Zinc Patents (Class 502/307)
  • Patent number: 7422995
    Abstract: The present invention relates to a Catalyst comprising a, preferably oxidic, core material, a shell of zinc oxide around said core material, and a catalytically active material in or on the shell, based on one or more of the metals cobalt, iron, ruthenium and/or nickel, preferably a Fischer-Tropsch catalyst, to the preparation of such a catalyst and the use thereof in GTL processes.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: September 9, 2008
    Assignee: BASF Catalysts LLC
    Inventors: Cornelis Roeland Baijense, Geoffrey Johnson, Ahmad Moini
  • Publication number: 20080188370
    Abstract: Use of titanium dioxide mixed oxide as a photocatalyst, wherein the titanium dioxide mixed oxide has the following features: BET surface area: 5 to 300 m2/g, mixed oxide component: one or several oxides from the group comprising aluminium, cerium, silicon, tungsten, zinc and zirconium, proportions: titanium dioxide more than 97.5 wt. %, mixed oxide component ?0.1 to <2 wt. %, sum of the contents of titanium dioxide and secondary component at least 99.5 wt. %, each based on the total quantity of the mixed oxide, titanium dioxide content of the primary particles containing intergrown rutile and anatase phases.
    Type: Application
    Filed: July 6, 2006
    Publication date: August 7, 2008
    Applicant: Evonik Degussa GmbH
    Inventors: Reinhard Vormberg, Kai Schumacher
  • Patent number: 7402612
    Abstract: This invention relates to methods for making a stabilized transition alumina of enhanced hydrothermal stability, which include the introduction of at least one structural stabilizer; a steaming step before or after the introduction step, wherein steaming is effective in transforming a transition alumina at least partially to boehmite and/or pseudoboehmite; and a calcining step to create a stabilized transition alumina. The combination of the structural stabilizer and the steaming step is believed to impart high hydrothermal stability to the alumina crystal lattice. Particularly preferred structural stabilizers include boron, cobalt, and zirconium. The stabilized transition alumina is useful as a catalyst support for high water partial pressure environments, and is particularly useful for making a catalyst having improved hydrothermal stability. The invention more specifically discloses Fischer-Tropsch catalysts and processes for the production of hydrocarbons from synthesis gas.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: July 22, 2008
    Assignee: ConocoPhillips Company
    Inventors: Yaming Jin, Rafael L. Espinoza, Nithya Srinivasan, Olga P. Ionkina
  • Patent number: 7351328
    Abstract: A composition comprising a metal oxide and a promoter, wherein at least a portion of the promoter is present as a reduced valence promoter, and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: April 1, 2008
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Tushar V. Choudhary, Jason J. Gislason, Glenn W. Dodwell, William H. Beever
  • Publication number: 20080064590
    Abstract: A method for producing a catalyst by contacting a mixed metal oxide catalyst with water, and optionally, an aqueous metal oxide precursor to produce a modified mixed metal oxide, and calcining the modified mixed metal oxide.
    Type: Application
    Filed: August 20, 2007
    Publication date: March 13, 2008
    Inventors: Leonard Edward Bogan, Ruozhi Song
  • Patent number: 7271126
    Abstract: A method for producing a catalyst for use in the dehydrogenation of ethylbenzene to styrene is disclosed. The catalyst of the present invention comprises a high purity metal and at least one promoter in the form of solid oxides, oxide hydrates, hydroxides, hydroxycarbonates or metals. The catalyst is prepared via a method which comprises the preparation of at least one high purity iron precursor with or without an additional support material and which uses a nominal amount of water in the catalyst production. The catalyst pellets prepared with the high purity metal precursor are essentially free of sulfur and chloride contaminants.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: September 18, 2007
    Assignee: Sud-Chemie Inc.
    Inventors: Dennis J. Smith, Robert J. O'Brien, X. D. Hu
  • Patent number: 7208244
    Abstract: A catalyst comprising a di-ruthenium-substituted polyoxometalate, especially Na14[Ru2Zn2(H2O)2(ZnW9O34)2] with a Ru—Ru distance of 0.318 nm and a method of using the electrocatalyst to generate oxygen.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: April 24, 2007
    Assignee: Auburn University
    Inventors: Curtis G. Shannon, Annette R. Howells
  • Patent number: 7179366
    Abstract: A catalyst contains at least one group VIII element and at least molybdenum and/or tungsten, said elements being present at least in part in the catalyst in the dry state in the form of at least one heteropolyanion with formula MxAB6O24H6C(3-2x), tH2O; MxAB6O24H6C(4-2x), tH2O; MxA2B10O38H4C(6-2x), tH2O; MxA2B10O38H4C(8-2x), tH2O; or MxA2B10O38H4C(7-2x), tH2O, in which M is cobalt and/or nickel and/or iron and/or copper and/or zinc, A is one or two elements from group VIII of the periodic table, B is molybdenum and/or tungsten and C is an H+ ion and/or a (NR1R2R3R4)+ type ammonium ion, in which R1, R2, R3 and R4, which may be identical or different, correspond either to a hydrogen atom or to an alkyl group and/or caesium and/or potassium and/or sodium, t is a number between 0 and 15 and x takes a value in the range 0 to 4 depending on the formula.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: February 20, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Virginie Harle, Catherine Martin, Edmond Payen, Carole Lamonier, Pascal Blanchard
  • Patent number: 7176159
    Abstract: A catalyst and sorbent is disclosed which comprises pellets with an absorbent core and a protective shell with a catalyst in the shell. Such material is especially well suited for steam reforming of hydrocarbons to produce hydrogen since a reforming catalyst can be incorporated in the shell and a sorbent for the by-product carbon dioxide can be used for the core. It is also well suited for producing hydrogen from carbon monoxide by means of the water gas shift reaction. The shell can be made sufficiently strong and durable for moving bed applications as well as fixed bed applications.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: February 13, 2007
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Thomas D. Wheelock, Brent H. Shanks
  • Patent number: 7128769
    Abstract: Methanol steam reforming catalysts, and steam reformers and fuel cell systems incorporating the same. In some embodiments, the methanol steam reforming catalyst includes zinc oxide as an active component. In some embodiments, the methanol steam reforming catalyst further includes at least one of chromium oxide and calcium aluminate. In some embodiments, the methanol steam reforming catalyst is not pyrophoric. Similarly, in some embodiments, steam reformers including a reforming catalyst according to the present disclosure may include an air-permeable or air-accessible reforming catalyst bed. In some embodiments, the methanol steam reforming catalyst is not reduced during use. In some embodiments, the methanol reforming catalysts are not active at temperatures below 275° C. In some embodiments, the methanol steam reforming catalyst includes a sulfur-absorbent material. Steam reformers, reforming systems, fuel cell systems and methods of using the reforming catalysts are also disclosed.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: October 31, 2006
    Assignee: IdaTech, LLC
    Inventor: Curtiss Renn
  • Patent number: 7091377
    Abstract: A multimetal oxide material contains the elements Mo, V and Te and/or Sb and at least one of the elements Nb, Ti, W, Ta and Ce and promoters and has a specific X-ray diffraction pattern. Moreover, such a multimetal oxide material is used as a catalyst for heterogeneously catalyzed gas-phase partial oxidations of hydrocarbons.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: August 15, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Frieder Borgmeier, Martin Dieterle, Hartmut Hibst
  • Patent number: 7037877
    Abstract: The present invention provides a process for the preparation of an improved copper chromite catalyst for the hydrogenation of diethyl maleate to tetrahydrofuran with very high selectivity. This invention particularly relates to a process for the preparation of an improved copper chromite catalyst with specific composition and physical properties containing copper, chromium, zinc and aluminium as catalyst components in order to achieve selective production of tetrahydrofuran via single step hydrogenation of diethyl maleate. The calcination procedure has also been described to achieve the best activity. The catalyst has a life of more than 630 hours with constant activity. The used catalyst can also be regenerated to match the original hydrogenation activity.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: May 2, 2006
    Assignee: Council of Scientific and Industrial Research
    Inventors: Raghunath Vitthal Chaudhari, Rengaswamy Jaganathan, Sopan Tukaram Chaudhari, Chandrashekhar Vasant Rode
  • Patent number: 7038082
    Abstract: A process for preparing a multimetal oxide material which contains the elements Mo, V and Te and/or Sb and at least one of the elements Nb, Ti, W, Ta and Ce and if desired promoters and has a specific X-ray diffraction pattern, in which process the last process step comprises washing with acidic liquids. In addition, a multimetal oxide material obtainable in such a way is used as a catalyst for heterogeneously catalyzed gas-phase partial oxidations and/or ammoxidation of hydrocarbons.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: May 2, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Frieder Borgmeier, Klaus Joachim Müller-Engel, Hartmut Hibst, Martin Dieterle
  • Patent number: 7033566
    Abstract: A photocatalyst including a metal oxide semiconductor represented by the formula: In1?xMxAO4 wherein M represents a transition metal element, A represents an element belonging to the Group 5a of the Periodic Table and x is a number greater than 0 but smaller than 1.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: April 25, 2006
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hironori Arakawa, Zhigang Zou, Kazuhiro Sayama
  • Patent number: 7033972
    Abstract: A catalyst for producing dimethyl ether which comprises alumina particles having an average size of 200 ?m or less and a methanol synthesis catalyst layer formed around the alumina particles. The methanol synthesis catalyst is in an amount of 0.05 to 5 parts by weight to 1 part by weight of the alumina particles. Dimethyl ether is produced by the method of forming a slurry by introducing the catalyst into a solvent and introducing a mixed gas comprising carbon monoxide and hydrogen into the slurry.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: April 25, 2006
    Assignee: JFE Holdings, Inc.
    Inventors: Tsutomu Shikada, Yotaro Ohno, Takashi Ogawa, Masatsugu Mizuguchi, Masami Ono, Kaoru Fujimoto
  • Patent number: 6989346
    Abstract: Olefinically unsaturated hydrocarbons are prepared from corresponding paraffinic hydrocarbons, in particular propylene is prepared from propane, by dehydrogenation over a catalyst comprising an oxide of a transition metal of group IV B of the Periodic Table, eg. TiO2 or ZrO2, and possibly at least one element selected from among elements of transition group VIII, eg. palladium, platinum or rhodium, and/or an element of transition group VI, eg. chromium, molybdenum or tungsten, and/or rhenium and/or tin and possibly a compound of an alkali metal or alkaline earth metal, a compound of main group III or transition group III or zinc.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: January 24, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Daniel Heineke, Michael Baier, Dirk Demuth, Klaus Harth
  • Patent number: 6930072
    Abstract: A process and a catalyst reaction zone comprising one or more fixed bed reactors for oxidizing methanol in a reactant gas feed stream to formaldehyde. According to one embodiment, the process comprises introducing the reactant gas feed stream into an upstream region containing a vanadia-titania first catalyst (substantially free of a volatile MoO3 species) under oxidizing conditions to form a partially oxidized reactant gas feed stream which is then introduced under oxidizing conditions into a downstream region containing a metal molybdate second catalyst to further oxidize any residual methanol contained therein. According to another embodiment, a fixed bed reactor comprising an upstream region and a downstream region containing the aforementioned vanadia-titania and metal molybdate catalysts, respectively, is utilized to implement the inventive process to yield a product gas stream containing formaldehyde preferably at a conversion of 85% or more and a selectivity of 90% or more.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: August 16, 2005
    Assignee: Lehigh University
    Inventors: Israel E. Wachs, Ray P. Bourne
  • Patent number: 6890877
    Abstract: A system for enhancing fluid/solids contacting in a fluidization reactor by controlling the particle size distribution of the solid particulates in the reactor.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: May 10, 2005
    Assignee: ConocoPhillips Company
    Inventors: Paul F. Meier, Edward L. Sughrue, Jan W. Wells, Douglas W. Hausler, Max W. Thompson
  • Patent number: 6878847
    Abstract: A catalyst useful for catalytic vapor-phase oxidation of isobutylene, t-butanol or propylene to produce respectively corresponding unsaturated aldehyde and unsaturated carboxylic acid is provided. The catalyst consists of ring-formed shaped bodies composed of (i) a catalyst composition containing at least molybdenum and bismuth as the active ingredients and (ii) inorganic fibers. The catalyst excels in mechanical strength, can give the object products at high yield and shows little activity degradation with time.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: April 12, 2005
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiroto Kasuga, Eiichi Shiraishi
  • Patent number: 6875723
    Abstract: A process for the production mixed metal oxide containing catalysts comprising the steps of: dissolution of metals Me=Fe, Ni, Al, Cu, Co, Zn, Cr, in nitric acid providing an acid solution of metal mixed nitrate products, aluminium can be added either as nitrate or hydroxide; addition of a carbonhydrate, an amino acid and/or a carboxylic acid; decomposition at 250-700° C. with free air supply of the acid solution by spraying onto the inner surface of one or more rotary kilns, into a spray calcination fluid bed, into a tower kiln or into a steel band conveyor furnace to iron oxide and NOx; and optionally regeneration of the formed NOx to concentrated nitric acid and recycling of produced nitric acid to the first step.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: April 5, 2005
    Assignee: Haldor Topsoe A/S
    Inventors: Keld Johansen, Petru Gordes
  • Patent number: 6797839
    Abstract: Multimetal oxide materials containing molybdenum, vanadium, antimony, one or more of the elements W, Nb, Ta, Cr and Ce and nickel and, if required, one or more of the elements Cu, Zn, Co, Fe, Cd, Mn, Mg, Ca, Sr and Ba and having a 2-component structure are used for the gas-phase catalytic oxidative preparation of acrylic acid.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: September 28, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Signe Unverricht
  • Patent number: 6780816
    Abstract: A modified carrier carrying on at least a part of an inert carrier surface an oxide which is represented by the formula (1): XaYbZcOd (wherein X is at least an element selected from alkaline earth metals; Y is at least an element selected from Si, Al, Ti and Zr; Z is at least an element selected from Group IA elements and Group IIIb elements of the periodic table, B, Fe, Bi, Co, Ni and Mn; and O is oxygen; a, b, c and d denote the atomic ratios of X, Y, Z and O, respectively, where a=1, 0<b≦100, 0≦c≦10, and d is a numerical value determined by the extents of oxidation of the other elements) is provided. A catalyst formed with the use of this modified carrier carrying a complex oxide containing Mo and V is useful as a vapor-phase catalytic oxidation catalyst, and is particularly suitable as a catalyst for preparing acrylic acid through vapor phase catalytic oxidation of acrolein.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: August 24, 2004
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Michio Tanimoto, Hiromi Yunoki, Daisuke Nakamura
  • Patent number: 6740769
    Abstract: A process for producing a molybdenum-bismuth-iron-containing metal oxide fluidized bed catalyst which has a controlled particle diameter and has satisfactory activity and physical properties. In a process for producing a fluidized bed catalyst containing molybdenum-bismuth-iron and silica as a carrier component, dried products formed in a spray drying step and having a particle diameter outside a desired range are pulverized, then the pulverized one is mixed into a slurry before spray drying, the resulting mixture is spray-dried, and the spray-dried particles are subjected to a classification operation to obtain particles having a diameter within the desired range, which are then calcined. The catalyst produced according to the present invention is suitable for producing acrylonitrile by ammoxidation of propylene.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: May 25, 2004
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Kouichi Mizutani, Yoshimi Nakamura, Yutaka Sasaki, Kunio Mori
  • Patent number: 6686311
    Abstract: A catalyst system and method for making carbon fibrils is provided which comprises a catalytic amount of an inorganic catalyst comprising nickel and one of the following substances selected from the group consisting of chromium; chromium and iron; chromium and molybdenum; chromium, molybdenum, and iron; aluminum; yttrium and iron; yttrium, iron and aluminum; zinc; copper; yttrium; yttrium and chromium; and yttrium, chromium and zinc. In a further aspect of the invention, a catalyst system and method is provided for making carbon fibrils which comprises a catalytic amount of an inorganic catalyst comprising cobalt and one of the following substances selected from the group consisting of chromium; aluminum; zinc; copper; copper and zinc; copper, zinc, and chromium; copper and iron; copper, iron, and aluminum; copper and nickel; and yttrium, nickel and copper.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: February 3, 2004
    Assignee: General Electric Company
    Inventors: Xiao-Dong Sun, Navjot Singh, Lionel Monty Levinson
  • Patent number: 6683024
    Abstract: A sorbent composition is provided which can be used in the desulfurization of a hydrocarbon-containing fluid such as cracked gasoline or diesel fuel. The sorbent composition contains a support component and a promoter component with the promoter component being present as a skin on the support component. Such sorbent composition is prepared by a process of impregnating a support component with a promoter component, wherein the promoter component has been melted under a melting condition, followed by drying, calcining, and reducing to thereby provide the sorbent composition.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: January 27, 2004
    Assignee: ConocoPhillips Company
    Inventors: Gyanesh P. Khare, Donald R. Engelbert
  • Patent number: 6670515
    Abstract: A material composed of ultrafine particles, comprising at least a metal element M having catalytic properties and at least a metal element M′ having a standard oxidation potential less than that of M, part at least of M′ atoms being in oxidized form, the average size of the particles being less than 50 nm, at least 80% in number of the particles having an average size less than 10 nm. One particle of the material is constituted by at least a metal element M with oxidation level 0, or by at least a metal element M′ in oxidized form, or by at least a metal element M′ with oxidation level 0, or by the combination of at least two species selected from the three previous species. The material is useful as a catalyst for hydrogenation or coupling reactions.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: December 30, 2003
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Jean-Marie Dubois, Yves Fort, Olivier Tillement
  • Patent number: 6638892
    Abstract: A process for the conversion of syngas by contact of syngas under conversion conditions with catalyst having as components zinc oxide, copper oxide, aluminum oxide, Y zeolite and clay in which (A) in a one step process for conversion of syngas to dimethyl ether, the catalyst has as components an extruded mixture of zinc oxide, copper oxide, gamma aluminum oxide, Y zeolite and clay; (B) in a two step process for conversion of syngas to light olefins, a catalyst system is employed that has in the first step a catalyst mixture of zinc oxide, copper oxide, aluminum oxide, Y zeolite and clay and the catalyst employed in the second step is SAPO-34; SAPO-34 modified with lanthanum(III) nitrate hexahydrate; SAPO-34 modified with magnesium nitrate hexahydrate; SAPO-34 modified with tributyl borate or SAPO-34 modified with triethyl phosphate or (C) in a two step process for conversion of syngas to light olefins, the pressure on the effluent from the contact of syngas with a mixture of zinc oxide, copper oxide, aluminum
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: October 28, 2003
    Assignee: ConocoPhillips Company
    Inventors: An-hsiang Wu, Jianhua Yao, Charles A. Drake
  • Patent number: 6638890
    Abstract: A modified carrier carrying on at least a part of an inert carrier surface an oxide which is represented by the formula (1): XaYbZcOd (wherein X is at least an element selected from alkaline earth metals; Y is at least an element selected from Si, Al, Ti and Zr; Z is at least an element selected from Group IA elements and Group IIIb elements of the periodic table, B, Fe, Bi, Co, Ni and Mn; and O is oxygen; a, b, c and d denote the atomic ratios of X, Y, Z and O, respectively, where a=1, 0<b≦100, 0≦c≦10, and d is a numerical value determined by the extents of oxidation of the other elements) is provided. A catalyst formed with the use of this modified carrier carrying a complex oxide containing Mo and V is useful as a vapor phase catalytic oxidation catalyst, and is particularly suitable as a catalyst for preparing acrylic acid through vapor phase catalytic oxidation of acrolein.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: October 28, 2003
    Assignee: Nippon Shokubai Co. Ltd.
    Inventors: Michio Tanimoto, Hiromi Yunoki, Daisuke Nakamura
  • Patent number: 6638891
    Abstract: A mixed metal oxide catalytic system for producing olefins and carboxylic acids from lower alkanes comprising a catalyst composition having the formula MoaVbAlcXdYeOz wherein: X is at least one element selected from the group consisting of W and Mn; Y is at least one element selected from the group consisting of Pd, Sb, Ca, P, Ga, Ge, Si, Mg, Nb, and K; a is 1; b is 0.01 to 0.9; c is >0 to 0.2; d is >0 to 0.5; e is >0 to 0.5; and z is an integer representing the number of oxygen atoms required to satisfy the valency of Mo, V, Al, X, and Y.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: October 28, 2003
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Mohammad H. Al-Hazmi, Asad Khan, Syed Irshad Zaheer
  • Patent number: 6627572
    Abstract: A low temperature metal promoted copper/zinc/aluminum water gas shift catalyst is described. The catalyst is formed from a precursor, wherein the precursor includes aluminum in the form of hydrotalcite and aluminum separate from the hydrotalcite. A method of making the catalyst and a process for using the catalyst are also described.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: September 30, 2003
    Assignee: Sud-Chemie Inc.
    Inventors: Yeping Cai, Sally Davies, Jon Wagner
  • Patent number: 6620973
    Abstract: A catalyst composition for the production of unsaturated aldehydes by the oxidation of the corresponding olefins, and methods of making and using such catalyst compositions. The catalysts of the present invention include compositions of the formula: MoaPdbBicFedX1eX2fX3gOz, wherein X1 is an element selected from Co, Ni, V, Pt, Rh, or mixtures thereof; X2 is an element selected from Al, Ga, Ge, Mn, Nb, Zn, Ag, P, Si, W, or mixtures thereof; X3 is an element selected from K, Mg, Rb, Ca, Sr, Ba, Na, In, or mixtures thereof; a is 1; b is 0<b<0.3; c is 0<c<0.9; d is 0<d<0.9; e is 0<e<0.9; f is 0<f<0.9; g is 0<g<0.3; and z is an integer representing the number of oxygen atoms required to satisfy the valency of Mo, Pd, Bi, Fe, X1, X2, and X3 in the catalyst composition. Using the methods of the present invention, one may effectively oxidize the desired starting materials at relatively high levels of conversion, selectivity, and productivity, and with minimal side products.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: September 16, 2003
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Yajnavalkya Subrai Bhat, Syed Irshad Zaheer, Asad Ahmad Khan
  • Publication number: 20030166465
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline and diesel fuels are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promotors are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline and diesel fuels whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product.
    Type: Application
    Filed: January 21, 2003
    Publication date: September 4, 2003
    Inventor: Gyanesh P. Khare
  • Publication number: 20030109381
    Abstract: An object of the present invention is to provide a catalyst that is highly active and has a large mechanical strength. The catalyst of the present invention contains molybdenum, vanadium, copper and antimony as the essential components, being produced by using antimony acetate for an antimony source material and preferably used for producing acrylic acid by vapor-phase catalytic oxidation of acrolein.
    Type: Application
    Filed: December 17, 2002
    Publication date: June 12, 2003
    Inventors: Junzo Ohishi, Masahiro Senyo, Yoshimasa Seo, Hideki Sugi
  • Publication number: 20030104935
    Abstract: A catalyst system and method for making carbon fibrils is provided which comprises a catalytic amount of an inorganic catalyst comprising nickel and one of the following substances selected from the group consisting of chromium; chromium and iron; chromium and molybdenum; chromium, molybdenum, and iron; aluminum; yttrium and iron; yttrium, iron and aluminum; zinc; copper; yttrium; yttrium and chromium; and yttrium, chromium and zinc. In a further aspect of the invention, a catalyst system and method is provided for making carbon fibrils which comprises a catalytic amount of an inorganic catalyst comprising cobalt and one of the following substances selected from the group consisting of chromium; aluminum; zinc; copper; copper and zinc; copper, zinc, and chromium; copper and iron; copper, iron, and aluminum; copper and nickel; and yttrium, nickel and copper.
    Type: Application
    Filed: December 11, 2002
    Publication date: June 5, 2003
    Inventors: Xiao-Dong Sun, Navjot Singh, Lionel Monty Levinson
  • Publication number: 20030073574
    Abstract: A process for the production mixed metal oxide containing catalysts comprising the steps of:
    Type: Application
    Filed: October 7, 2002
    Publication date: April 17, 2003
    Inventors: Keld Johansen, Petru Gordes
  • Publication number: 20030059359
    Abstract: The present invention provides: a catalyst which has more excellent removability upon organohalogen compounds and is suitable for removing the organohalogen compounds from exhaust gases; and a process for removing organohalogen compounds with this catalyst. The catalyst for removing organohalogen compounds comprises titanium oxide (TiO2) and vanadium oxide as catalytic components, and has pores that includes a group of pores having a pore diameter distribution peak in the range of 0.01 to 0.05 &mgr;m and another group of pores having a pore diameter distribution peak in the range of 0.1 to 0.8 &mgr;m, and this catalyst is characterized by further comprising an oxide of at least one metal selected from the group consisting of manganese, cobalt, nickel, zinc, zirconium, niobium, molybdenum, tin, tantalum, lanthanum and cerium as another catalytic component. The process for removing organohalogen compounds involves the use of this catalyst.
    Type: Application
    Filed: September 24, 2002
    Publication date: March 27, 2003
    Inventors: Atsushi Morita, Jyunichiro Kugai, Shinyuki Masaki, Noboru sugishima
  • Patent number: 6517806
    Abstract: Present invention relates to a CdZnMS photocatalyst for producing hydrogen from water and a method for preparing thereof and a method for producing hydrogen by using said photocatalyst. Said photocatalyst is characterized by the following general formula VII: m(a)/CdxZnyMzS  (VII) wherein ‘m’ represents at least one doped metal element as an electron acceptor selected from the group consisting of Ni, Pt, Ru and the oxidized compound of these metals; ‘a’ represents a % by weight of m, ranging from 0.10 to 5.00; ‘M’ is a catalyst element selected from the group consisting of Mo, V, Al, Cs, Mn, Fe, Pd, Pt, P, Cu, Ag, Ir, Sb, Pb, Ga and Re. ‘z’ represents an atom % of M/(Cd+Zn+M), ranging from 0.05 to 20.00 and ‘x’ and ‘y’ represent an atom % of Cd/(Cd+Zn+M) and an atom % of Zn/(Cd+Zn+M), ranging from 10.00 to 90.00, respectively.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: February 11, 2003
    Assignees: Korea Research Institute of Chemical Technology, Chonggu Co., Ltd.
    Inventors: Dae-Chul Park, Jin-Ook Baeg
  • Patent number: 6518218
    Abstract: A catalyst system and method for making carbon fibrils is provided which comprises a catalytic amount of an inorganic catalyst comprising nickel and one of the following substances selected from the group consisting of chromium; chromium and iron; chromium and molybdenum; chromium, molybdenum, and iron; aluminum; yttrium and iron; yttrium, iron and aluminum; zinc; copper; yttrium; yttrium and chromium; and yttrium, chromium and zinc. In a further aspect of the invention, a catalyst system and method is provided for making carbon fibrils which comprises a catalytic amount of an inorganic catalyst comprising cobalt and one of the following substances selected from the group consisting of chromium; aluminum; zinc; copper; copper and zinc; copper, zinc, and chromium; copper and iron; copper, iron, and aluminum; copper and nickel; and yttrium, nickel and copper.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: February 11, 2003
    Assignee: General Electric Company
    Inventors: Xiao-Dong Sun, Navjot Singh, Lionel Monty Levinson
  • Patent number: 6514902
    Abstract: Disclosed is a process for producing an oxide catalyst for use in producing (meth)acrylonitrile from propane or isobutane by ammoxidation in the gaseous phase, the oxide catalyst comprising a compound oxide containing Mo, V and Sb as essential component elements, which process comprises subjecting a solution or slurry, in water and/or an alcohol, of a raw-material mixture comprising a Mo compound, a V compound and an Sb compound as essential raw materials to a specific oxidation treatment using an oxidizing gas and/or an oxidizing liquid before subjecting the solution or slurry to drying and subsequent calcination. Further, also disclosed is a process for producing a base-treated oxide catalyst by treating the above-mentioned oxide catalyst with an aqueous basic solution.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: February 4, 2003
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Tomoya Inoue, Hiroshi Ishida
  • Publication number: 20030017944
    Abstract: Disclosed is a process for producing an oxide catalyst comprising, as component elements, molybdenum (Mo), vanadium (V), at least one element selected from the group consisting of the two elements of antimony (Sb) and tellurium (Te), and niobium (Nb), wherein the process comprises providing an aqueous raw material mixture containing compounds of the component elements of the oxide catalyst, and drying the aqueous raw material mixture, followed by calcination, and wherein, in the aqueous raw material mixture, at least a part of the niobium compound as one of the compounds of the component elements is present in the form of a complex thereof with a complexing agent comprising a compound having a hydroxyl group bonded to an oxygen atom or a carbon atom. Also disclosed is a process for producing (meth)acrylonitrile or (meth)acrylic acid, which comprises performing the ammoxidation or oxidation of propane or isobutane in the gaseous phase in the presence of the oxide catalyst.
    Type: Application
    Filed: September 18, 2001
    Publication date: January 23, 2003
    Inventors: Hidenori Hinago, Hiroyuki Yano
  • Patent number: 6503865
    Abstract: A method of preparing pentafluoroethane wherein chlorine-containing carbon compounds are fluorinated in the presence of chromium catalysts that are in an amorphous state and wherein the main component is chromium compounds with the addition of at least one metal element selected from the group composed of indium, gallium, cobalt, nickel, zinc and aluminum and the average valence of the chromium in said chromium compounds is not less than +3.5 but not more than +5.0. And said chromium catalysts and a preparation method thereof. A method of preparing pentafluoroethane wherein the total yield of chlorofluoroethane by-products can be decreased without significantly deteriorating the generation activity of the pentafluoroethane and compounds which can be recycled in the reaction system. And to provide catalysts for this fluorination and a preparation method thereof.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: January 7, 2003
    Assignee: Daikin Industries Ltd.
    Inventors: Takashi Kanemura, Takashi Shibanuma
  • Publication number: 20020198103
    Abstract: A catalyst suited for catalytic vapor-phase oxidation of isobutylene, t-butanol or propylene to produce respectively corresponding unsaturated aldehyde and unsaturated carboxylic acid is provided. Said catalyst consists of ring-formed shaped bodies composed of (i) a catalyst composition containing at least molybdenum and bismuth as the active ingredients and (ii) inorganic fibers. The catalyst excels in mechanical strength, can give the object products at high yield and shows little activity degradation with time.
    Type: Application
    Filed: March 20, 2002
    Publication date: December 26, 2002
    Applicant: NIPPON SHOKUBAI CO., LTD.
    Inventors: Hiroto Kasuga, Eiichi Shiraishi
  • Patent number: 6479691
    Abstract: A catalyst composition represented by the following empirical formula which is useful in production of unsaturated nitrites by ammoxidation: Mo10BiaFebSbcNidCreFfGgHhKkXxYyOi(SiO2)j wherein F represents at least one element selected from the group consisting of zirconium, lanthanum and cerium, G represents at least one element selected from the group consisting of magnesium, cobalt, manganese and zinc, H represents at least one element selected from the group consisting of vanadium, niobium, tantalum and tungsten, x represents at least one element selected from the group consisting of phosphorus, boron, and tellurium, Y represents at least one element selected from the group consisting of lithium, sodium, rubidium and cesium, the suffixes a-k, x and y represent a ratio of atoms or atomic groups, and a=0.1-3, b=0.3-15, c=0-20, d=3-8, e=0.2-2, f=0.05-1, e/f>1, g=0-5, h=0-3, k=0.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: November 12, 2002
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Yutaka Sasaki, Kunio Mori, Yoshimi Nakamura, Takao Shimizu, Yuichi Tagawa, Kenichi Miyaki, Seiichi Kawato
  • Patent number: 6475950
    Abstract: A chromium catalyst is disclosed for use in dehydrogenation and dehydrocyclization processes.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: November 5, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Patent number: 6464951
    Abstract: In accordance with the present invention, a catalyst is described which comprises at least one metal selected from the group consisting of copper, zinc, iron, tungsten, molybdenum, and chromium distributed over a catalyst support comprising a material containing at least one of silicon, titanium, zirconium, magnesium, aluminum, and activated carbon. The catalyst is used to remove phosgene from a contaminated gas stream and/or reduce or eliminate phosgene from an effluent of a previously treated gas stream. At least one metal in the catalyst of the present invention is preferably present in an amount from about 0.001 wt % to about 15 wt %. When more than one metal is present, the combined metals preferably do not exceed 20 wt %. Catalysts in accordance with the present invention may be used as Photocatalysts. Processes for using the catalysts and Photocatalysts of the present invention are also described.
    Type: Grant
    Filed: April 20, 2002
    Date of Patent: October 15, 2002
    Assignee: KSE, Inc.
    Inventors: James R. Kittrell, David A. Gerrish, Michael C. Milazzo
  • Publication number: 20020133044
    Abstract: A catalyst comprising an In promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated nitrile
    Type: Application
    Filed: March 12, 2002
    Publication date: September 19, 2002
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Elsie Mae Vickery
  • Patent number: 6436870
    Abstract: A high-activity hydrotreating catalyst containing a uniformly dispersed active component at a high concentration, and particularly useful for deep desulfurization of a hydrocarbon oil for its high hydrodesulfurization activity. The present invention also provides a hydrotreating process using the same catalyst.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: August 20, 2002
    Assignee: Tonen Corporation
    Inventors: Masahiko Iijima, Takao Hashimoto, Yoshinobu Okayasu, Takeshi Isoda
  • Patent number: 6432870
    Abstract: A process for preparing a metal oxide catalyst for acrylic acid production which comprises calcining a metal compound mixture at 400° C. or higher to prepare a metal oxide powder comprising Mo, V, Sb, and at least one element selected from the group consisting of Nb and Ta, and supporting a compound comprising at least one element selected from the group consisting of Sb, Tl, Se, As, Pb, Sn, Ag, Cu, Ru, and Rh on the metal oxide powder, and a process for producing acrylic acid by gas phase oxidation of propane using the catalyst.
    Type: Grant
    Filed: May 24, 2000
    Date of Patent: August 13, 2002
    Assignee: Toagosei Co., Ltd.
    Inventors: Xinlin Tu, Mamoru Takahashi, Hiroshi Niizuma
  • Publication number: 20020103077
    Abstract: Complex oxide catalysts represented by the formula,
    Type: Application
    Filed: February 14, 2002
    Publication date: August 1, 2002
    Inventors: Naomasa Kimura, Michio Tanimoto, Hideo Onodera
  • Publication number: 20020087031
    Abstract: The method of the present invention involves the in situ formation of metal-molybdate catalyst particles active for methanol oxidation to formaldehyde, with iron as an example, the catalyst is made by mixing particulate forms of Fe2O3 and MoO3 which form an active Fe2(MoO4)3/MoO3 component inside the reactor during methanol oxidation.
    Type: Application
    Filed: October 31, 2001
    Publication date: July 4, 2002
    Inventors: Israel E. Wachs, Laura E. Briand