Zinc Patents (Class 502/307)
  • Patent number: 5139988
    Abstract: A composition which contains as essential components: crystalline iron antimonate and at least one element selected from the group consisting of vanadium, molybdenum, and tungsten; is useful as a catalyst in the oxidation reaction of organic compounds. Also, a process for producing the composition is disclosed.
    Type: Grant
    Filed: September 17, 1991
    Date of Patent: August 18, 1992
    Assignee: Nitto Chemical Industry Co., Ltd.
    Inventors: Yutaka Sasaki, Hiroshi Utsumi, Kenichi Miyaki
  • Patent number: 5134108
    Abstract: This hydrogenation catalyst comprises a major amount of the oxides of a first metal selected from copper or zinc, a second metal selected from chromium, molybdenum, tungsten and vanadium, and optionally, a minor amount of the oxide of a promoter metal selected from the group consisting of manganese, barium, zinc, nickel, cobalt, cadmium, iron and any combination thereof provided that the promotor metal is not zinc if the first metal is zinc. The average particle diameter of the powder is from about 6 to about 20 microns; and the particle surface area is from about 20 to about 70 m.sup.2 /g.
    Type: Grant
    Filed: May 22, 1991
    Date of Patent: July 28, 1992
    Assignee: Engelhard Corporation
    Inventors: Deepak S. Thakur, Eugene Palka, Thomas J. Sullivan, Eugene Nebesh, Brian D. Roberts
  • Patent number: 5132269
    Abstract: An iron-antimony-molybdenum-containing oxide catalyst composition for oxidation reactions, comprising a crystalline iron antimonate having a crystallite size of 100 .ANG. or more, said catalyst being represented by the following empirical formula:Fe.sub.a Sb.sub.b Mo.sub.c L.sub.d K.sub.e M.sub.m N.sub.n Q.sub.q R.sub.r T.sub.t O.sub.
    Type: Grant
    Filed: September 9, 1991
    Date of Patent: July 21, 1992
    Assignee: Nitto Chemical Industry Co., Ltd.
    Inventors: Yutaka Sasaki, Hiroshi Yamamoto, Koichi Mizutani, Kiyoshi Moriya, Kunio Mori
  • Patent number: 5116801
    Abstract: Novel catalysts that include a porous alumina support having a surface coating of at least one spinel compound thereon, e.g., a compound having the formula M.sup.1 Al.sub.2 O.sub.4, and a catalytically active phase deposited onto such coated support, e.g., a catalytically active metallic oxide, are well adopted for the catalytic ammonia reduction of NO.sub.x values contained in gaseous flowstreams thereof, which gaseous flowstreams typically also contain SO.sub.x values.
    Type: Grant
    Filed: April 9, 1991
    Date of Patent: May 26, 1992
    Assignee: Rhone-Poulenc Chimie
    Inventor: Francis Luck
  • Patent number: 5108979
    Abstract: Spinels can be synthesized by uniformly dispersing predetermined quantities of ingredient compounds whose particles have sizes no greater than about 5 nanometers in a liquid medium, arresting the ingredient compounds in a solid matrix by spray drying said liquid medium and then calcining the resulting particles to form a solid solution of oxides of said compounds in a crystalline lattice which is substantially free of undesired complex compounds of the ingredient compounds.
    Type: Grant
    Filed: February 25, 1991
    Date of Patent: April 28, 1992
    Assignee: Intercat, Inc.
    Inventors: Louis M. Magnabosco, Edward J. Demmel
  • Patent number: 5070058
    Abstract: A method for preparing a catalyst composition is disclosed. In particular, a support is vacuum impregnated with at least one catalytically active element and, thereafter, the vacuum impregnated support is calcined to provide the catalyst composition. Preferably, the vacuum impregnation of the support is performed in a two-step sequence by (a) vacuum impregnating said support with said at least one element and, thereafter, calcining said support, and (b) vacuum impregnating said support with at least one other element.The catalyst composition prepared by the prescribed method is preferably used in a process for producing a mixture of lower aliphatic alcohols.
    Type: Grant
    Filed: January 22, 1990
    Date of Patent: December 3, 1991
    Assignee: Texaco, Inc.
    Inventors: Robert A. Sawicki, Jeffrey B. Harrison
  • Patent number: 5037792
    Abstract: Novel catalysts that include a porous alumina support having a surface coating of at least one spinel compound thereon, e.g., a compound having the formula M.sup.1 Al.sub.2 O.sub.4, and a catalytically active phase deposited onto such coated support, e.g., a catalytically active metallic oxide, are well adopted for the catalytic ammonia reduction of NO.sub.X values contained in gaseous flowstreams thereof, which gaseous flowstreams typically also contain SO.sub.X values.
    Type: Grant
    Filed: June 20, 1989
    Date of Patent: August 6, 1991
    Assignee: Rhone-Poulenc Chimie
    Inventor: Francis Luck
  • Patent number: 5017542
    Abstract: Catalyst particles of an active material of the general formula[Mo,V,W].sub.12 Bi.sub.a [Fe,Ce].sub.b [Ni,Co,Zn].sub.C [Alkali].sub.d [P,As,Sb,B].sub.e [Si,Al,Ti].sub.f O.sub.xwherea is from 0.1 to 5,b is from 0.1 to 10,c is from 1 to 15,d is from 0.01 to 2,e is from 0 to 2,f is from 0 to 30 andx is the number of oxygen atoms required to saturate the valences of the other components,have the shape of a 3-spoked to 5-spoked wheel or of a rosette which have wall thicknesses of from 0.5 to 4 mm and a diameter of from 3 to 20 mm.
    Type: Grant
    Filed: August 9, 1989
    Date of Patent: May 21, 1991
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans Martan, Wolf D. Mross, Gerd-Juergen Engert
  • Patent number: 4937221
    Abstract: A mixed-solid solution tri-metallic oxide/sulfide catalyst having the formula:M.sub.I O.sub.a S.sub.b.M.sub.II O.sub.c M.sub.III O.sub.dwherein M.sub.I is iron, nickel, cobalt and mixtures thereof and mixtures with chromium, molybdenum, tungsten, and mixtures thereof; O is oxygen; S is sulfur; a is selected from zero and a number up to a positive real number representing the stoichiometric requirement, and b is selected from zero and a number up to a positive real number representing the stoichiometric requirement, provided one of a and b is a positive real number; M.sub.II is titanium, zirconium, hafnium, and mixtures thereof; c is a positive real number up to the stoichiometric requirement; M.sub.III is lithium, sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium, radium, zinc, cadmium, mercury, scandium, yttrium, lanthanum, actinium, and mixtures thereof; and d is a positive real number up to the stoichiometric requirement; and wherein M.sub.I O.sub.a S.sub.
    Type: Grant
    Filed: June 9, 1989
    Date of Patent: June 26, 1990
    Assignee: Institute of Gas Technology
    Inventors: Erek J. Erekson, Anthony L. Lee
  • Patent number: 4929585
    Abstract: A mixed-solid solution tri-metallic oxide/sulfide catalyst having the formula:M.sub.I O.sub.a S.sub.b.M.sub.II O.sub.c M.sub.III O.sub.dwherein M.sub.I is vanadium, neodymium, tantalum, chromium, molybdenum, tungsten, and mixtures thereof; O is oxygen; S is sulfur; a is selected from zero and a number up to a positive real number representing the stoichiometric requirement, and b is selected from zero and a number up to a positive real number representing the stoichiometric requirement, provided one of a and b is a positive real number; M.sub.II is titanium, zirconium, hafnium, and mixtures thereof; c is a positive real number up to the stoichiometric requirement; M.sub.III is lithium, sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium, radium, zinc, cadmium, mercury, scandium, yttrium, lanthanum, actinium, and mixtures thereof; and d is a positive real number up to the stoichiometric requirement; and wherein M.sub.I O.sub.a S.sub.
    Type: Grant
    Filed: June 9, 1989
    Date of Patent: May 29, 1990
    Assignee: Gas Research Institute
    Inventors: Anthony L. Lee, Howard S. Meyer, Vern L. Hill
  • Patent number: 4837233
    Abstract: Ammoxidation of C.sub.3 to C.sub.5 acyclic alkanes with NH.sub.3 and O.sub.2 using (1) a mole ratio of alkane:NH.sub.3 in the range from 2 to 16 and a mole ratio of alkano:O.sub.2 in the range 1 to 10 and (2) a mixture of particulate catalyst composition, the first being especially effective to promote formation of an unsaturated nitrile and an olefin from the paraffin, and the second catalyst composition being especially effective to promote the conversion of the olefin to the unsaturated nitrile. Catalytic compositions useful in the process are disclosed.
    Type: Grant
    Filed: May 15, 1987
    Date of Patent: June 6, 1989
    Assignee: The Standard Oil Company
    Inventors: Linda C. Glaeser, James F. Brazdil, Jr., Mark A. Toft
  • Patent number: 4826800
    Abstract: A composition for use after reductive activation as a catalyst in the conversion of synthesis gas to hydrocarbons, which composition comprises as essential components (i) cobalt either as the elemental metal, the oxide or a compound thermally decomposable to the elemental metal and/or oxide and (ii) zinc in the form of the oxide or a compound thermally decomposable to the oxide.
    Type: Grant
    Filed: September 16, 1987
    Date of Patent: May 2, 1989
    Assignee: The British Petroleum Company p.l.c.
    Inventor: Colin H. McAteer
  • Patent number: 4816603
    Abstract: The present invention provides a process for the production of methacrolein and methacrylic acid by the gas phase catalytic oxidation of isobutylene or t-butanol at high temperature using molecular oxygen in the presence of catalyst consisting of molybdenum, tungsten, bismuth, iron, nickel, antimony, and an alkali metal, to which zinc or lead is added, and further phosphorus sulfur, silicon, selenium, germanium or boron, and magnesium, cobalt, manganese or tin are added.
    Type: Grant
    Filed: November 26, 1985
    Date of Patent: March 28, 1989
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Motomu Oh-Kita, Yoshiyuki Taniguchi, Masaaki Kato, Masao Kobayashi
  • Patent number: 4789502
    Abstract: Carboxylic acids are produced in high yield by contacting alcohols, water and hydrogen with a Cu-Zn-Cr-base promoter/alumina catalyst.
    Type: Grant
    Filed: November 24, 1986
    Date of Patent: December 6, 1988
    Assignee: Shell Oil Company
    Inventor: Lynn H. Slaugh
  • Patent number: 4788173
    Abstract: Ammoxidation of C.sub.3 to C.sub.5 acyclic alkanes with NH.sub.3 and O.sub.2 using (1) a mole ratio of alkane:NH.sub.3 in the range from 2 to 16 and a mole ratio of alkane:O.sub.2 in the range 1 to 10 and (2) a mixture of particulate catalyst compositions, the first being especially effective to promote formation of an unsaturated nitrile and an olefin from the paraffin, and the second catalyst composition being especially effective to promote the conversion of the olefin to the unsaturated nitrile. Catalytic compositions useful in the process are disclosed.
    Type: Grant
    Filed: July 21, 1986
    Date of Patent: November 29, 1988
    Assignee: The Standard Oil Company
    Inventors: Linda C. Glaeser, James F. Brazdil
  • Patent number: 4783545
    Abstract: Ammoxidation of C.sub.3 to C.sub.5 acyclic alkanes with NH.sub.3 and O.sub.2 using (1) a mole ratio of alkane:NH.sub.3 in the range from 2 to 16 and a mole ratio of alkane:O.sub.2 in the range 1 to 10 and (2) a mixture of particulate catalyst compositions, the first being especially effective to promote formation of an unsaturated nitrile and an olefin from the paraffin, and the second catalyst composition being especially effective to promote the conversion of the olefin to the unsaturated nitrile. Catalytic compositions useful in the process are disclosed.
    Type: Grant
    Filed: December 23, 1987
    Date of Patent: November 8, 1988
    Assignee: The Standard Oil Company
    Inventors: Linda C. Glaeser, James F. Brazdil, Jr., Mark A. Toft
  • Patent number: 4752460
    Abstract: Process for mass coloring high molecular weight organic material, which comprises using a compound of the general formula (I)(Bi,A)(V,D)O.sub.4 (I)in a tetragonal, scheelitelike crystal structure, in which A is an alkaline earth metal, Zn or a mixture thereof, D is Mo, W or a mixture thereof, and the molar ratios A:Bi and D:V are between 0.1 and 0.4 and 0 and 0.4 respectively.Processes for preparing the compounds of the formula (I) are likewise described.
    Type: Grant
    Filed: February 18, 1987
    Date of Patent: June 21, 1988
    Assignee: Ciba-Geigy Corporation
    Inventor: Fritz Herren
  • Patent number: 4746641
    Abstract: Disclosed is a process for ammoxidation of paraffins containing 2-5 C atoms over a vanadium-antimony oxide catalyst, the catalyst, and a precursor slurry for making such catalyst.
    Type: Grant
    Filed: April 17, 1985
    Date of Patent: May 24, 1988
    Assignee: Standard Oil Company
    Inventors: Andrew T. Guttmann, Robert K. Grasselli, James F. Brazdil
  • Patent number: 4732884
    Abstract: In the production of a Mo-Bi-Na composite oxide catalyst by the process comprising incorporating compounds as respective element sources into a composite and subjecting the composite to heat treatment, a bismuth subcarbonate in which at least a part of required Na has been solid-dissolved is used as a Bi source compound. The activity of the catalyst is significantly improved by introducing Bi and Na in the form of the specified water insoluble compound into the catalyst.
    Type: Grant
    Filed: March 24, 1987
    Date of Patent: March 22, 1988
    Assignee: Mitsubishi Petrochemical Company Limited
    Inventors: Kohei Sarumaru, Etsuji Yamamoto, Teruo Saito
  • Patent number: 4693991
    Abstract: A catalyst composition comprises (a) alumina, (b) zinc titanate, (c) at least one compound of molybdenum, (d) at least one compound of at least one of nickel and cobalt, and (e) at least one compound of rhenium. This catalyst composition is used for hydrotreating a liquid hydrocarbon-containing feed stream, which contains organic compounds of sulfur, nitrogen and oxygen under such conditions as to obtain a product having reduced levels of sulfur, nitrogen and oxygen. Preferably the hydrocarbon-containing feed stream contains cycloalkanes, which are at least partially reformed to aromatic compounds.
    Type: Grant
    Filed: October 16, 1986
    Date of Patent: September 15, 1987
    Assignee: Phillips Petroleum Company
    Inventors: Geir Bjornson, Douglas D. Klendworth, Lloyd E. Gardner, Floyd E. Farha, Jr.
  • Patent number: 4681868
    Abstract: The process for the production of high molecular weight oxygenates by condensing low molecular weight oxygenates in the presence of CO and a catalyst having the general formula A.sub.a CuM.sub.c X.sub.d O.sub.x. In addition, a novel condensation catalyst comprising A.sub.a CuM.sub.c Bi.sub.d O.sub.x is disclosed for use in this process.
    Type: Grant
    Filed: May 29, 1986
    Date of Patent: July 21, 1987
    Assignee: The Standard Oil Company
    Inventors: John R. Budge, Senja V. Compton
  • Patent number: 4675306
    Abstract: Catalysts useful for the preparation of alcohols from synthesis gas and containing at leat three metal or metal oxide components are prepared by partially oxidizing an intermetallic compound or alloy with a metal oxidizing agent whereby the agent is incorporated into the catalyst.
    Type: Grant
    Filed: April 11, 1983
    Date of Patent: June 23, 1987
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, John G. Frye, Jr.
  • Patent number: 4666945
    Abstract: A catalyst composition comprising copper oxide, zinc oxide and zirconium oxide, the content of zirconium oxide being 30 to 70% by weight. This catalyst composition is useful for synthesis of methanol from carbon monoxide and/or carbon dioxide and hydrogen by a gas-liquid-solid phase fluidized bed method or a gas-solid phase fluidized bed method.
    Type: Grant
    Filed: September 11, 1985
    Date of Patent: May 19, 1987
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Minoru Osugi, Makoto Takagawa, Tadasi Nakamura, Takashi Kojima, Kinya Tsuji
  • Patent number: 4655906
    Abstract: A catalyst composition comprises (a) alumina, (b) zinc titanate, (c) at least one compound of molybdenum, (d) at least one compound of at least one of nickel and cobalt, and (e) at least one compound of rhenium. This catalyst composition is used for hydrotreating a liquid hydrocarbon-containing feed stream, which contains organic compounds of sulfur, nitrogen and oxygen under such conditions as to obtain a product having reduced levels of sulfur, nitrogen and oxygen. Preferably the hydrocarbon-containing feed stream contains cycloalkanes, which are at least partially reformed to aromatic compounds.
    Type: Grant
    Filed: May 2, 1986
    Date of Patent: April 7, 1987
    Assignee: Phillips Petroleum Company
    Inventors: Geir Bjornson, Douglas D. Klendworth, Lloyd E. Gardner, Floyd E. Farha, Jr.
  • Patent number: 4654321
    Abstract: A process is provided for the upgrading of synthesis gas to hydrocarbons and oxygenated hydrocarbons, particularly olefins and carboxylic acids by contacting synthesis gas with catalysts comprising the mixed oxides of ruthenium, copper, an alkali or alkaline earth metal, and optionally a metal selected from Ce, Cr, Fe, Mn, Mo, Th, Zn or mixtures thereof. The synthesis gas upgrading product may be contacted with a hydrogenation catalyst to provide alkanes, alcohols and esters, useful for fuels.
    Type: Grant
    Filed: July 23, 1984
    Date of Patent: March 31, 1987
    Assignee: The Standard Oil Company
    Inventors: Frederick A. Pesa, Anne M. Graham
  • Patent number: 4652546
    Abstract: The catalytic hydrodesulfurization and/or hydrodenitrogenation of an organic sulfur compound and/or an organic nitrogen compound is carried out in the presence of a hydrogel derived catalyst comprising zinc titanate and alumina promoted with cobalt and molybdenum.
    Type: Grant
    Filed: February 7, 1985
    Date of Patent: March 24, 1987
    Assignee: Phillips Petroleum Company
    Inventors: Arthur W. Aldag, Jr., Lloyd E. Gardner
  • Patent number: 4636485
    Abstract: Pt catalyst on a substrate provides an air purification particularly for carbon oxide contained in the inhaled air is caused to react with air oxygen on the surface of carbon oxide catalysts and thus removed. But it is desirable for many air filter applications to eliminate, in addition to CO, other harmful gases from the air also. The Pt catalyst used as gaskmask filter material offers, particularly, but little protection additionally against acid gases. Due to an additional impregnation with the oxides of amine-forming heavy metals, the separating powers for acid gases is increased extraordinarily without reducing the capability of the Pt catalyst to oxidize CO catalytically. There even results an intensification of the respective effectiveness.
    Type: Grant
    Filed: February 13, 1985
    Date of Patent: January 13, 1987
    Assignee: Dragerwerk AG
    Inventor: Carl-Ernst van der Smissen
  • Patent number: 4632747
    Abstract: This invention relates to the preparation and use of catalysts useful for hydroprocessing processes, such as hydrotreating, wherein said catalysts are formed by heating, at elevated temperature, in the presence of sulfur and under oxygen-free conditions, a composite of support material and one or more catalyst precursor salts containing a thiometallate anion of Mo, W or mixture thereof and a cation comprising one or more divalent promoter metals at least one of which is iron, wherein said promoter metal or metals are chelated by at least one neutral, nitrogen-containing polydentate ligand, and wherein said additional divalent promoter metal, if any, is selected from the group consisting of Ni, Co, Mn, Zn, Cu and mixture thereof.
    Type: Grant
    Filed: December 28, 1984
    Date of Patent: December 30, 1986
    Assignee: Exxon Research and Engineering Company
    Inventors: Teh C. Ho, Archie R. Young, II, Allan J. Jacobson, Russell R. Chianelli
  • Patent number: 4626339
    Abstract: Supported hydroprocessing catalysts comprising a sulfide of trivalent chromium and molybdenum or tungsten which optionally may contain one or more promotor metals such as Co, Fe, Ni and mixture thereof. These catalysts are obtained by comprising a preselected quantity of support material with a precursor salt containing a tetrathiometallate anion of Mo or W and a cation comprising trivalent chromium and, optionally, one or more promoter metals wherein both said trivalent chromium and promoter metal are chelated by at least one neutral, nitrogen-containing polydentate ligand and heating the composite in the presence of sulfur and hydrogen in an oxygen-free atmosphere. These catalysts have high selectivity for nitrogen removal. The chromium and promoter metal do not have to be in the same cation.
    Type: Grant
    Filed: September 28, 1984
    Date of Patent: December 2, 1986
    Assignee: Exxon Research and Engineering Company
    Inventors: Russell R. Chianelli, Teh C. Ho, Allan J. Jacobson, Archie R. Young
  • Patent number: 4596787
    Abstract: A process for low temperature oxydehydrogenation of ethane to ethylene uses an improved supported catalyst produced by impregnating the support with the soluble portion of a precursor catalyst solution and then activating the impregnated support. The activated impregnated support provides good selectivity to ethylene and avoids the problems which can arise from impregnation of the support with the soluble and insoluble portions of a precursor catalyst solution.
    Type: Grant
    Filed: April 11, 1985
    Date of Patent: June 24, 1986
    Assignee: Union Carbide Corporation
    Inventors: Robert M. Manyik, James H. McCain
  • Patent number: 4591429
    Abstract: Supported, hydroprocessing catalysts comprising a sulfide of (i) trivalent chromium, (ii) Mo, W or mixture thereof and (iii) at least one metal selected from the group consisting of Ni, Co, Mn, Cu, Zn and mixture thereof and mixture thereof with Fe. These catalysts are made by compositing a preselected quantity of support material with a precursor comprising a mixture of (i) hydrated oxide of trivalent chromium and (ii) a salt containing a thiometallate anion of Mo or W and a cation comprising at least one divalent promoter metal chelated by at least one, neutral, nitrogen-containing polydentate ligand and heating the composite in the presence of sulfur and hydrogen in an oxygen-free atmosphere. These catalysts have been found to be useful hydrotreating catalysts having nitrogen removal activity superior to that of commercial catalysts such as sulfided cobalt-molybdate on alumina.
    Type: Grant
    Filed: September 28, 1984
    Date of Patent: May 27, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventors: Teh C. Ho, Archie R. Young, II, Russell R. Chianelli, Allan J. Jacobson
  • Patent number: 4590176
    Abstract: A catalyst for the production of dimethyl ether from syngas, which comprises mixing a dehydration catalyst with a methanol synthesis catalyst comprising copper, zinc, chromium and/or aluminum which has been prepared by low-temperature co-precipitation from an aqueous solution containing specified amounts of the metals concerned.
    Type: Grant
    Filed: April 5, 1985
    Date of Patent: May 20, 1986
    Assignee: Shell Oil Company
    Inventors: Arend Hoek, Martin F. M. Post, Johannes K. Minderhoud
  • Patent number: 4576925
    Abstract: A process for purifying gases from hydrogen sulphide which comprises oxidation of hydrogen sulphide with air oxygen at a volume ratio between hydrogen sulphide to oxygen equal to 1:1-1.5 on a catalyst having the following composition, % by weight: titanium dioxide--10-30, iron oxide--20-30, zinc oxide--20-25, chromium oxide--20-50. The process is conducted at a temperature within the range of from 220.degree. to 260.degree. C. and at a space velocity of the gas mixture of from 3,000 to 15,000 hr.sup.-1.
    Type: Grant
    Filed: February 14, 1985
    Date of Patent: March 18, 1986
    Assignee: Azerbaidzhansky Institut Nefti I Khimii Imeni Azizbekova
    Inventors: Tofik G. O. Alkhazov, Jury P. Korotaev, Albert A. Vartanov
  • Patent number: 4560673
    Abstract: A vapor phase catalytic process for making acrylic acid from acrolein by oxidation thereof with molecular oxygen, optionally in the presence of steam. A new catalyst comprising a complex oxide catalyst of Mo, V and Zr.
    Type: Grant
    Filed: March 20, 1985
    Date of Patent: December 24, 1985
    Assignee: The Standard Oil Company
    Inventor: Wilfrid G. Shaw
  • Patent number: 4552978
    Abstract: A vapor phase catalytic process for making an unsaturated carboxylic acid from an olefinically unsaturated aldehyde, particularly acrylic acid from acrolein, by oxidation thereof with molecular oxygen, optionally in the presence of steam and a new catalyst comprising a complex oxide catalyst of Mo, V and Zr.
    Type: Grant
    Filed: December 12, 1983
    Date of Patent: November 12, 1985
    Assignee: The Standard Oil Company
    Inventor: Wilfrid G. Shaw
  • Patent number: 4545883
    Abstract: A material for acting as a catalyst for hydrogen evolution in an electrolytic cell is formed from a host matrix including at least one transition element which is structurally modified by incorporating one or more modifier elements at least one of which is a transition element to improve its catalytic properties. The utilization of a disordered material, which can be any of a number of different disordered structures, makes possible the modification of local order chemical environments of the material to create catalytical active sites for the hydrogen evolution reaction. Modifier elements, including for example Ti, Mo, Sr, Si, La, Ce, O and Co, structurally modify the local chemical environments of the host matrix formed of a transition element such as Ni, Mo, or Co to provide a material having an increased density of catalytically active sites which exhibits low overvoltages when utilized as a catalytic material for a electrolyte cell cathode.
    Type: Grant
    Filed: July 19, 1982
    Date of Patent: October 8, 1985
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Krishna Sapru, Edmund L. Yee
  • Patent number: 4525472
    Abstract: A catalyst for the hydrotreatment of heavy crudes and residues and a method for the preparation thereof are claimed, specifying an amount of Group VIb metallic hydrogenation compound irreversibly absorbed by the silica or alumina extruded support structure surface to be between 0.5 and 3% of the dried and calcined catalyst by weight. The percentage limit on the hydrogenation compound can be achieved by either obtaining a dense alumina support structure having a novel pore diameter distribution, or treating a prior art support with an absorption site restricter such as MgO prior to hydrogenation compound impregnation. Subsequent fabrication steps comprise washing, drying, calcining and presulfurizing. The resultant catalyst has a monolayer of hydrogenating compound deposited on the reaction surface, and interfering compounds such as massive MoO.sub.3, Al(MoO.sub.4).sub.3 or polymolybdates are not formed.
    Type: Grant
    Filed: February 23, 1983
    Date of Patent: June 25, 1985
    Assignee: Intevep, S.A.
    Inventors: Alfredo Morales, Roberto Galiasso, Angel R. Carrasquel
  • Patent number: 4522938
    Abstract: Catalysts for the production of methanol from mixtures of carbon monoxide and hydrogen are prepared by dispersing in water a co-precipitate of zinc and at least one of chromium and aluminum together with a co-precipitate of copper, zinc and optionally at least one of chromium and aluminum, followed by spray drying of the dispersion, and calcining the spray dried material.
    Type: Grant
    Filed: November 22, 1983
    Date of Patent: June 11, 1985
    Assignee: Shell Oil Company
    Inventors: Arend Hoek, Johannes K. Minderhoud, Martin F. M. Post
  • Patent number: 4513100
    Abstract: A catalytic system and process for producing mixtures of methanol and higher alcohols from synthesis gas, the catalytic system comprising zinc, chromium, copper, one or more alkaline metals, and possibly one or more metals chosen from molybdenum, manganese, lanthanum, cerium, aluminum, titanium and vanadium, either all or only part of said elements being chemically bonded to oxygen and/or together.
    Type: Grant
    Filed: October 28, 1982
    Date of Patent: April 23, 1985
    Assignee: Snamprogetti S.p.A.
    Inventors: Vittorio Fattore, Bruno Notari, Alberto Paggini, Vincenzo Lagana
  • Patent number: 4511671
    Abstract: A catalyst for manufacturing methacrolein by the vapor phase oxidation of isobutylene or tertiary butanol, said catalyst having the composition represented by the following formulaMo.sub.a W.sub.b Bi.sub.c Fe.sub.d A.sub.e B.sub.f C.sub.g D.sub.h O.sub.xwhereinA represents at least one element selected from the group consisting of nickel and cobalt,B represents at least one element selected from the group consisting of alkali metals, alkaline earth metals and thallium,C represents at least one element selected from the group consisting of tellurium, antimony, tin, cerium, lead, manganese and zinc,D represents at least one element selected from the group consisting of silicon, aluminum, zirconium and titanium,a, b, c, d, e, f, g, h, and x respectively represent the atomic ratios of Mo, W, Bi, Fe, A, B, C, D, and O, and whena is fixed at 12,b is from 0 to 10,c is from 0.1 to 10,d is from 0.
    Type: Grant
    Filed: September 1, 1983
    Date of Patent: April 16, 1985
    Assignee: Nippon Shokubai Kagaku Kogyo Co., Ltd.
    Inventors: Noboru Saito, Takeshi Satake, Ryuji Aoki, Isao Nagai
  • Patent number: 4490483
    Abstract: A process for preparing novel catalysts of increased activity which comprises (1) mixing alumina with at least a Group IVB metal compound and a molybdenum compound and an aqueous solution containing at least one dissolved compound therein that imparts to said aqueous solution a pH below 6 and (2) thereafter adding to the resulting product at least one metal compound not previously added thereto.
    Type: Grant
    Filed: May 19, 1983
    Date of Patent: December 25, 1984
    Assignee: Gulf Research & Development Company
    Inventors: Roger F. Vogel, Raymond J. Rennard, Joseph A. Tabacek
  • Patent number: 4478955
    Abstract: A process is provided for the upgrading of synthesis gas to hydrocarbons and oxygenated hydrocarbons, particularly olefins and carboxylic acids by contacting synthesis gas with catalysts comprising the mixed oxides of ruthenium, copper, an alkali or alkaline earth metal, and optionally a metal selected from Ce, Cr, Fe, Mn, Mo, Th, Zn or mixtures thereof. The synthesis gas upgrading product may be contacted with a hydrogenation catalyst to provide alkanes, alcohols and esters, useful for fuels.
    Type: Grant
    Filed: November 16, 1983
    Date of Patent: October 23, 1984
    Assignee: The Standard Oil Company
    Inventors: Frederick A. Pesa, Anne M. Graham
  • Patent number: 4442227
    Abstract: Hypochlorite ions in aqueous solution are catalytically decomposed by the action of a poly-metal spinel of cobalt preferably coated on an inert, stable support. The spinel catalyst may contain dispersed therein, optionally, other "modifier" metal oxides which contribute better adherence of the spinel to the substrate and improve the toughness of the spinel coating. The substituted cobalt spinel conforms generally to the empirical formulaM.sub.x N.sub.y Co.sub.3-(x+y) O.sub.4where zero<x.ltoreq.1; zero.ltoreq.y.ltoreq.0.5; M is at least one metal of Periodic Table Groups IB, IIA, and IIB; N is at least one metal from Group IA; and zero<(x+2y).ltoreq.1.
    Type: Grant
    Filed: October 18, 1982
    Date of Patent: April 10, 1984
    Assignee: The Dow Chemical Company
    Inventor: Donald L. Caldwell