereof.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: October 25, 2011
    Assignees: Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Miho Hatanaka, Toshitaka Tanabe, Naoki Takahashi, Takeru Yoshida, Yuki Aoki
  • Publication number: 20110251053
    Abstract: A method for infiltrating a metal salt into a porous structure is described wherein the pores of the porous structure are first flooded with a solvent before contacting the salt mixture to the structure. In one embodiment the metal salt is in molten form when brought into contact with the flooded porous structure. In another embodiment, the metal salt is first brought into contact with the porous structure, and the mixture heated to melt the salt and evaporate the solvent. Thereafter the metal salt can be further reacted to convert it to a desired composition.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 13, 2011
    Applicant: The Regents of the University of California
    Inventors: Michael C. Tucker, Tal Z. Sholklapper
  • Publication number: 20110237429
    Abstract: A catalytic metal 5 is supported on oxide particles 4, 6 in a first catalyst layer 2, and first binder particles 7 which are fine, and have oxygen ion conductivity are interposed among the oxide particles. A catalytic metal 11 is supported on oxide particles 8, 9, 12 in a second catalyst layer 3 provided on or above the first catalyst layer 2, and second binder particles 13 which are fine, and are capable of storing and releasing oxygen are interposed among the oxide particles.
    Type: Application
    Filed: February 9, 2011
    Publication date: September 29, 2011
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Masaaki AKAMINE, Masahiko SHIGETSU
  • Publication number: 20110209388
    Abstract: In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.
    Type: Application
    Filed: November 5, 2009
    Publication date: September 1, 2011
    Inventors: K.Y. Simon Ng, Shuli Yan, Steven O. Salley
  • Patent number: 8007750
    Abstract: A layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. Methods of making and using the same are also provided. In one or more embodiments, the catalyst comprises three layers of catalytic material in conjunction with a carrier. A first layer comprises a platinum component on a first support; a second layer comprises a rhodium component on a second support; and a third layer comprises a palladium component and a third support. The palladium, rhodium, and/or platinum can independently be deposited on a support of high surface area refractory metal oxide, or of an oxygen storage component, or both.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 30, 2011
    Assignee: BASF Corporation
    Inventors: Shau-Lin Franklin Chen, Jin Sakakibara, Tian Luo, Harold Rabinowitz
  • Patent number: 8008226
    Abstract: A method is provided for the thermo-neutral reforming of liquid hydrocarbon fuels which employs a Ni, Ce2O3, La2O3, Pt?ZrO2, Rh and Re catalyst having dual functionalities to achieve both combustion and steam reforming.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: August 30, 2011
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Tomoyuki Inui, Bashir Osama Dabbousi, Shakeel Ahmed, Fahad Ibrahim Al-Muhaish, Mohammed Abdul Bari Siddiqui
  • Publication number: 20110204293
    Abstract: Methods of making supported monolithic gold (Au) catalysts that can be used for generating a hydrogen-rich gas from gas mixtures containing carbon monoxide, hydrogen and water via a water gas shift reaction, and for the removal of carbon monoxide from air at a low reaction temperature via its oxidation reaction are described. Methods of making highly dispersed gold catalysts on washcoated monoliths and the stabilization of monolithic catalyst supports by the addition of a third metal oxide, such as zirconia (ZrO2), lanthanum oxide (La2O3), or manganese oxide (MnxOy). The catalyst supports and/or washcoats may include a variety of transition metal oxides such as alpha iron oxide (?-Fe2O3), cerium oxide (CeO2), ZrO2, gamma alumina (?-Al2O3), or their combinations.
    Type: Application
    Filed: February 24, 2010
    Publication date: August 25, 2011
    Inventors: William Peter Addiego, Siew Pheng Teh, Jaclyn Seok Kuan Teo, Ziyi Zhong
  • Publication number: 20110206583
    Abstract: Catalyst compositions useful for the conversion of vehicular exhaust gases contain zirconium, cerium and yttrium oxides with a cerium oxide proportion of from 3% to 15%, and yttrium oxide proportions corresponding to the following conditions: 6% at most if the cerium oxide proportion is from 12% excluded and 15% included; 10% at most if the cerium oxide proportion is from 7% excluded and 12% included; 30% at most if the cerium oxide proportion is from 3% to 7% included, the balance being zirconium oxide; such compositions may optionally include an oxide of a rare earth selected from among lanthanum, neodymium and praseodymium.
    Type: Application
    Filed: April 21, 2009
    Publication date: August 25, 2011
    Applicant: RHODIA OPERATIONS
    Inventors: Olivier Larcher, Emmanuel Rohart, Simon Ifrah
  • Publication number: 20110207972
    Abstract: Catalysts for replacing rhenium-containing multimetallic catalysts for the hydrogenolysis of organic compounds to desired polyols, including the conversion of glycerol to propylene glycol, are described. The catalysts are carried on carbon supports, as well as carbon supports impregnated with Zirconium Scandium (ZrSc), Zirconium Yttrium (ZrY), Titanium Scandium (TiSc), or Titanium Yttrium (TiY) to texture the carbon support and to create oxygen-ion vacancies that can be used during the desired reactions. Processes for the hydrogenolysis of organic compounds to desired polyols using the disclosed catalysts, including the conversion of glycerol to propylene glycol, are also described.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 25, 2011
    Inventors: Heather M. Brown, John G. Frye, Jonathan L. Male, Daniel M. Santosa, Alan H. Zacher