And Group Iv Metal Containing (i.e., Ti, Zr, Hf, Ge, Sn Or Pb) Patents (Class 502/308)
-
Patent number: 8507403Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.Type: GrantFiled: June 27, 2008Date of Patent: August 13, 2013Assignee: Cabot CorporationInventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
-
Patent number: 8501132Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.Type: GrantFiled: December 5, 2011Date of Patent: August 6, 2013Assignee: Cristal USA Inc.Inventors: Guoyi Fu, Steven M. Augustine
-
Publication number: 20130190168Abstract: The present invention relates to sol gel hydrous metal oxide particles, such as hydrous zirconium oxide particles, their manufacture, and their use in such applications as sorbent dialysis.Type: ApplicationFiled: March 13, 2013Publication date: July 25, 2013Applicant: FRESENIUS MEDICAL CARE HOLDINGS, INC.Inventor: Fresenius Medical Care Holdings, Inc.
-
Patent number: 8492305Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking for the production of light olefin, a preparation method of the catalyst and a preparation method of olefin by using the same. More precisely, the present invention relates to a composite catalyst prepared by mixing the oxide catalyst powder represented by CrZrjAkOx (0.5?j?120, 0?k?50, A is a transition metal, x is the number satisfying the condition according to valences of Cr, Zr and A, and values of j and k) and carrier powder and sintering thereof, a composite catalyst wherein the oxide catalyst is impregnated on a carrier, and a method of preparing light olefin such as ethylene and propylene by hydrocarbon steam cracking in the presence of the composite catalyst. The composite catalyst of the present invention has excellent thermal/mechanical stability in the cracking process, and has less inactivation rate by coke and significantly increases light olefin yield.Type: GrantFiled: December 1, 2011Date of Patent: July 23, 2013Assignee: LG Chem, Ltd.Inventors: Jun-han Kang, Jong-hun Song, Jun-seon Choi, Byoung-gi Park, Chang-hoon Kang, Si-hyun Noh
-
Patent number: 8481451Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins by using the same.Type: GrantFiled: June 4, 2010Date of Patent: July 9, 2013Assignee: LG Chem, Ltd.Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
-
Patent number: 8475921Abstract: A composite material includes an aggregate which contains a first metal particle constituting a core and second metal oxide particulates surrounding the first metal particle and having an average primary particle diameter ranging from 1 to 100 nm.Type: GrantFiled: July 20, 2006Date of Patent: July 2, 2013Assignee: Kabushiki Kaisha Toyota Chuo KenkyushoInventors: Tomoyuki Kayama, Kouzi Banno, Kiyoshi Yamazaki, Koji Yokota
-
Patent number: 8466084Abstract: A non-noble metal based catalyst includes a compound represented by Formula 1: ZraMbOxNy??[Formula 1] where M is at least one element selected from Group 4 elements through Group 12 elements, a is a number in the range of about 1 to about 8, b is a number in the range of 1 to 8, x is a number in the range of about 0.2 to about 32, and y is a number in the range of about 0.2 to about 16. A fuel cell electrode and fuel cell may be formed using the non-noble metal based catalyst.Type: GrantFiled: February 19, 2010Date of Patent: June 18, 2013Assignees: Samsung Electronics Co., Ltd., Dalian Institute of Chemical Physics, Chinese Academy of SciencesInventors: Duckyoung Yoo, Gang Liu, Huamin Zhang, Hong Jin, Ting Xu, Yuanwei Ma, Hexiang Zhong
-
Patent number: 8455392Abstract: A new type of solid acid catalyst, which promises better catalytic performance than conventionally prepared supported metal oxides due to its precisely synthesized nanostructure has been described. The catalyst is nanoparticulate in form and is comprised of monolayers of tungstated zirconia of the formula, WOxZryO4-2y made by impregnating a support with zirconium and tungsten. The support catalyst is further characterized in having a tugsten monolayer between greater than 0001 W/nm2 to about 30 W/nm2.Type: GrantFiled: June 20, 2008Date of Patent: June 4, 2013Assignees: William Marsh Rice University, Lehigh UniversityInventors: Israel E. Wachs, Elizabeth I. Ross-Medgaarden, Michael Sha-nang Wong
-
Publication number: 20130123549Abstract: The present disclosure provides a hydrogenation catalyst, the preparation process thereof and the application thereof in the production of 1,4-butanediol by hydrogenating dialkyl maleate and/or dialkyl succinate. The catalyst comprises Cu—Al-A-B-G, wherein A comprises at least one of Zn. Mo and W, B comprises at least one of Ba, Mn, Mg, Ti, Ce and Zr. In the process for preparing said hydrogenation catalyst, a part of Cu and A are precipitated first and the rest of Cu, Al and B are precipitated successively.Type: ApplicationFiled: October 30, 2012Publication date: May 16, 2013Applicants: FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICAL, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATIONInventors: CHINA PETROLEUM & CHEMICAL CORPORATI, FUSHUN RESEARCH INSTITUTE OF PETROLEU
-
Patent number: 8415268Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.Type: GrantFiled: June 30, 2009Date of Patent: April 9, 2013Assignee: BASF SEInventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
-
Patent number: 8404204Abstract: The present invention is directed to a granulate having photocatalytic activity, comprising particles of an inorganic particulate material coated with a photocatalytically active compound for introducing photocatalytic activity into or on building materials. The invention is further related to the manufacture of such a granulate and its use into or on building materials such as cement, concrete, gypsum and/or limestone and water-based coatings or paints for reducing an accumulation and growth of microorganisms and environmental polluting substances on these materials and thus reducing the tendency of fouling, while the brilliance of the color is maintained and the quality of the air is improved.Type: GrantFiled: March 31, 2008Date of Patent: March 26, 2013Assignee: Rockwood Italia SpAInventors: Marino Sergi, Christian Egger
-
Patent number: 8389436Abstract: A composite oxide is provided which has large oxygen absorption and desorption over a wide temperature range, in particular in a higher temperature range of not lower than 700° C. and/or in a lower temperature range of not higher than 400° C. The composite oxide contains oxygen, R composed of at least one of Ce and Pr, and Zr at a particular ratio, and optionally a particular ratio of M composed of at least one element selected from alkaline earth metals and the like.Type: GrantFiled: February 12, 2009Date of Patent: March 5, 2013Assignee: Santoku CorporationInventor: Tadatoshi Murota
-
Publication number: 20130029841Abstract: Catalyst compositions for producing mixed alcohols from a synthesis gas feed. The catalyst composition comprises a catalytic metal combination on a catalyst support, a first optional promoter and a second optional promoter, where the catalytic metal combination consists essentially of iridium, vanadium, and molybdenum.Type: ApplicationFiled: March 30, 2011Publication date: January 31, 2013Applicant: DOW GLOBAL TECHNOLOGIES LLCInventors: Daniela Ferrari, Neelesh J. Rane, Adam Chojecki, Gerolamo Budroni, David G. Barton, Mark H. McAdon, Robert J. Gulotty, JR., Dean M. Millar, Palanichamy Manikandan
-
Patent number: 8361923Abstract: A process is provided for producing a complex oxide catalyst which exhibits superior catalytic activity in a vapor phase catalytic oxidation reaction, particularly in production of unsaturated aldehyde and unsaturated carboxylic acid. The process is characterized by the steps of preparing an aqueous slurry by mixing a complex oxide containing molybdenum and cobalt with an acid and water; drying the aqueous slurry; and calcining the resulting dried solid. Preferably, the complex oxide is obtained as follows: a molybdenum- and cobalt-containing complex oxide catalyst which has been used in a vapor phase catalytic oxidation reaction is mixed with an aqueous extracting solution obtained by dissolving at least one of ammonia and an organic base in water, to thereby extract molybdenum and cobalt into the aqueous phase; and the aqueous phase is dried and is then calcined under an atmosphere of an oxidizing gas.Type: GrantFiled: September 29, 2010Date of Patent: January 29, 2013Assignee: Sumitomo Chemical Company, LimitedInventors: Hirotsugu Kano, Eiichi Shiraishi
-
Publication number: 20130015100Abstract: This invention relates to systems and methods for catalytic steam cracking of non-asphaltene containing heavy hydrocarbon fractions. The method enables upgrading heavy hydrocarbons to hydrocarbons capable of being transported through pipelines and/or a pretreated step before further treatment in an upgrading refinery, including the steps of separating the heavy hydrocarbon mixture into a light fraction, a full gasoil fraction and a vacuum residue fraction with or without at least partial reduction or asphaltenes; adding a catalyst to the full gasoil and/or to the blend of this with a reduced asphaltenes fraction and subjecting the catalyst-full gasoil and/or deasphalted oil fraction to catalytic steam cracking to form an effluent stream; separating the effluent stream into a gas stream and a liquid stream; and mixing the liquid stream with the light fraction and the vacuum residue fraction to form an upgraded oil. The system includes hardware capable of performing the method.Type: ApplicationFiled: June 28, 2012Publication date: January 17, 2013Applicant: Nexen Inc.Inventors: Pedro Pereira Almao, Gustavo Luis Trujillo, Enzo Peluso, Carmen Galarraga, Clementina Sosa, Carlos Scott Algara, Francisco Lopez-Linares, Lante Antonio Carbognani Ortega, Nestor Gregorio Zerpa Reques
-
Publication number: 20120325226Abstract: A low sidestream smoke cigarette comprises a conventional tobacco rod, and a combustible treatment paper having a sidestream smoke treatment composition. The treatment composition comprises in combination, an oxygen storage and donor metal oxide oxidation catalyst and an essentially non-combustible finely divided porous particulate adjunct for said catalyst.Type: ApplicationFiled: August 24, 2012Publication date: December 27, 2012Applicant: ROTHMANS, BENSON & HEDGES, INC.Inventors: Stanislav M. Snaidr, E. Robert Becker
-
Publication number: 20120316056Abstract: In one embodiment, an aqueous dispersion liquid contains at least one particles selected from tungsten oxide particles and tungsten oxide composite particles. A mean primary particle diameter (D50) of the particles is in the range of 1 nm to 400 nm. In the aqueous dispersion liquid, concentration of the particles is in the range of 0.1 mass % to 40 mass %, and pH is in the range of 1.5 to 6.5. The aqueous dispersion liquid excels in dispersibility of particles and capable of maintaining good liquidity for a long period.Type: ApplicationFiled: August 23, 2012Publication date: December 13, 2012Inventors: Kayo NAKANO, Akira SATO, Yasuhiro SHIRAKAWA, Keiichi FUSE, Shinya KASAMATSU, Akito SASAKI
-
Publication number: 20120297779Abstract: Ceramic catalyst carriers that are mechanically, thermally and chemically stable in a ionic salt monopropellant decomposition environment and high temperature catalysts for decomposition of liquid high-energy-density monopropellants are disclosed. The ceramic catalyst carrier has excellent thermal shock resistance, good compatibility with the active metal coating and metal coating deposition processes, melting point above 1800° C., chemical resistance to steam, nitrogen oxides and acids, resistance to sintering to prevent void formation, and the absence of phase transition associated with volumetric changes at temperatures up to and beyond 1800° C.Type: ApplicationFiled: May 25, 2011Publication date: November 29, 2012Applicant: SIENNA TECHNOLOGIES, INC.Inventors: Ender Savrun, Stephanie J. Sawhill
-
Publication number: 20120294789Abstract: A CO shift catalyst according to the present invention is one that reforms carbon monoxide (CO) in gas. The CO shift catalyst includes: active ingredients including one of molybdenum (Mo) and iron (Fe) as a main ingredient and one of nickel (Ni) and ruthenium (Ru) as an accessory ingredient; and one or at least two oxides of titanium (Ti), zirconium (Zr), and cerium (Ce) as a carrier supporting the active ingredients. The CO shift catalyst can be used for a CO shift reactor 20 that converts CO in gasified gas 12 produced in a gasifier 11 into CO2.Type: ApplicationFiled: February 24, 2011Publication date: November 22, 2012Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.Inventors: Toshinobu Yasutake, Masanao Yonemura, Tetsuya Imai
-
Patent number: 8252714Abstract: A catalyst for use in the production of an unsaturated aldehyde and/or an unsaturated carboxylic acid, the catalyst comparing (or, preferably, being composed of) a mixed oxide containing molybdenum, bismuth and iron, which has improved mechanical strength, is produced by a method including the steps of (1) drying an aqueous solution or an aqueous slurry containing raw materials of the catalyst and then firstly calcining a dried product in a molecular oxygen-containing gas atmosphere to obtain a calcined product; (2) heating the calcined product obtained in Step (1) in the presence of a reducing material to obtain a reduced product having a mass loss of 0.05 to 6%; and (3) secondly calcining the reduced product obtained in Step (2) in a molecular oxygen-containing gas atmosphere.Type: GrantFiled: May 15, 2009Date of Patent: August 28, 2012Assignee: Sumitomo Chemical Company, LimitedInventors: Naoki Miura, Eiichi Shiraishi, Koichi Nagai
-
Publication number: 20120208695Abstract: A supported catalyst composition suitable for use in converting synthesis gas to alcohols comprises a catalytic metal, a catalyst promoter and a catalyst support.Type: ApplicationFiled: November 2, 2010Publication date: August 16, 2012Applicant: Dow Global Technologies LLCInventors: Billy B. Bardin, David G. Barton, Adam Chojecki, Howard W. Clark, Daniela Ferrari, Robert J. Gulotty, JR., Yu Liu, Mark H. McAdon, Dean M. Millar, Neelesh Rane, Hendrik E. Tuinstra
-
Patent number: 8227034Abstract: Catalyst-coated support, method for producing the same, reactor comprising the same and use thereof. Supports having a catalytic coating comprising at least one porous and cavity-containing catalyst layer are described, cavities being irregular spaces having dimensions greater than 5 ?m in at least two dimensions or having cross-sectional areas of at least 10 ?m2. The catalytic coatings are distinguished by a high adhesive strength and can preferably be used in microreactors.Type: GrantFiled: June 9, 2011Date of Patent: July 24, 2012Assignees: Evonik Degussa GmbH, Uhde GmbHInventors: Steffen Schirmeister, Karsten Bueker, Martin Schmitz-Niederau, Bernd Langanke, Andreas Geisselmann, Georg Markowz, Klaus Thomas Schwarz, Elias Johannes Klemm, Frank Becker, Reinhard Machnik
-
Patent number: 8216962Abstract: The present invention provides a urethane-forming reaction catalyst which is useful for catalyzing a reaction between an isocyanate compound, in particular, an aliphatic isocyanate and a hydroxyl group-containing compound to form a urethane material, which does not affect the performance of the urethane material, and which can be easily removed from the resulting urethane material, and a method for producing a metal compound-free urethane material using the urethane-forming reaction catalyst. The catalyst of the present invention is a urethane-forming reaction catalyst for producing a urethane material by allowing a hydroxyl group-containing compound to react with an isocyanate compound, the catalyst being at least one solid acid catalyst selected from the group consisting of a (A) composite metal oxide in which a metal oxide (A-2) or a non-metal compound (A-3) is carried on a surface of a metal oxide carrier (A-1), (B) zeolite, and a (C) heteropoly acid.Type: GrantFiled: September 16, 2009Date of Patent: July 10, 2012Assignee: DIC CorporationInventors: Hironobu Oki, Yasuyuki Watanabe, Youichi Abe
-
Patent number: 8207084Abstract: According to at least one aspect of the present invention, a urea-resistant catalytic unit is provided. In at least one embodiment, the catalytic unit includes a catalyst having a catalyst surface, and a urea-resistant coating in contact with at least a portion of the catalyst surface, wherein the urea-resistant coating effectively reduces urea-induced deactivation of the catalyst. In at least another embodiment, the urea-resistant coating includes at least one oxide from the group consisting of titanium oxide, tungsten oxide, zirconium oxide, molybdenum oxide, aluminum oxide, silicon dioxide, sulfur oxide, niobium oxide, molybdenum oxide, yttrium oxide, nickel oxide, cobalt oxide, and combinations thereof.Type: GrantFiled: June 23, 2009Date of Patent: June 26, 2012Assignee: Ford Global Technologies, LLCInventors: Yisun Cheng, Yinyan Huang, Christine Kay Lambert
-
Publication number: 20120149551Abstract: A catalyst material for preparing nanotubes, especially carbon nanotubes, said material being in the form of solid particles, said particles including a porous substrate supporting two superposed catalytic layers, a first layer, directly positioned on the substrate, including at least one transition metal from column VIB of the Periodic Table, preferably molybdenum, and a second catalytic layer, positioned on the first layer, comprising iron. Also, a process for preparing same and to a process for the synthesis of nanotubes using this catalyst material.Type: ApplicationFiled: August 16, 2010Publication date: June 14, 2012Applicants: INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE (INPT), ARKEMA FRANCEInventors: Patrice Gaillard, Serge Bordere, Philippe Serp, Brigitte Caussat, Julien Beausoleil
-
Publication number: 20120115713Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an active catalyst component comprising a surface, and a metal oxide film coated on the surface of the active catalyst component. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as improved resistance to catalytic deactivation due to sulfur and nitrogen compounds present in the hydrocarbon feedstreams.Type: ApplicationFiled: November 9, 2010Publication date: May 10, 2012Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, William G. Borghard, Cody R. Cole
-
Patent number: 8173573Abstract: In one embodiment, a visible light responsive photocatalyst powder has organic gas decomposition performance that responds nonlinearly to an amount of irradiated light under visible light in an illuminance range of not less than 200 lx nor more than 2500 lx. The visible light responsive photocatalyst powder has a gas decomposition rate of 20% or more, for example, when visible light having only a wavelength of not less than 380 nm and an illuminance of 2500 lx is irradiated, the gas decomposition rate (%) being set as a value calculated based on [formula: (A?B)/A×100], where A represents a gas concentration before light irradiation and B represents a gas concentration when not less than 15 minutes have elapsed from the light irradiation and, at the same time, the gas concentration is stable, the gas concentrations being measured while allowing an acetaldehyde gas having an initial concentration of 10 ppm to flow into a flow-type apparatus in which 0.2 g of a sample is placed.Type: GrantFiled: July 27, 2010Date of Patent: May 8, 2012Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.Inventors: Kayo Nakano, Akira Sato, Yasuhiro Shirakawa, Keiichi Fuse, Masami Okamura, Shinya Kasamatsu, Yumi Ito
-
Publication number: 20120108417Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking for the production of light olefin, a preparation method of the catalyst and a preparation method of olefin by using the same. More precisely, the present invention relates to a composite catalyst prepared by mixing the oxide catalyst powder represented by CrZrjAkOx (0.5?j?120, 0?k?50, A is a transition metal, x is the number satisfying the condition according to valences of Cr, Zr and A, and values of j and k) and carrier powder and sintering thereof, a composite catalyst wherein the oxide catalyst is impregnated on a carrier, and a method of preparing light olefin such as ethylene and propylene by hydrocarbon steam cracking in the presence of the composite catalyst. The composite catalyst of the present invention has excellent thermal/mechanical stability in the cracking process, and has less inactivation rate by coke and significantly increases light olefin yield.Type: ApplicationFiled: December 1, 2011Publication date: May 3, 2012Applicant: LG CHEM, LTD.Inventors: Jun-han Kang, Jong-hun Song, Jun-seon Choi, Byoung-gi Park, Chang-hoon Kang, Si-hyun Noh
-
Patent number: 8158550Abstract: The invention relates to a multilayer catalyst for the partial oxidation of hydrocarbons in gaseous phase, comprising a monolithic ceramic or metallic substrate having a solid macroporous structure consisting of one or more structures, on which a first active layer with a crystal-line perovskitic structure is deposited, having general formula AxA? 1-xByB? 1-YO3±? wherein: A is a cation of at least one of the rare earth elements, A? is a cation of at least one element selected from groups Ia, IIa and VIa of the periodic table of elements, B is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb, or VIII of the periodic table of elements, B? is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb or VIII of the periodic table of elements Mg2+ or Al3+, x is a number which is such that 0?x?1, y is a number which is such that 0?y?1, and ? is a number which is such that 0???0, 5, a second more external active layer consisting of a dispersion of a noble metal and a possible sType: GrantFiled: May 26, 2004Date of Patent: April 17, 2012Assignee: Consiglio Nazionale Delle RicercheInventors: Stefano Cimino, Francesco Donsi, Raffaele Pirone, Gennaro Russo
-
Patent number: 8153548Abstract: The isomerization catalyst is a solid acid catalyst formed with a base of tungstated zirconium mixed oxides loaded with at least one hydrogenation/dehydrogenation metal catalyst from Groups 8-10 (IUPAC, 2006) and impregnated with at least one alkali metal from Group 1 (IUPAC, 2006). The metal from Groups 8-10 is preferably selected from platinum, palladium, ruthenium, rhodium, iridium, osmium and mixtures thereof, and most preferably is platinum. The Group I alkali metal is selected from lithium, sodium, potassium rubidium and cesium and mixtures thereof, and is preferably lithium, sodium, or potassium. Preferable, the catalyst forms, by weight, a base having between about 80-90% zirconium mixed oxides and between about 10-20% tungstate; between about 0.1-3.00% Group 8-10 metal; and between about 0.01-1.00% Group 1 alkali metal.Type: GrantFiled: April 19, 2010Date of Patent: April 10, 2012Assignee: King Fahd University of Petroleum & MineralsInventors: Muneeb Khurshid, Hideshi Hattori, Sulaiman Al-Khattaf
-
Publication number: 20120053045Abstract: A pyrochlore-type oxide represented by a general formula A2B2O7-Z is prepared by precipitate formation, where A and B each represent a metal element, where Z represents a number of at least 0 and at most 1, where A contains at least one element selected from a group consisting of Pb, Sn, and Zn, and where B contains at least one element selected from a group consisting of Ru, W, Mo, Ir, Rh, Mn, Cr, and Re. Impurities are then sufficiently removed through washing and drying processes, and the pyrochlore-type oxide is calcined under controlled conditions. This allows the crystallinity of the pyrochlore-type oxide, which contained amorphous parts immediately after the production of the precipitate, to be increased so that the resistance to acid can be improved while preventing particle aggregation.Type: ApplicationFiled: August 30, 2011Publication date: March 1, 2012Applicant: JX Nippon Oil & Energy CorporationInventors: Yasushi Sato, Keitaro Fujii
-
Publication number: 20120041246Abstract: Nanowires useful as heterogeneous catalysts are provided. The nanowire catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to ethylene. Related methods for use and manufacture of the same are also disclosed.Type: ApplicationFiled: May 24, 2011Publication date: February 16, 2012Applicant: Siluria Technologies, Inc.Inventors: Erik C. Scher, Fabio R. Zurcher, Joel M. Cizeron, Wayne P. Schammel, Alex Tkachenko, Joel Gamoras, Dmitry Karshtedt, Greg Nyce
-
Patent number: 8114805Abstract: The present invention relates to a method of preparing a heteropoly acid catalyst used for the production of methacrylic acid by gas phase oxidation of methacrolein, more precisely a method of preparing a heteropoly acid catalyst comprising the steps of preparing a slurry by adding metal precursors and ammonium salt to protonic acid Keggin-type heteropoly acid aqueous solution and stirring thereof; and drying, molding and firing the slurry to give a catalyst. The present invention provides a method of preparing a heteropoly acid catalyst exhibiting high methacrolein conversion rate and methacrylic acid selectivity without pre-firing process by using high purity protonic acid Keggin-type heteropoly acid and ammonium salt.Type: GrantFiled: June 13, 2008Date of Patent: February 14, 2012Assignee: LG Chem, Ltd.Inventors: Hyun-Kuk Noh, Hyun-jong Shin, Won-ho Lee, Byung-yul Choi, Gyo-hyun Hwang, Ju-yeon Park, Duk-ki Kim, Young-hyun Choe, Min-ho Kil, Min-suk Kim, Young-jin Cho, Sung-chul Lim
-
Publication number: 20120027659Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) contained in gas. The CO shift catalyst is prepared from one or both of molybdenum (Mo) and cobalt (Co) as an active ingredient and an oxide of one of, or a mixture or a compound of, titanium (Ti), silicon (Si), zirconium (Zr), and cerium (Ce) as a carrier for supporting the active ingredient. The CO shift catalyst can be used in a halogen-resistant CO shift reactor (15) that converts CO contained in gasified gas (12) generated in a gasifier (11) into CO2.Type: ApplicationFiled: April 10, 2009Publication date: February 2, 2012Applicant: Mitsubishi Heavy Industries, Ltd.Inventors: Toshinobu Yasutake, Tetsuya Imai, Masanao Yonemura, Susumu Okino, Keiji Fujikawa, Shinya Tachibana
-
Patent number: 8105972Abstract: A catalyst for the oxidative dehydrogenation of a paraffin to form an olefin, the catalyst having a general formula MoaVbXcYdOn wherein: X=at least one of Nb and Ta; Y=at least one of Te, Sb, Ga, Pd, W, Bi and Al; a=1.0; b=0.05 to 1.0; c=0.001 to 1.0; d=0.001 to 1.0; and n is determined by the oxidation states of the other elements. The catalyst may have a selectivity to the olefin of at least 90 mole % at a paraffin conversion of at least 65%.Type: GrantFiled: April 2, 2009Date of Patent: January 31, 2012Assignee: Lummus Technology Inc.Inventors: Anne Mae Gaffney, Ruma Ghosh, Ruozhi Song, Chuen Yuan Yeh, Tadeusz Langner
-
Patent number: 8105971Abstract: A process for forming a catalyst useful for the production of an olefin from a hydrocarbon is disclosed. The process may include: admixing at least one of elemental metals and compounds to form a multi-metal composition comprising Mo, V, Nb, Te and at least one of Ni and Sb; adjusting the pH of the multi-metal composition by adding nitric acid; drying the acidified multi-metal composition; calcining the dried multi-metal composition; and grinding the calcined multi-metal composition. The ground multi-metal composition may then be sized or shaped to form a mixed metal oxide catalyst. Alternatively, the ground multi-metal composition may be treated with an acid, optionally annealed, and sized or shaped to form a mixed metal oxide catalyst.Type: GrantFiled: April 2, 2009Date of Patent: January 31, 2012Assignee: Lummus Technology Inc.Inventors: Anne Mae Gaffney, Ruma Ghosh, Ruozhi Song, Chuen Yuan Yeh, Tadeusz Langner
-
Patent number: 8101541Abstract: A stationary or fluid bed dehydrogenation catalyst containing an alumina carrier, with chromium and alkali metals consisting of only sodium and potassium, added as promoters. The resultant catalyst demonstrates greater selectivity and olefin yield than prior art dehydrogenation catalysts, especially after aging.Type: GrantFiled: July 14, 2008Date of Patent: January 24, 2012Assignee: Sud-Chemie Inc.Inventor: Vladimir Fridman
-
Publication number: 20120015802Abstract: Disclosed is a catalyst which can be used in the process for producing hydrogen by decomposing ammonia, can generate heat efficiently in the interior of a reactor without requiring excessive heating the reactor externally, and can decompose ammonia efficiently and steadily by utilizing the heat to produce hydrogen. Also disclosed is a technique for producing hydrogen by decomposing ammonia efficiently utilizing the catalyst. Specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising an ammonia-combusting catalytic component and an ammonia-decomposing catalytic component. Also specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising at least one metal element selected from the group consisting of cobalt, iron, nickel and molybdenum.Type: ApplicationFiled: March 17, 2010Publication date: January 19, 2012Inventors: Junji Okamura, Masanori Yoshimune, Masaru Kirishiki, Hideaki Tsuneki, Shinya Kitaguchi
-
Patent number: 8097555Abstract: Process for the production of hybrid catalysts formed by mixing two catalysts; one active in Fischer-Tropsch synthesis, the other being bifunctional. Such hybrid catalyst thus formed is active both in hydrocracking and in hydroisomerization reactions. The present invention in addition provides obtainment of a hybrid catalyst and application thereof conjointly with FT catalysts in Fischer-Tropsch synthesis reactions. The hybrid catalyst of the present invention is capable of producing in conditions typically such as those utilized in Fischer-Tropsch synthesis branched hydrocarbons in diverse bands relating to the products thereof (for example naphtha and diesel), reducing or even eliminating necessity for a subsequent hydrotreatment stage in such synthesis reactions.Type: GrantFiled: October 29, 2008Date of Patent: January 17, 2012Assignee: Petroleo Brasileiro S.A. - PetrobrasInventors: Alexandre de Figueiredo Costa, Agustin Martines Feliu, Joan Rollán Martinez, Henrique Soares Cerqueira, Joberto Ferreira Dias Junior, Eduardo Falabella Sousa Aguiar
-
Patent number: 8088706Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.Type: GrantFiled: April 29, 2009Date of Patent: January 3, 2012Assignee: Shell Oil CompanyInventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
-
Publication number: 20110319259Abstract: A method for whisker formation on the surface of aluminum-containing metallic alloy fibers and substrates provides a support structure for many technical, medical and pharmaceutical applications. The novel surface modification of metallic alloy fibers and other metallic substrates involves heating the fiber or substrate in air at temperatures ranging from approximately 800° C. to approximately 1000° C. for a period of time ranging from approximately 10 hours to approximately 100 hours to form whiskers. The use of a metal oxide coating with large ions, such as zirconium oxide, allows the formation of alumina whiskers while preserving the structural integrity of the metallic alloy substrate. Uses of the present invention include, but are not limited to an advanced catalyst support, a highly efficient filter medium, a support for implants and the like.Type: ApplicationFiled: September 2, 2011Publication date: December 29, 2011Inventors: Weifeng Fei, Suresch C. Kuiry, Sudipta Seal
-
Patent number: 8084388Abstract: An oxide catalyst composition comprising the elements molybdenum, vanadium, niobium and titanium and a process for making the catalyst composition. A process for the selective oxidation of ethane and/or ethylene to acetic acid using the catalyst composition. The catalyst composition provides high selectivity to acetic acid with reduced selectivity to ethylene.Type: GrantFiled: December 10, 2009Date of Patent: December 27, 2011Assignee: BP Chemicals LimitedInventors: James Frank Brazdil, Richard J George, Bruce I Rosen
-
Patent number: 8075859Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.Type: GrantFiled: July 14, 2009Date of Patent: December 13, 2011Assignee: Millennium Inorganic Chemicals, Inc.Inventors: Guoyi Fu, Steven M. Augustine
-
Publication number: 20110301021Abstract: A polyacid-promoted, zirconia catalyst or catalyst support having a high crush strength, surface area and pore volume is described. The polyacid-promoted, zirconia catalyst or catalyst support may be made by combining a zirconium compound with a polyacid/promoter material that includes the group 6 metals (i.e., chromium (Cr), molybdenum (Mo), tungsten (W)), as well as phosphoric acids, sulfuric acids, and polyorganic acids. The zirconyl-promoter precursor may be extruded in the absence of any binder or extrusion aid. The polyacid-promoted, zirconia catalyst or catalyst support is hydrothermally stable in aqueous phase hydrogenation or hydrogenoloysis reactions.Type: ApplicationFiled: March 3, 2010Publication date: December 8, 2011Applicant: SUD-CHEMIE INC.Inventors: Aiguo Liu, Todd J. Cole, II, Wayne Turbeville
-
Publication number: 20110294652Abstract: The present invention provides a method for preparing a pyrochlore type oxide having a larger specific surface area, a polymer electrolyte fuel cell and a fuel cell system improved in power generation efficiency and capable of being produced more inexpensively, and a method for producing an electro catalyst for a fuel cell, which electro catalyst has a larger specific surface area, is relatively inexpensive, and has high electrode activity per unit mass. A method for preparing a pyrochlore type oxide represented by A2B2O7-Z wherein A and B represent a metal element, Z represents a number of 0 or more and 1 or less, A includes at least one selected from the group consisting of Pb, Sn, and Zn, and B includes at least one selected from the group consisting of Ru, W, Mo, Ir, Rh, Mn, Cr, and Re, wherein the pyrochlore type oxide is produced by a reaction of a halide or nitrate of A with an alkali salt of a metal acid of B.Type: ApplicationFiled: February 10, 2010Publication date: December 1, 2011Applicant: JX NIPPON OIL & ENERGY CORPORATIONInventors: Yasushi Sato, Tamaki Mizuno, Yuri Seki
-
Publication number: 20110295041Abstract: A method of preparing a catalyst for producing acrolein by oxidation of propylene at high space velocity, said catalyst is a Mo—Bi—Fe—Co based composite metal oxide. Producing unsaturated aldehyde via partial oxidation of lower unsaturated olefin at high space velocity using said catalyst is suitable for process with or without off-gas recirculating. Said catalyst is prepared by co-precipitation, the reaction conditions for using said catalyst to produce unsaturated aldehyde are, the space velocity of unsaturated lower olefin relative to catalyst being 120˜200 h-1(STP), reaction temperature being 300˜420° C. and absolute pressure being 0.1˜0.5 MPa; a single-stage unsaturated lower olefin conversion ratio of greater than 98.0% and carbon oxide yield of less than 3.3% with an overall yield of unsaturated lower aldehyde and acid of greater than 94.0% are obtained. The process to prepare the said catalyst is simple, easy to be repeated, and capable of industrial scale-up.Type: ApplicationFiled: May 26, 2011Publication date: December 1, 2011Applicant: Shanghai HuaYi Acrylic Acid Co. Ltd.Inventors: Jian Wang, Xuemei Li, Yan Zhuang, Kaimin Shi, Kun Jiao, Jianxue Ma, Xiaodong Chu, Jingming Shao
-
Publication number: 20110287928Abstract: The invention provides a catalyst for catalytically removing three components which are carbon monoxide, hydrocarbons and nitrogen oxides from combustion exhaust gas generated by combusting fuel in the neighborhood of the stoichiometric air to fuel ratio by bringing the combustion exhaust gas into contact therewith, the catalyst comprising: (A) a first catalyst component comprising at least one member selected from rhodium, platinum, and palladium in a content of 0.01 to 0.5% by weight; and (B) a second catalyst component, which is the remainder, comprising a composite oxide or a mixed oxide comprising (a) at least one oxide selected from zirconium oxide and titanium oxide, and (b) an oxide of at least one element selected from praseodymium, yttrium, neodymium, tungsten, niobium, silicon, and aluminum, wherein the content of the oxide (a) in the composite oxide or the mixed oxide is in a range of 70 to 95% by weight.Type: ApplicationFiled: March 17, 2011Publication date: November 24, 2011Applicants: HONDA MOTOR CO., LTD.Inventors: Tadao NAKATSUJI, Kazuya INADA, Yuji ISOGAI, Kiyoshi TANAAMI
-
Publication number: 20110257007Abstract: The isomerization catalyst is a solid acid catalyst formed with a base of tungstated zirconium mixed oxides loaded with at least one hydrogenation/dehydrogenation metal catalyst from Groups 8-10 (IUPAC, 2006) and impregnated with at least one alkali metal from Group 1 (IUPAC, 2006). The metal from Groups 8-10 is preferably selected from platinum, palladium, ruthenium, rhodium, iridium, osmium and mixtures thereof, and most preferably is platinum. The Group I alkali metal is selected from lithium, sodium, potassium rubidium and cesium and mixtures thereof, and is preferably lithium, sodium, or potassium. Preferable, the catalyst forms, by weight, a base having between about 80-90% zirconium mixed oxides and between about 10-20% tungstate; between about 0.1-3.00% Group 8-10 metal; and between about 0.01-1.00% Group 1 alkali metal.Type: ApplicationFiled: April 19, 2010Publication date: October 20, 2011Inventors: Muneeb Khurshid, Hideshi Hattori, Sulaiman Al-Khattaf
-
Publication number: 20110237758Abstract: The present invention provides a urethane-forming reaction catalyst which is useful for catalyzing a reaction between an isocyanate compound, in particular, an aliphatic isocyanate and a hydroxyl group-containing compound to form a urethane material, which does not affect the performance of the urethane material, and which can be easily removed from the resulting urethane material, and a method for producing a metal compound-free urethane material using the urethane-forming reaction catalyst. The catalyst of the present invention is a urethane-forming reaction catalyst for producing a urethane material by allowing a hydroxyl group-containing compound to react with an isocyanate compound, the catalyst being at least one solid acid catalyst selected from the group consisting of a (A) composite metal oxide in which a metal oxide (A-2) or a non-metal compound (A-3) is carried on a surface of a metal oxide carrier (A-1), (B) zeolite, and a (C) heteropoly acid.Type: ApplicationFiled: September 16, 2009Publication date: September 29, 2011Applicant: DIC CorporationInventors: Hironobu Oki, Yasuyuki Watanabe, Youichi Abe
-
Patent number: 7985830Abstract: Methods for synthesizing dimeric or polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst comprises a first metal substrate having a second reduced metal coated on the substrate.Type: GrantFiled: December 30, 2009Date of Patent: July 26, 2011Assignee: GM Global Technology Operations LLCInventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden