And Group Iv Metal Containing (i.e., Ti, Zr, Hf, Ge, Sn Or Pb) Patents (Class 502/308)
  • Patent number: 10532345
    Abstract: The invention has as its object a method for preparation of catalysts based on cobalt substrates, implementing a concatenation of stages for impregnation, drying and calcination under particular conditions. The invention also relates to the use of said catalysts in Fischer-Tropsch synthesis methods.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: January 14, 2020
    Assignee: IFP Energies Nouvelles
    Inventors: Sylvie Maury, Adrien Berliet
  • Patent number: 10479946
    Abstract: System and corresponding process for the hydroconversion of heavy oils essentially comprising a reactor, a liquid-vapor separator and a section for stripping conversion products outside the reactor comprising an inlet conduit for the stripping gases located at a point on the conduit providing a connection between the head of the reactor and the liquid-vapor separator inclined, at least from the point of entry, upwards with a gradient of between 2% and 20%, preferably between 3% and 12%, with respect to a horizontal plane. The inlet conduit for the stripping gases is inclined with respect to the axis of the conduit providing a connection between the reactor head and the liquid-vapor separator through an angle of between 20° and 65°, more preferably between 30° and 60°, even more preferably between 40° and 50°. The stripping gas delivered to the connection conduit between the head of the reactor and the separator flows in a downward direction.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: November 19, 2019
    Assignee: Eni S.p.A.
    Inventors: Mario Molinari, Alberto Maria Malandrino, Susi Bonomi
  • Patent number: 10099206
    Abstract: A catalytically active material is provided. The material includes a mixed oxide having a first metal selected from group 4 of the periodic table of elements and/or a second metal, and at least one further metal selected from group 11 of the periodic table of elements, wherein the macroscopic composition of the material given by the chemical formula corresponds to the composition of the material at a molecular level. A coating made of such a material is also provide, as is an article having such a coating, and a method for producing such a material.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: October 16, 2018
    Assignee: SCHOTT AG
    Inventors: Jochem Herrmann, Christian Henn, Joerg Schuhmacher, Matthias Woelfinger, Martin Muhler, Thomas Emmerich
  • Patent number: 9908105
    Abstract: Catalyst supports, supported catalysts, and a method of preparing and using the catalysts for the demetallation of metal-containing heavy oil feedstocks are disclosed. The catalyst supports comprise precipitated alumina prepared by a low temperature pH swing process. A large portion of the pore volume of the catalyst supports has pores with a diameter in the range of about 200 ? to about 500 ?. Catalysts prepared from the supports of the invention exhibit improved catalytic activity and stability to remove metals from heavy hydrocarbon feedstocks during a hydroconversion process. The catalysts also exhibit increased sulfur and MCR conversion during the hydroconversion process.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: March 6, 2018
    Assignee: Advanced Refining Technologies LLC
    Inventors: Viorel D. Duma, Matthew P. Woods, Stanislaw Plecha
  • Patent number: 9867918
    Abstract: Cartridges useful in regenerating or purifying dialysis solutions are described as well as methods to regenerate or purify spent dialysis solutions. Dialysis methods using the sorbent cartridges of the present invention are further described.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: January 16, 2018
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Stephen A. Merchant, Kerissa Adams
  • Patent number: 9199225
    Abstract: Disclosed is a method for preparing a metal fluoride catalyst as a dehydrofluorination catalyst having high activity under a mild condition using a trifluoroacetic acid solution with no use of HF gas having fluidity and corrosive property. Disclosed also is a dehydrofluorination method for preparing HFO-1225ye from HFP-236ea by using the catalyst with high efficiency.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: December 1, 2015
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hilman Hutama, Jeong-Myeong Ha, Chang Soo Kim, Hong Gon Kim, Jae Wook Choi, Dong Jin Suh, Hyun Joo Lee, Byoung Sung Ahn
  • Publication number: 20150141667
    Abstract: The present invention provides catalysts, methods, and reactor systems for converting oxygenated hydrocarbons to oxygenated compounds. The invention includes methods for producing cyclic ethers, monooxygenates, dioxygenates, ketones, aldehydes, carboxylic acids, and alcohols from oxygenated hydrocarbons, such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like, using catalysts containing palladium, molybdenum, tin, and tungsten. The oxygenated compounds produced are useful in the production of liquid fuels, chemicals, and other products.
    Type: Application
    Filed: December 30, 2014
    Publication date: May 21, 2015
    Inventors: Brian Blank, Randy Cortright, Taylor Beck, Elizabeth Woods, Mike Jehring
  • Patent number: 9011809
    Abstract: An ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O or NOx. The ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal on an inorganic base material including any of a composite oxide (A) having at least titania and silica as main components, alumina, and a composite oxide (B) consisting of alumina and silica; and a catalyst layer (upper layer) including a composite oxide (C) consisting of at least silica, tungsten oxide, ceria and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is silica: 20% by weight or less, tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: April 21, 2015
    Assignee: N.E. Chemcat Corporation
    Inventors: Tomoaki Ito, Toshinori Okajima, Takashi Hihara, Makoto Nagata
  • Patent number: 8992871
    Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) contained in gas. The CO shift catalyst is prepared from one or both of molybdenum (Mo) and cobalt (Co) as an active ingredient and an oxide of one of, or a mixture or a compound of, titanium (Ti), silicon (Si), zirconium (Zr), and cerium (Ce) as a carrier for supporting the active ingredient. The CO shift catalyst can be used in a halogen-resistant CO shift reactor (15) that converts CO contained in gasified gas (12) generated in a gasifier (11) into CO2.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: March 31, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toshinobu Yasutake, Tetsuya Imai, Masanao Yonemura, Susumu Okino, Keiji Fujikawa, Shinya Tachibana
  • Publication number: 20150087505
    Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.
    Type: Application
    Filed: December 8, 2014
    Publication date: March 26, 2015
    Inventors: Jaime SANCHEZ VALENTE, Jose Manuel LOPEZ NIETO, Hector ARMENDARIZ HERRERA, Amada MASSO RAMIREZ, Francisco IVARS BARCELO, Maria de Lourdes Alejandra GUZMAN CASTILLO, Roberto QUINTANA SOLORZANO, Andrea RODRIGUEZ HERNANDEZ, Paz DEL ANGEL VICENTE, Etel MAYA FLORES
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Patent number: 8883100
    Abstract: The present invention relates to a particle filter comprising a porous carrier body, an SCR active component and an oxidation catalyst, wherein the SCR active component is present as coating on the exhaust-gas entry surface and the inner surface of the porous carrier body and the oxidation catalyst as coating on the exhaust-gas exit surface of the porous carrier body. According to the invention the oxidation catalyst changes its function depending on operating conditions. In normal operation it serves as NH3 slip catalyst for oxidizing excess NH3 and during filter regeneration it operates according to the 3-way principle for converting NOx and CO. The invention also relates to a method for producing the particle filter, the use of the particle filter for treating exhaust gases from the combustion of fossil, synthetic or biofuels as well as an exhaust-gas cleaning system which contains the particle filter according to the invention.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 11, 2014
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Martin Paulus, Klaus Wanninger
  • Patent number: 8865614
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 21, 2014
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Patent number: 8865615
    Abstract: Ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O and leakage of ammonia. The ammonia oxidation catalyst (AMOX) removes surplus ammonia, in selectively reducing nitrogen oxides by adding urea or ammonia and using a selective catalytic reduction (SCR) catalyst, into exhaust gas, wherein the ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal element on a composite oxide (A) having titania and silica as main components, and a catalyst layer (upper layer) including a composite oxide (C) consisting of tungsten oxide, ceria, and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: October 21, 2014
    Assignee: N.E. Chemcat Corporation
    Inventors: Tomoaki Ito, Toshinori Okajima, Makoto Nagata
  • Publication number: 20140275685
    Abstract: A layered multimetallic mixed oxide (LMMO) is characterized by one or more diffraction peaks at 5<2?<15, preferably between 10<2?<15. The catalysts can be represented by the general formula: M1M2M3O? wherein M1 is selected from the group of Ag, Au, Zn, Sn, Rh, Pd, Pt, Cu, Ni, Fe, Co, an alkaline metal, an alkaline earth metal, a rare earth metal, or mixtures thereof. M2 is selected from the group of Ti, Hf, Zr, Sn, Bi, Sb, V, Nb, Ta and P, or mixtures thereof. M3 is selected from the group of Mo, W and Cr, or mixtures thereof. ? depends on the amount and oxidation state or valence of the other components, also it depends on the starting materials, preparation method and the activation process, and where the catalyst exhibits at least one X-ray diffraction peak between 5<2?<15.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Jaime SANCHEZ VALENTE, Enelio TORRES GARCIA, Hector ARMENDARIZ HERRERA, Maria de Lourdes Alejandra GUZMAN CASTILLO, Andrea RODRIGUEZ HERNANDEZ, Roberto QUINTANA SOLORZANO, Maiby VALLE ORTA, Jose Manuel LOPEZ NIETO
  • Patent number: 8835343
    Abstract: A method of preparing a nitrogen containing electrode catalyst by converting a high surface area metal-organic framework (MOF) material free of platinum group metals that includes a transition metal, an organic ligand, and an organic solvent via a high temperature thermal treatment to form catalytic active sites in the MOF. At least a portion of the contained organic solvent may be replaced with a nitrogen containing organic solvent or an organometallic compound or a transition metal salt to enhance catalytic performance. The electrode catalysts may be used in various electrochemical systems, including a proton exchange membrane fuel cell.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: September 16, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: Di-Jia Liu, Shengqian Ma, Gabriel A. Goenaga
  • Publication number: 20140249334
    Abstract: Ethylene glycol and propylene glycol may be made by hydrogenolysis of a polyol comprising the steps of reacting a polyol with hydrogen in the presence of a hydrogenolysis catalyst. The hydrogenolysis comprises nickel, one or more promoter, and one or more support. The promoter is selected from bismuth, silver, tin, antimony, gold, lead, thallium, cerium, lanthanum, and manganese. The support is selected from zirconia and carbon. A zirconia support comprises a zirconia textual promoter, which is selected from Cr, Mo, W, Nb, Ce, Ca, Mg, La, Pr, Nd, Al, and P. If the support comprises carbon, then the promoter is selected from bismuth and antimony. In another embodiment, if the support comprises carbon, then both the promoter is selected from bismuth and antimony, and the catalyst comprises copper. In another embodiment, the catalyst additionally comprises copper.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: Clariant Corporation
    Inventors: Aaron B. MILLER, Malati RAGHUNATH, Valery SOKOLOVSKII, Claus G. LUGMAIR, Anthony F. VOLPE, JR., Wenqin SHEN, Wayne TURBEVILLE
  • Patent number: 8772551
    Abstract: Disclosed herein are mixed oxide catalysts for the catalytic gas phase oxidation of alkanes, or mixtures of alkanes and olefins, for the production of aldehydes and carboxylic acids with air or oxygen in the presence of inert gases at elevated temperatures and pressure, and a method for the production of catalysts.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: July 8, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Achim Fischer, Weimin Lu, Christoph Weckbecker, Klaus Huthmacher
  • Publication number: 20140187414
    Abstract: An aqueous dispersion of an embodiment includes visible-light responsive photocatalytic composite microparticles containing tungsten oxide and zirconium oxide, and an aqueous dispersion medium in which the photocatalytic composite microparticles are dispersed. In the photocatalytic composite microparticles, a ratio of a mass of the zirconium oxide to a mass of the tungsten oxide is in a range of from 0.05% to 200%, and a D50 particle size in particle size distribution is in a range of from 20 nm to 10 ?m. The aqueous dispersion has pH in a range of from 1 to 9.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 3, 2014
    Applicants: Toshiba Materials Co., Ltd., Kabushiki Kaisha Toshiba
    Inventors: Daisuke FUKUSHI, Takao KUSAKA, Akira SATO, Kayo NAKANO, Akihisa NITSUTA, Yukiko INUI, Hiroyasu OOTA
  • Publication number: 20140187412
    Abstract: In one embodiment, an aqueous dispersion liquid contains at least one particles selected from tungsten oxide particles and tungsten oxide composite particles. A mean primary particle diameter (D50) of the particles is in the range of 1 nm to 400 nm. In the aqueous dispersion liquid, concentration of the particles is in the range of 0.1 mass % to 40 mass %, and pH is in the range of 1.5 to 6.5. The aqueous dispersion liquid excels in dispersibility of particles and capable of maintaining good liquidity for a long period.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicants: TOSHIBA MATERIALS CO., LTD., KABUSHIKI KAISHA TOSHIBA
    Inventors: Kayo NAKANO, Akira SATO, Yasuhiro SHIRAKAWA, Keiichi FUSE, Shinya KASAMATSU, Akito SASAKI
  • Patent number: 8765634
    Abstract: A catalytically active composition comprising, prior to reduction with hydrogen: 10 to 75% by weight of an oxygen compound of zirconium, calculated as ZrO2; 1 to 30% by weight of an oxygen compound of copper, calculated as CuO; 10 to 50% by weight of an oxygen compound of nickel, calculated as NiO; 10 to 50% by weight of an oxygen compound of cobalt, calculated as CoO; and 0.1 to 10% by weight of one or more oxygen compounds of one or more metals selected from the group consisting of Pb, Bi, Sn, Sb and In, calculated as PbO, Bi2O3, SnO, Sb2O3 or In2O3, respectively.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: July 1, 2014
    Assignee: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Patent number: 8741504
    Abstract: A solid catalyst having a close-packed structure has basic structural units present in the surface of the solid catalyst, the basic structural units including (i) a triangular lattice constituted of atoms of platinum, ruthenium, and at least one additional element which are disposed at the vertexes in the triangular lattice so that each atom of one of the elements adjoins atoms of the other elements or (ii) a rhombic lattice constituted of atoms of platinum, ruthenium, and at least one additional element which are disposed at the vertexes in the rhombic lattice in an atomic ratio of 1:2:1 so that each ruthenium atom directly adjoins a platinum atom and an atom of the additional element; and a fuel cell includes either of the solid catalyst as an anode-side electrode catalyst.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 3, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yoshida, Fumihiko Aiga, Satoshi Itoh, Yoshiko Hiraoka, Reiko Yoshimura, Tsukasa Tada
  • Patent number: 8703641
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds end up in the supernatant. The metals can be recovered via any of chemical precipitation, ion exchange, electro-coagulation, and combinations thereof to generate an effluent stream containing less than 50 mole % of metal ions in at least one of the metal residuals, and for at least one of the metal residuals recovered as a metal precursor feed for use in the co-precipitation reaction. In one embodiment, the resin functions as an anion exchange resin with an acidic supernatant to recover Group VIB metal residuals, and a cation exchange resin with a basic supernatant to recover Promoter metal residuals. An effluent stream from the process to waste treatment contains less than 50 ppm metals.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: April 22, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra, Ping Wang, Soy Uckung
  • Patent number: 8691723
    Abstract: The sequential production of a library of N different solids, in particular heterogeneous catalysts, where N within a day is an integer of at least 2, is performed by a) producing at least two different sprayable solutions, emulsions and/or dispersions of elements and/or element compounds of the chemical elements present in the catalyst and optionally of dispersions of inorganic support materials, b) continuously metering the at least two different solutions, emulsions and/or dispersions in a predefined ratio into a mixing apparatus in which the solutions, emulsions and/or dispersions are homogeneously mixed, c) continuously drying the mixture removed from the mixing apparatus and recovering the dried mixture, d) changing the ratios in step b) and repeating steps b), c) and d) (N?1) times until N different dried mixtures are obtained, e) optionally shaping and optionally calcining the mixtures to give the solids.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: April 8, 2014
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Frieder Borgmeier, Martin Dieterle
  • Patent number: 8673808
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins such as ethylene, propylene, etc., by performing the hydrocarbon steam cracking reaction in the presence of the composite catalyst.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: March 18, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
  • Patent number: 8674158
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins such as ethylene, propylene, etc., by performing the hydrocarbon steam cracking reaction in the presence of the composite catalyst.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: March 18, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
  • Patent number: 8664146
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: March 4, 2014
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Publication number: 20140031546
    Abstract: A hydrodeoxygenation catalyst comprises a metal catalyst, an acid promoter, and a support. The metal catalyst is selected from platinum, palladium, ruthenium, rhenium rhodium, osmium, iridium, nickel, cobalt, molybdenum, copper, tin, or mixtures thereof. The support is a promoted-zirconium material including texture promoters and acid promoters. The hydrodeoxygenation catalyst may be used for hydrodeoxygenation (HDO) of sugar or sugar alcohol in an aqueous solution. In one embodiment the HDO catalyst may be used for HDO of fatty acids such as fatty acid methyl esters (FAME), triglycerols (in plant oil and animal fat), pyrolysis oil, or lignin. The hydrodeoxygenation catalyst for fatty acid process does not require the use of an acid promoter, it is optional.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Inventors: Wenqin Shen, Alguo Liu, Wayne Turbeville
  • Patent number: 8633131
    Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
  • Publication number: 20140001407
    Abstract: The invention relates to a catalytic high-pressure process for the CO2 reforming of hydrocarbons, preferably methane, in the presence of iridium-comprising active compositions and also a preferred active composition in which Ir is present in finely dispersed form on zirconium dioxide-comprising support material. The predominant proportion of the zirconium dioxide preferably has a cubic and/or tetragonal structure and the zirconium dioxide is more preferably stabilized by means of at least one doping element. In the process of the invention, reforming gas is brought into contact at a pressure of greater than 5 bar, preferably greater than 10 bar and more preferably greater than 20 bar, and a temperature which is in the range from 600 to 1200° C., preferably in the range from 850 to 1100° C. and in particular in the range from 850 to 950° C., and converted into synthesis gas.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Inventors: Andrian MILANOV, Ekkehard Schwab, Stephan Schunk, Guido Wasserschaff
  • Publication number: 20130345046
    Abstract: Disclosed are a bifunctional catalyst for simultaneously removing nitrogen oxide and particulate matters, capable of decomposing nitrogen monoxide and generating nitrogen dioxide through oxidation of nitrogen monoxide, a composite catalyst including the catalyst for simultaneously removing nitrogen oxide and particulate matters used for an apparatus to decrease exhaust gas of diesel vehicles, and a method for preparation thereof. The catalyst and the composite catalyst can be used in a device for reducing exhaust gas contaminants mounted on a diesel vehicle and an exhaust gas purification system comprising the device.
    Type: Application
    Filed: August 28, 2013
    Publication date: December 26, 2013
    Applicant: Korea Institute of Engergy Research
    Inventors: Jong-Soo Park, Kyung-Ran Hwang, Young-Jae Lee, Soon-Kwan Jeong, Dong-Kook Kim, Sung-Ho Cho, Chun-Boo Lee
  • Patent number: 8609575
    Abstract: A catalyst of one or more complex oxides having a nominal composition as set out in formula (1): AxB1-y-zMyPzOn (1) wherein A is selected from one or more group III elements including the lanthanide elements or one or more divalent or monovalent cations; B is selected from one or more elements with atomic number 22 to 24, 40 to 42 and 72 to 75; M is selected from one or more elements with atomic number 25 to 30; P is selected from one or more elements with atomic number 44 to 50 and 76 to 83; x is defined as a number where 0<x?1; y is defined as a number where 0?y<0.5; and z is defined as a number where 0<z<0.2.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: December 17, 2013
    Assignee: Very Small Particle Company Limited
    Inventors: Peter Cade Talbot, Jose Antonio Alarco, Geoffrey Alan Edwards
  • Publication number: 20130310605
    Abstract: Disclosed are catalysts comprised of platinum and rhodium on a support selected from the group of zirconia, stabilized (doped) zirconia, zirconia-metal oxide composites, and mixtures thereof, wherein the outer surfaces of the support are selected from the group of zirconia, stabilized zirconia, and mixtures thereof. More particularly, the supported catalysts comprise platinum and rhodium, wherein the molar ratio of platinum to rhodium is in the range of about 3:1 to about 1:2. The average pore diameter of the catalyst supports is in the range of about 5 nm to about 70 nm and the surface area is in the range of about 15 m2/g to about 200 m2/g. Also disclosed are methods for the hydrodeoxygenation of carboxylic acids, mono- and/or di-lactones thereof having at least one hydroxyl group on the backbone thereof to corresponding acids where the backbone hydroxyl group has been reduced in the presence of the catalyst.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 21, 2013
    Inventors: George Fredrick Salem, Guang Zhu, Alfred Gerhard Hagmeyer, Eric L. Dias
  • Patent number: 8586500
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant. In the present disclosure, the metals can be recovered via any of chemical precipitation, ion exchange, electro-coagulation, and combinations thereof to generate an effluent stream containing less than 50 mole % of metal ions in at least one of the metal residuals, and for at least one of the metal residuals is recovered as a metal precursor feed, which can be recycled for use in the co-precipitation reaction. An effluent stream from the process to waste treatment contains less than 50 ppm metal ions.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 19, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra
  • Patent number: 8586786
    Abstract: A catalyst for use in the production of an unsaturated aldehyde and/or an unsaturated carboxylic acid, the catalyst comparing (or, preferably, being composed of) a mixed oxide containing molybdenum, bismuth and iron, which has improved methanical strength, is produced by a method including the steps of (1) drying an aqueous solution or an aqueous slurry containing raw materials of the catalyst and then firstly calcining a dried product in a molecular oxygen-containing gas atmosphere to obtain a calcined product; (2) heating the calcined product obtained in Step (1) in the presence of a reducing material to obtain a reduced product having a mass loss of 0.05 to 6%; and (3) secondly calcining the reduced product obtained in Step (2) in a molecular oxygen-containing gas atmosphere.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 19, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Naoki Miura, Eiichi Shiraishi, Koichi Nagai
  • Patent number: 8580701
    Abstract: A method of making a nanoparticle catalyst composition including: a single heating of an aqueous salt solution comprising a Ce, a Zr, a rare earth dopant, and a transition metal oxide precursor to provide nanoparticles, the nanoparticles have a compositional gradient comprised of a CeZrREO2, where RE is a rare earth, and the outer portion of the nanoparticles has a Ce:Zr ratio different from the inner portion of the nanoparticles. Also disclosed is a nanoparticle-catalyst composition and articles containing the composition, as defined herein.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 12, 2013
    Assignee: Corning Incorporated
    Inventors: Kaveh Adib, Steven Bolaji Ogunwumi
  • Patent number: 8575061
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of metal ions in at least one of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant as metal residuals. In the present disclosure, the metals can be recovered via ion-exchange, wherein an exchange resin is provided for a portion of the metal ions in the supernatant to be exchanged and bound onto the resin. The previously resin-bound metals can be subsequently recovered, or the effluent stream for the exchange resin column can also be recovered, forming at least a metal precursor feed which can be used in the co-precipitation reaction.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 5, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra
  • Patent number: 8575062
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and stay in the supernatant. In one embodiment, at least a precipitant is added to the product mixture at a molar ratio of precipitant to metal residuals in the supernatant ranging from 1.5:1 to 20:1 to precipitate at least 50 mole % of metal ions in the residuals forming additional catalyst precursor. The remaining metal residuals can be recovered via any of chemical precipitation, ion exchange, electro-coagulation, and combinations thereof to generate an effluent stream containing less than 50 mole % of at least one of the metal residuals. In one embodiment, at least one of the metal residuals is recovered and recycled for use as a metal precursor feed in the co-precipitation reaction.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 5, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra
  • Patent number: 8574524
    Abstract: The present invention provides a porous composite oxide comprising an aggregate of secondary particles in the form of aggregates of primary particles of a composite oxide containing two or more types of metal elements, and having mesopores having a pore diameter of 2-100 nm between the secondary particles; wherein, the percentage of the mesopores between the secondary particles having a diameter of 10 nm or more is 10% or more of the total mesopore volume after firing for 5 hours at 600° C. in an oxygen atmosphere.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: November 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Kohei Yoshida, Akio Koyama
  • Patent number: 8569200
    Abstract: A catalyst for hydrocarbon steam cracking for the production of light olefin, a preparation method of the catalyst and a preparation method of olefin by using the same. More precisely, the present invention relates to a composite catalyst prepared by mixing the oxide catalyst powder represented by CrZrjAkOx (0.5?j?120, 0?k?50, A is a transition metal, x is the number satisfying the condition according to valences of Cr, Zr and A, and values of j and k) and carrier powder and sintering thereof, a composite catalyst wherein the oxide catalyst is impregnated on a carrier, and a method of preparing light olefin such as ethylene and propylene by hydrocarbon steam cracking in the presence of the composite catalyst. The composite catalyst of the present invention has excellent thermal/mechanical stability in the cracking process, and has less inactivation rate by coke and significantly increases light olefin yield.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: October 29, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jun-han Kang, Jong-hun Song, Jun-seon Choi, Byoung-gi Park, Chang-hoon Kang, Si-hyun Noh
  • Patent number: 8563460
    Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 22, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557729
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has two or more flutes running along its length, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst may be used particularly in reactions where hydrogen is a reactant such as hydroprocessing, hydrogenation, water-gas shift reactions, methanation, hydrocarbon synthesis by the Fischer-Tropsch reaction, methanol synthesis and ammonia synthesis.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: Daniel Lee Cairns, Mileta Babovic, Terence James Fitzpatrick, Elizabeth Margaret Holt, Colin William Park, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557728
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has one or more holes extending therethrough, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst or catalyst unit preferably has one or more flutes miming along its length. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Publication number: 20130244868
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number satisfying conditions according to valence of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5 R to 0.96 R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5 r2 to 10 r2, a method of preparing the same, and a method of preparing light olefin by using the same.
    Type: Application
    Filed: May 3, 2013
    Publication date: September 19, 2013
    Applicant: LG CHEM, LTD.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
  • Patent number: 8507403
    Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 13, 2013
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
  • Patent number: 8501132
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Cristal USA Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Publication number: 20130190168
    Abstract: The present invention relates to sol gel hydrous metal oxide particles, such as hydrous zirconium oxide particles, their manufacture, and their use in such applications as sorbent dialysis.
    Type: Application
    Filed: March 13, 2013
    Publication date: July 25, 2013
    Applicant: FRESENIUS MEDICAL CARE HOLDINGS, INC.
    Inventor: Fresenius Medical Care Holdings, Inc.
  • Patent number: 8492305
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking for the production of light olefin, a preparation method of the catalyst and a preparation method of olefin by using the same. More precisely, the present invention relates to a composite catalyst prepared by mixing the oxide catalyst powder represented by CrZrjAkOx (0.5?j?120, 0?k?50, A is a transition metal, x is the number satisfying the condition according to valences of Cr, Zr and A, and values of j and k) and carrier powder and sintering thereof, a composite catalyst wherein the oxide catalyst is impregnated on a carrier, and a method of preparing light olefin such as ethylene and propylene by hydrocarbon steam cracking in the presence of the composite catalyst. The composite catalyst of the present invention has excellent thermal/mechanical stability in the cracking process, and has less inactivation rate by coke and significantly increases light olefin yield.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 23, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jun-han Kang, Jong-hun Song, Jun-seon Choi, Byoung-gi Park, Chang-hoon Kang, Si-hyun Noh
  • Patent number: 8481451
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins by using the same.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: July 9, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi