And Group V Metal Containing (i.e., V, Nb, Ta, As, Sb Or Bi) Patents (Class 502/311)
  • Patent number: 11752494
    Abstract: The invention relates to a process for preparing a catalyst for alkane oxidative dehydrogenation and/or alkene oxidation, which catalyst is a mixed metal oxide catalyst containing molybdenum, vanadium, niobium and optionally tellurium, wherein the process comprises: a) preparing a catalyst precursor containing molybdenum, vanadium, niobium and optionally tellurium; b) optionally contacting the catalyst precursor obtained in step a) with oxygen and/or an inert gas at an elevated temperature; c) contacting the catalyst precursor obtained in step a) or step b) with a gas mixture comprising ammonia and water, which gas mixture further comprises oxygen and/or an inert gas, at an elevated temperature; and d) optionally contacting the catalyst precursor obtained in step c) with an inert gas at an elevated temperature.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: September 12, 2023
    Assignee: SHELL USA, INC.
    Inventors: Erwin Roderick Stobbe, Hendrik Albertus Colijn, Maria Elisabeth Van Es-Hogenstijn, Johanna Jacoba Berg-Slot
  • Patent number: 11654419
    Abstract: Mixed metal oxide catalysts having an amorphous content of not less than 40 wt. % are prepared by calcining the catalyst precursor fully or partially enclosed by a porous material having a melting temperature greater than 600° C. in an inert container including heating the catalyst precursor at a rate from 0.5 to 10° C. per minute from room temperature to a temperature from 370° C. to 540° C. under a stream of pre heated gas chosen from steam and inert gas and mixtures thereof at a pressure of greater than or equal to 1 psig having a temperature from 300° C. to 540° C. and holding the catalyst precursor at that temperature for at least 2 hours and cooling the catalyst precursor to room temperature.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: May 23, 2023
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Xiaoliang Gao, David Sullivan, Yipei Styles, Yoonhee Kim, Hanna Drag, Marie Barnes
  • Patent number: 11638915
    Abstract: Oxidative dehydrogenation catalysts comprising MoVNbTeO having improved consistency of composition and a 25% conversion of ethylene at less than 420° C. and a selectivity to ethylene above 95% are prepared by treating the catalyst precursor with H2O2 in an amount equivalent to 0.30-2.8 mL H2O2 of a 30% solution per gram of catalyst precursor prior to calcining and treating the resulting catalyst with the equivalent amount of peroxide after calcining.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: May 2, 2023
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Vasily Simanzhenkov, Xiaoliang Gao, David Jeffrey Sullivan, Hanna Drag, Marie Barnes
  • Patent number: 9925526
    Abstract: The invention relates to an oxidation catalyst comprising at least one inorganic, oxidic or ceramic, shaped support body having a BET surface area of less than 0.5 m2/g, based on the support, which is at least partly coated with a catalytically active multielement oxide, the catalyst being precious metal-free and the shaped support body having the form of a saddle whose saddle surface is curved oppositely in the two principal directions, to a process for producing it, to its use in various catalytic gas phase oxidations, and to corresponding processes for catalytic gas phase oxidation.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: March 27, 2018
    Assignee: BASF SE
    Inventors: Ulrich Hammon, Cathrin Alexandra Welker-Nieuwoudt, Josef Macht, Christian Walsdorff, Cornelia Katharina Dobner
  • Patent number: 9844769
    Abstract: A catalytic composition useful for the conversion of an olefin selected from the group consisting of propylene, isobutylene or mixtures thereof, to acrylonitrile, methacrylonitrile, and mixtures thereof. The catalytic composition comprises a complex of metal oxides comprising rubidium, bismuth, cerium, molybdenum, iron and other promoters, with a desirable composition.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: December 19, 2017
    Assignee: INEOS EUROPE AG
    Inventors: James F. Brazdil, Mark A. Toft
  • Patent number: 9676695
    Abstract: A method is disclosed of coupling and integrating natural gas recovery and separation along with chemical conversion. The method can comprise extracting at least one natural gas component. Non-limiting examples of the extracted component include ethane, propane, butanes, and pentanes. The method can also comprise contacting a natural gas stream with a catalyst under conditions that selectively convert at least one component into at least one product, such as ethylene, acetic acid, polyethylene, vinyl acetate, ethylene vinyl acetate, ethylene oxide, ethylene glycol, and their derivatives, propylene, polypropylene, propylene oxide, propylene glycol, acrylates, acrolein, acrylic acid, butenes, butadiene, methacrolein, methacrylic acid, methacrylates, and their derivatives, which can then be separated from the remaining components.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: June 13, 2017
    Inventors: Mark Allen Nunley, Madan Mohan Bhasin, William George Etzkorn, George Ernest Keller, II, Parvez H. Wadia
  • Patent number: 9505671
    Abstract: A process is described for making renewable para-xylene, comprising converting acetic acid to isobutene in the presence of a catalyst then converting the acetic acid-derived isobutene to a product composition including para-xylene. The catalyst can be a ZnxZryOz mixed oxide catalyst.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: November 29, 2016
    Inventors: Junming Sun, Changjun Liu, Yong Wang, Colin Smith, Kevin Martin, Padmesh Venkitasubramanian
  • Patent number: 9254482
    Abstract: A catalyst material for the oxidation and/or oxidative dehydrogenation of hydrocarbons, in particular for the selective oxidation of propane to acrylic acid, is specified, comprising a) molybdenum (Mo), b) vanadium (V), c) niobium (Nb), d) tellurium (Te), e) nickel (Ni), f) tungsten (W) and g) manganese (Mn), in which the molar ratio of at least one element, which is selected from nickel, tungsten and manganese, to molybdenum lies in the range 0.01 to 0.2, more preferably 0.05 to 0.15 and particularly preferably from 0.0025:1 to 0.3:1. Furthermore, a catalyst for the oxidation and/or oxidative dehydrogenation of hydrocarbons, a use of the catalyst material or of the catalyst, a method for producing a catalyst material for the oxidation and/or oxidative dehydrogenation of hydrocarbons and a method for the selective oxidation of propane to acrylic acid is specified.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: February 9, 2016
    Assignee: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Silvia Neumann, Jozsef Margitfalvi, Andras Tompos, Lajos Istvan Vegvari
  • Patent number: 9205414
    Abstract: Provided is a catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, which shows excellent mechanical strength and low attrition loss and is capable of producing the object product(s) at a high yield. The catalyst comprises a catalytically active component containing molybdenum, bismuth and iron as the essential ingredients, and inorganic fibers, and is characterized in that the inorganic fibers contain at least an inorganic fiber having an average diameter of at least 8 ?m and another inorganic fiber having an average diameter not more than 6 ?m.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: December 8, 2015
    Assignee: NIPPON SHOKUBAI CO., LTD.
    Inventors: Tomoatsu Kawano, Yutaka Takahashi, Naohiro Fukumoto
  • Patent number: 9061988
    Abstract: A process for producing a catalytically active composition being a mixture of a multielement oxide comprising the elements Mo and V and at least one oxide of molybdenum, in which spray drying of an aqueous solution or of an aqueous suspension of starting compounds comprising the elements of the multielement oxide produces a spray powder P, a pulverulent oxide of molybdenum and optionally shaping assistants are added thereto, shaped bodies are shaped from the resulting mixture and these are converted to the catalytically active composition by thermal treatment.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: June 23, 2015
    Assignee: BASF SE
    Inventors: Cathrin Alexandra Welker-Nieuwoudt, Cornelia Katharina Dobner, Christian Walsdorff, Klaus Joachim Mueller-Engel, Josef Macht
  • Publication number: 20150133686
    Abstract: A hollow cylindrical shaped catalyst body for gas phase oxidation of an alkene to an ?,?-unsaturated aldehyde and/or an ?,?-unsaturated carboxylic acid comprises a compacted multimetal oxide having an external diameter ED, an internal diameter ID and a height H, wherein ED is in the range from 3.5 to 4.5 mm; the ratio q=ID/ED is in the range from 0.4 to 0.55; and the ratio p=H/ED is in the range from 0.5 to 1. The shaped catalyst body is mechanically stable and catalyzes the partial oxidation of an alkene to the products of value with high selectivity. It provides a sufficiently high catalyst mass density of the catalyst bed and good long-term stability with acceptable pressure drop.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 14, 2015
    Applicant: BASF SE
    Inventors: Josef Macht, Christian Walsdorff, Cornelia Katharina Dobner, Stefan Lipp, Cathrin Alexandra Welker-Nieuwoudt, Ulrich Hammon, Holger Borchert
  • Publication number: 20150126774
    Abstract: There is provided a process for producing a shaped catalyst for a fixed bed oxidation reaction or a fixed bed oxidative dehydrogenation reaction, the catalyst having both of sufficient mechanical strength and catalyst performance, and the catalyst is produced by supporting a catalyst powder containing a complex metal oxide having molybdenum as an essential ingredient on an inert support by a tumbling granulation method at a relative centrifugal force of 1 to 35G.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 7, 2015
    Inventors: Ryota Hiraoka, Yumi Hino, Kimito Okumura, Motohiko Sugiyama, Hiroki Motomura
  • Patent number: 9012351
    Abstract: A method for continuously preparing a metal oxides catalyst comprises the following steps: dissolving metal materials using nitric acid solution to produce a metal nitrate solution, and also to produce NOx and water vapor; hydrolyzing the metal nitrate solution by introducing pressurized superheated water vapor into the metal nitrate solution to obtain a slurry of the hydrates of metal oxides as well as acidic gas, the main components of the acidic gas are NO2, NO, O2 and water vapor; filtrating and drying the slurry to obtain the hydrates of metal oxides and/or metal oxides; and then utilizing the obtained hydrates of metal oxides and/or metal oxides as raw materials and preparing the metal oxides catalyst by the conventional method for preparing a catalyst. The NOx gas produced can be absorbed to produce nitric acid which can be reused.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: April 21, 2015
    Assignee: SynFuels China Technology Co., Ltd.
    Inventors: Yong Yang, Baoshan Wu, Jian Xu, Hongwei Xiang, Yongwang Li
  • Publication number: 20150105580
    Abstract: The present invention relates to a device for treatment of material transported through the device comprising at least one porous element consisting of specific solid metallic structure which allows cross-flow of the material through the porous element and wherein the porous element is coated by a non-acidic metal oxide which is impregnated by palladium (Pd).
    Type: Application
    Filed: April 17, 2013
    Publication date: April 16, 2015
    Inventor: Werner Bonrath
  • Publication number: 20150096900
    Abstract: Disclosed is an alloy of the formula: Fe3?xAl1+xMyTzTat wherein M represents at least one catalytic specie selected from the group consisting of Ru, Ir, Pd, Pt, Rh, Os, Re and Ag; T represents at least one element selected from the group consisting of Mo, Co, Cr, V, Cu, Zn, Nb, W, Zr, Y, Mn, Cd, Si, B, C, O, N, P, F, S, CI, Na and Ti; and Ta represents tantalum. Such an alloy can be used as an electrode material for the synthesis of sodium chlorate. It can also be used as a coating for protection against corrosion.
    Type: Application
    Filed: April 26, 2013
    Publication date: April 9, 2015
    Inventors: Robert Schulz, Sylvio Savoie
  • Patent number: 9000207
    Abstract: A method for producing a silica-supported catalyst comprising Mo, V. Nb, and a component X (Sb and/or Te) to be used in a vapor phase catalytic oxidation or ammoxidation of proprane, comprising the steps of: (I) preparing a raw material mixture solution by mixing Mo, V, Nb, component X, a silica sol, and water; (II) obtaining a dry powder by drying the raw material mixture solution; and (III) obtaining a silica-supported catalyst by calcining the dry powder, wherein the silica sol contains 10 to 270 wt ppm of nitrate ions based on SiO2.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: April 7, 2015
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yusuke Ishii, Takaaki Kato
  • Patent number: 8993823
    Abstract: A process for the metathesis of olefins has been developed. The process comprises contacting a hydrocarbon feedstock with a catalyst at metathesis conditions. The catalyst comprises a tungsten compound, which contains at least one tungsten-fluoro bond, dispersed or grafted onto a support. A specific example of the catalyst is the compound WOF(CH2CMe3)3 grafted onto a silica support. The feedstock comprises a first and a second olefin wherein the second olefin has a carbon number of at least two greater than the first olefin and the product is an olefin with a carbon number intermediate between the first and second olefin. Specifically the process produces propylene from ethylene and butylene.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: March 31, 2015
    Assignee: UOP LLC
    Inventors: Mostafa Taoufik, Etienne Mazoyer, Christopher P. Nicholas, Jean-Marie Basset
  • Patent number: 8980183
    Abstract: An apparatus for producing a catalyst comprising a tank configured to prepare an aqueous mixed solution containing a Mo compound, a V compound and a Nb compound, a dryer configured to spray-dry the aqueous mixed solution, and a pipe for connecting the tank with the dryer so that the aqueous mixed solution can be supplied from the tank to the dryer, wherein a heater configured to heat the aqueous mixed solution is provided in the tank and/or the pipe, and a filter configured to filtrate the aqueous mixed solution is provided in the pipe.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: March 17, 2015
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takaaki Kato, Satoshi Endo, Minoru Kadowaki
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Patent number: 8865614
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 21, 2014
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Publication number: 20140271430
    Abstract: A method for oxidizing a carbonaceous material, the method comprising contacting the carbonaceous material with an effective amount of a catalytic material of formula AxMyWOz, and initiating the oxidization of the carbonaceous material at a first temperature lower than a second temperature at which the carbonaceous material is initiated to oxidize without a catalyst, wherein A is at least one of cesium and potassium, M is different from A and is at least one of cesium, potassium, magnesium, calcium, strontium, barium, iron, cobalt, nickel, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and bismuth, 0?x?1, 0?y?1, 2.2?z?3, when x=0, y>0, and when y=0, x>0.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Chuan LIN, Youhao YANG, QIJIA FU, XUBIN GAO, Xiao ZHANG
  • Patent number: 8835348
    Abstract: A process of contacting an alkylene oxide with 2-methoxy-1-propanol (PM1) in the presence of an oligomeric Schiff base metal complex catalyst is disclosed. Further, a process involving contacting an alkylene oxide with an alkyl alcohol using an oligomeric Schiff base metal complex as a catalyst is also disclosed. Additionally, novel compositions which can be used as catalysts in processes involving the contacting of an alkyl alcohol with an alkylene oxide are also disclosed.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: September 16, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Tina L. Arrowood, Jason C. MacDonald
  • Patent number: 8822371
    Abstract: A process for producing geometric shaped catalyst bodies K whose active material is a multielement oxide of stoichiometry [Bi1WbOx]a[Mo12Z1cZ2dFeeZ3fZ4gZ5nOy]1, in which a finely divided oxide Bi1WbOx with the particle size d50A1 and, formed from element sources, a finely divided intimate mixture of stoichiometry Mo12Z1cZ2dFeeZ3fZ4gZ5h with the particle size d50A2 are mixed in a ratio of a:1, this mixture is used to form shaped bodies and these are treated thermally, where (d50A1)0.7·(d90A1)1.5·(a)?1?820.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: September 2, 2014
    Assignee: BASF SE
    Inventors: Andreas Raichle, Catharina Horstmann, Frank Rosowski, Klaus Joachim Müller-Engel, Holger Borchert, Gerhard Cox, Ulrich Cremer
  • Publication number: 20140205928
    Abstract: A platinum alloy catalyst PtXY, wherein X is nickel, cobalt, chromium, copper, titanium or manganese and Y is tantalum or niobium, characterised in that in the alloy the atomic percentage of platinum is 46-75 at %, of X is 1-49 at % and of Y is 1-35 at %; provided that the alloy is not 66 at % Pt 20 at % Cr14 at % Ta or 50 at % Pt, 25 at % Co, 25 at % Ta is disclosed. The catalyst has particular use as an oxygen reduction catalyst in fuel cells, and in particular in phosphoric acid fuel cells.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: JOHNSON MATTHEY FUEL CELLS LIMITED
    Inventors: Sarah BALL, Thomas Robertson RALPH, Brian Ronald THEOBALD, David THOMPSETT
  • Patent number: 8772195
    Abstract: To produce a silica-supported catalyst having an excellent yield of a target product and excellent catalyst attrition resistance. A method for producing a silica-supported catalyst comprising Mo, V, Nb, and a component X (Sb and/or Te) to be used in a vapor phase catalytic oxidation or ammoxidation of propane, comprising the steps of: (I) preparing a raw material mixture solution by mixing Mo, V, Nb, component X, a silica sol, and water; (II) obtaining a dry powder by drying the raw material mixture solution; and (III) obtaining a silica-supported catalyst by calcining the dry powder, wherein the silica sol contains 10 to 270 wt ppm of nitrate ions based on SiO2.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: July 8, 2014
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yusuke Ishii, Takaaki Kato
  • Patent number: 8772551
    Abstract: Disclosed herein are mixed oxide catalysts for the catalytic gas phase oxidation of alkanes, or mixtures of alkanes and olefins, for the production of aldehydes and carboxylic acids with air or oxygen in the presence of inert gases at elevated temperatures and pressure, and a method for the production of catalysts.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: July 8, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Achim Fischer, Weimin Lu, Christoph Weckbecker, Klaus Huthmacher
  • Publication number: 20140163289
    Abstract: The invention relates to a coated catalyst which comprises (a) a support body, (b) a shell comprising a catalytically active multimetal oxide comprising molybdenum and at least one further metal, where the shell is made up of multimetal oxide particles having a d50 of from 6 to 13 ?m, and can be obtained by (i) production of a multimetal oxide precursor composition comprising molybdenum and at least one further metal, (ii) production of a shaped body from the multimetal oxide precursor composition, (iii) calcination of the shaped body composed of the multimetal oxide precursor composition to produce a multimetal oxide composition, (iv) milling of the shaped body composed of multimetal oxide composition to form multimetal oxide particles having a d50 of from 6 to 13 ?m, (v) coating of the support body with the multimetal oxide particles, (vi) thermal treatment of the coated support body.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 12, 2014
    Applicant: BASF SE
    Inventors: Philipp Grüne, Cornelia Katharina Dobner, Christine Schmitt, Wolfgang Rüttinger, Christian Walsdorff, Frank Rosowski
  • Publication number: 20140163291
    Abstract: The invention relates to a catalyst, in particular a coated catalyst, for the oxidative dehydrogenation of n-butenes to butadiene, its use and also a process for the oxidative dehydrogenation of n-butenes to butadiene.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 12, 2014
    Applicant: BASF SE
    Inventors: Philipp Grüne, Wolfgang Rüttinger, Oliver Hammen, Christian Walsdorff
  • Patent number: 8748336
    Abstract: A process of contacting an alkylene oxide with 2-methoxy-1-propanol (PM1) in the presence of an oligomeric Schiff base metal complex catalyst is disclosed. Further, a process involving contacting an alkylene oxide with an alkyl alcohol using an oligomeric Schiff base metal complex as a catalyst is also disclosed. Additionally, novel compositions which can be used as catalysts in processes involving the contacting of an alkyl alcohol with an alkylene oxide are also disclosed.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: June 10, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Tina L. Arrowood, Paul R. Elowe, Jason C. MacDonald, Ernesto Occhiello
  • Patent number: 8691723
    Abstract: The sequential production of a library of N different solids, in particular heterogeneous catalysts, where N within a day is an integer of at least 2, is performed by a) producing at least two different sprayable solutions, emulsions and/or dispersions of elements and/or element compounds of the chemical elements present in the catalyst and optionally of dispersions of inorganic support materials, b) continuously metering the at least two different solutions, emulsions and/or dispersions in a predefined ratio into a mixing apparatus in which the solutions, emulsions and/or dispersions are homogeneously mixed, c) continuously drying the mixture removed from the mixing apparatus and recovering the dried mixture, d) changing the ratios in step b) and repeating steps b), c) and d) (N?1) times until N different dried mixtures are obtained, e) optionally shaping and optionally calcining the mixtures to give the solids.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: April 8, 2014
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Frieder Borgmeier, Martin Dieterle
  • Patent number: 8686194
    Abstract: Mo-, Bi- and Fe-comprising multimetal oxide compositions of the general stoichiometry I, Mo12BiaCobFecKdSieOx??(I), where a=0.5 to 1, b=7 to 8.5, c=1.5 to 3.0, d=0 to 0.15, e=0 to 2.5 and x=the stoichiometric coefficient of O2? which guarantees the electric neutrality of the multimetal oxide, and 12?b?1.5·c=A and 0.5?A?1.5, 0.2?a/A?1.3, and 2.5?b/c?9, and the use thereof.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: April 1, 2014
    Assignee: BASF SE
    Inventors: Josef Macht, Andrey Karpov, Cornelia Katharina Dobner, Frank Rosowski, Ulrich Hammon, Klaus Joachim Müller-Engel
  • Patent number: 8674158
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins such as ethylene, propylene, etc., by performing the hydrocarbon steam cracking reaction in the presence of the composite catalyst.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: March 18, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
  • Patent number: 8673808
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins such as ethylene, propylene, etc., by performing the hydrocarbon steam cracking reaction in the presence of the composite catalyst.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: March 18, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
  • Publication number: 20140031546
    Abstract: A hydrodeoxygenation catalyst comprises a metal catalyst, an acid promoter, and a support. The metal catalyst is selected from platinum, palladium, ruthenium, rhenium rhodium, osmium, iridium, nickel, cobalt, molybdenum, copper, tin, or mixtures thereof. The support is a promoted-zirconium material including texture promoters and acid promoters. The hydrodeoxygenation catalyst may be used for hydrodeoxygenation (HDO) of sugar or sugar alcohol in an aqueous solution. In one embodiment the HDO catalyst may be used for HDO of fatty acids such as fatty acid methyl esters (FAME), triglycerols (in plant oil and animal fat), pyrolysis oil, or lignin. The hydrodeoxygenation catalyst for fatty acid process does not require the use of an acid promoter, it is optional.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Inventors: Wenqin Shen, Alguo Liu, Wayne Turbeville
  • Publication number: 20140024861
    Abstract: [Problem] Catalyst for use in selective reduction of propionaldehyde in acrolein and/or acrylic acid and/or acrylonitrile containing propionaldehyde and/or propionic acid and/or propionitrile at low concentration. In particular, a novel catalyst for selectively reducing propionaldehyde from acrolein containing the propionaldehyde. [Solution] Catalyst for use in selective reduction of propionaldehyde in acrolein containing the propionaldehyde, characterized in that the catalyst contains Mo as an indispensable component, and at least one element selected from a group comprising P, Si, W, Ti, Zr, V, Nb, Ta, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Tl, Sn, Ag, As, Ge, B, Bi, La, Ba, Sb, Te, Ce, Pb, Mg, K, Rb, Cs and Al.
    Type: Application
    Filed: January 26, 2012
    Publication date: January 23, 2014
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Kimito Okumura, Toru Kawaguchi, Yasushi Kobayashi
  • Patent number: 8633131
    Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
  • Patent number: 8623780
    Abstract: The present invention provides a complex oxide catalyst whose general formula is Mo12VaCubWcXdYeOf/Z. reducing agent needs to be added into the catalyst during the preparation process of the active component of the catalyst and (or) molding process of the catalyst. Specifically, X is at least one selected from a group consisting of Nb, Sb, Sr, Ba and Te; Y is at least one selected from a group consisting of La, Ce, Nd, Sm and Cs; “a” is ranging from 2 to 8; “b” is ranging from 1 to 6; “c” is ranging from 0.5 to 5; “d” is ranging from 0.01 to 4; “e” is ranging from 0.01 to 4; f is determined by the oxidation state of the component element; Z is silicon powder; the reducing agent is C2˜C6 diol or polyol.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: January 7, 2014
    Assignee: Shanghai Huayi Acrylic Acid Co., Ltd.
    Inventors: Xuemei Li, Chunhua Qin, Kun Jiao, Shiqiang Feng, Yan Zhuang, Jianxue Ma, Xiaodong Zhu, Jingming Shao
  • Publication number: 20130324393
    Abstract: To provide a novel visible light-responsive photocatalyst or tungsten oxide visible light-responsive semiconductor improved in environmental resistance under an alkaline condition. The tungsten oxide visible light-responsive semiconductor unstable under an alkaline condition is improved in environmental resistance without losing photocatalytic function thereof by adding thereto at least one element selected from the group consisting of copper, tantalum, niobium, lanthanum, bismuth, calcium, chromium, manganese and zinc. The obtained environmental resistant visible light-responsive photocatalyst is subjected to an alkaline treatment to thereby be improved in photocatalytic activity.
    Type: Application
    Filed: February 15, 2012
    Publication date: December 5, 2013
    Inventors: Kazuhiro Sayama, Yoshinari Konishi
  • Patent number: 8586786
    Abstract: A catalyst for use in the production of an unsaturated aldehyde and/or an unsaturated carboxylic acid, the catalyst comparing (or, preferably, being composed of) a mixed oxide containing molybdenum, bismuth and iron, which has improved methanical strength, is produced by a method including the steps of (1) drying an aqueous solution or an aqueous slurry containing raw materials of the catalyst and then firstly calcining a dried product in a molecular oxygen-containing gas atmosphere to obtain a calcined product; (2) heating the calcined product obtained in Step (1) in the presence of a reducing material to obtain a reduced product having a mass loss of 0.05 to 6%; and (3) secondly calcining the reduced product obtained in Step (2) in a molecular oxygen-containing gas atmosphere.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 19, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Naoki Miura, Eiichi Shiraishi, Koichi Nagai
  • Patent number: 8563460
    Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 22, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557728
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has one or more holes extending therethrough, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst or catalyst unit preferably has one or more flutes miming along its length. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557729
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has two or more flutes running along its length, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst may be used particularly in reactions where hydrogen is a reactant such as hydroprocessing, hydrogenation, water-gas shift reactions, methanation, hydrocarbon synthesis by the Fischer-Tropsch reaction, methanol synthesis and ammonia synthesis.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: Daniel Lee Cairns, Mileta Babovic, Terence James Fitzpatrick, Elizabeth Margaret Holt, Colin William Park, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8546295
    Abstract: A process for preparing shaped catalyst bodies whose active composition is a multielement oxide, in which a finely divided precursor mixture with addition of graphite having a specific particle size is shaped to the desired geometry and then treated thermally.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: October 1, 2013
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Raichle, Frank Rosowski, Sabine Huber, Ulrich Cremer, Stefan Altwasser, Klaus Joachim Mueller-Engel
  • Patent number: 8546634
    Abstract: There is provided a method for production of a conjugated diene from a monoolefin having four or more carbon atoms by a fluidized bed reaction. The method for production of a conjugated diolefin includes bringing a catalyst in which an oxide is supported on a carrier into contact with a monoolefin having four or more carbon atoms in a fluidized bed reactor in which the catalyst and oxygen are present, wherein the method satisfies the following (1) to (3): (1) the catalyst contains Mo, Bi, and Fe; (2) a reaction temperature is in the range of 300 to 420° C.; and (3) an oxygen concentration in a reactor outlet gas is in the range of 0.05 to 3.0% by volume.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 1, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Hideo Midorikawa, Hiroyuki Yano, Takashi Kinoshita
  • Patent number: 8507403
    Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 13, 2013
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
  • Patent number: 8492305
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking for the production of light olefin, a preparation method of the catalyst and a preparation method of olefin by using the same. More precisely, the present invention relates to a composite catalyst prepared by mixing the oxide catalyst powder represented by CrZrjAkOx (0.5?j?120, 0?k?50, A is a transition metal, x is the number satisfying the condition according to valences of Cr, Zr and A, and values of j and k) and carrier powder and sintering thereof, a composite catalyst wherein the oxide catalyst is impregnated on a carrier, and a method of preparing light olefin such as ethylene and propylene by hydrocarbon steam cracking in the presence of the composite catalyst. The composite catalyst of the present invention has excellent thermal/mechanical stability in the cracking process, and has less inactivation rate by coke and significantly increases light olefin yield.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 23, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jun-han Kang, Jong-hun Song, Jun-seon Choi, Byoung-gi Park, Chang-hoon Kang, Si-hyun Noh
  • Patent number: 8480998
    Abstract: A method for the production of a nanocrystalline bismuth-molybdenum mixed oxide, the use of the bismuth-molybdenum mixed oxide as catalyst for chemical conversions, in particular for a conversion of propylene to acrolein and/or acrylic acid or of isobutylene to methacrolein and/or methacrylic acid, as well as a catalyst that contains the bismuth-molybdenum mixed oxide.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: July 9, 2013
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Alfred Hagemeyer, Oliver Wegner, Silvia Neumann, Hans-Jörg Wölk
  • Patent number: 8481448
    Abstract: The invention is a heteropoly acid compound catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition is a heteropoly acid compound containing molybdenum, vanadium, phosphorus, cesium, bismuth, copper and antimony. Thermal stability is achieved with higher cesium content (up to less than 3.0) but antimony, copper and bismuth must be present to maintain good activity. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, obtaining a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst. Unsaturated aldehydes, such as methacrolein, may be oxidized in the presence of the heteropoly acid compound catalyst to produce an unsaturated carboxylic acid, such as methacrylic acid.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 9, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, David Sullivan, James W. Kauffman, Clark Rea, Joe Linzer, Shahid Shaikh
  • Patent number: 8481451
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins by using the same.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: July 9, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi