Copper Containing Patents (Class 502/318)
-
Patent number: 11918989Abstract: The invention provides a process for regenerating a catalyst used for the hydrogenation of an aromatic species, consisting of several steps. First the system is purged with nitrogen, then air is metered in stepwise, and the addition of nitrogen is subsequently ended until only air is present.Type: GrantFiled: December 10, 2021Date of Patent: March 5, 2024Assignee: Evonik Operations GmbHInventors: Johan Anton, Michael Grass, Johannes Kraft, Thomas Schneider, Grzegorz Ziomek
-
Patent number: 10147798Abstract: An electrical contact structure (an MIS contact) includes one or more conductors (M-Layer), a semiconductor (S-Layer), and an interfacial dielectric layer (I-Layer) of less than 4 nm thickness disposed between and in contact with both the M-Layer and the S-Layer. The I-Layer is an oxide of a metal or a semiconductor. The conductor of the M-Layer that is adjacent to and in direct contact with the I-Layer is a metal oxide that is electrically conductive, chemically stable and unreactive at its interface with the I-Layer at temperatures up to 450° C. The electrical contact structure has a specific contact resistivity of less than or equal to approximately 10?5-10?7 ?-cm2 when the doping in the semiconductor adjacent the MIS contact is greater than approximately 2×1019 cm?3 and less than approximately 10?8 ?-cm2 when the doping in the semiconductor adjacent the MIS contact is greater than approximately 1020 cm?3.Type: GrantFiled: March 6, 2017Date of Patent: December 4, 2018Assignee: Acorn Technologies, Inc.Inventors: Paul A. Clifton, Andreas Goebel
-
Patent number: 9433933Abstract: Disclosed herein are titania photocatalysts, titania photocatalytic compositions, and methods of making the same. The photocatalysts may, for example, be represented by the formula of (Ti1-rMr)(O2-x-yCxNy), where M, r, x, are y defined in the specification. The photocatalysts may, in some embodiments, provide superior photocatalytic activity relative to titania. Also disclosed are methods making the photocatalysts. The method may provide economical techniques for obtaining the titania photocatalysts.Type: GrantFiled: January 14, 2013Date of Patent: September 6, 2016Assignee: NITTO DENKO CORPORATIONInventors: Ekambaram Sambandan, Rajesh Mukherjee, Takuya Fukumura
-
Publication number: 20150118599Abstract: A method of fabricating composite filaments is provided. An initial composite filament including a core and a cladding (such as a Pt-group metal) is cut into smaller pieces (or is first mechanically reduced and then cut into smaller pieces). The smaller pieces of the filaments are inserted into a metal matrix, and the entire structure is then further reduced mechanically in a series of reduction steps. The process can be repeated until the desired cross sectional dimension of the filaments is achieved. The matrix can then be chemically removed to isolate the final composite filaments with the cladding thickness down to the nanometer range. The process allows the organization and integration of filaments of different sizes, compositions, and functionalities into arrays suitable for various applications.Type: ApplicationFiled: February 24, 2014Publication date: April 30, 2015Inventor: Joze Bevk
-
Patent number: 9012351Abstract: A method for continuously preparing a metal oxides catalyst comprises the following steps: dissolving metal materials using nitric acid solution to produce a metal nitrate solution, and also to produce NOx and water vapor; hydrolyzing the metal nitrate solution by introducing pressurized superheated water vapor into the metal nitrate solution to obtain a slurry of the hydrates of metal oxides as well as acidic gas, the main components of the acidic gas are NO2, NO, O2 and water vapor; filtrating and drying the slurry to obtain the hydrates of metal oxides and/or metal oxides; and then utilizing the obtained hydrates of metal oxides and/or metal oxides as raw materials and preparing the metal oxides catalyst by the conventional method for preparing a catalyst. The NOx gas produced can be absorbed to produce nitric acid which can be reused.Type: GrantFiled: June 29, 2009Date of Patent: April 21, 2015Assignee: SynFuels China Technology Co., Ltd.Inventors: Yong Yang, Baoshan Wu, Jian Xu, Hongwei Xiang, Yongwang Li
-
Patent number: 8961817Abstract: A getter device containing a combination of getter materials is described. The device has a mixture of cerium oxide, copper oxide and metallic palladium for the removal of hydrogen and carbon monoxide in vacuum applications, particularly suitable to be used in vacuum insulation applications. This combination of getter materials is preferably added to powders of other getter materials such as alkali metals hydroxides and desiccant materials that are effective for maintaining the vacuum in thermal insulation systems.Type: GrantFiled: December 21, 2012Date of Patent: February 24, 2015Assignee: SAES Getters S.p.A.Inventors: Luca Toia, Marco Visconti
-
Patent number: 8932977Abstract: A catalyst for the electrolysis of water molecules and hydrocarbons, the catalyst including catalytic groups comprising A1-xB2-yB?yO4 spinels having a cubical M4O4 core, wherein A is Li or Na, B and B? are independently any transition metal or main group metal, M is B, B?, or both, x is a number from 0 to 1, and y is a number from 0 to 2. In photo-electrolytic applications, a plurality of catalytic groups are supported on a conductive support substrate capable of incorporating water molecules. At least some of the catalytic groups, supported by the support substrate, are able to catalytically interact with water molecules incorporated into the support substrate. The catalyst can also be used as part of a photo-electrochemical cell for the generation of electrical energy.Type: GrantFiled: June 24, 2011Date of Patent: January 13, 2015Assignee: Rutgers, The State University of New JerseyInventors: G. Charles Dismukes, Martha Greenblatt
-
Patent number: 8889078Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.Type: GrantFiled: March 15, 2011Date of Patent: November 18, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
-
Patent number: 8865614Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.Type: GrantFiled: February 28, 2013Date of Patent: October 21, 2014Assignee: BASF SEInventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
-
Patent number: 8852518Abstract: The present invention is to provide a catalyst for removing nitrogen oxides which is capable of keeping sufficient denitrification performance, i.e., a high removal rate of nitrogen oxides in exhaust gas having a high NO2 content especially under conditions where the ratio of NO2/NO in exhaust gas is 1 or higher, a catalyst molded product therefor, and an exhaust gas treating method. The catalyst is designed for removing nitrogen oxides, which is used to denitrify exhaust gas containing nitrogen oxides having a high NO2 content, which comprises: at least one kind of oxide selected from the group consisting of copper oxides, chromium oxides, and iron oxides as a component for reducing NO2 to NO; and which further comprises: at least one kind of titanium oxide; at least one kind of tungsten oxide; and at least one kind of vanadium oxide as components for reducing NO to N2.Type: GrantFiled: May 8, 2008Date of Patent: October 7, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Shigeru Nojima, Kozo Iida, Yoshiaki Obayashi, Masashi Kiyosawa, Masanori Demoto
-
Patent number: 8785061Abstract: To provide a CO conversion catalyst for use in a fuel cell in a DSS operation, which includes a Cu—Al-Ox catalyst, in which the Cu—Al-Ox catalyst has a boehmite phase formed in at least a part of the Cu—Al-Ox catalyst. The CO conversion catalyst has an improved degree of dispersion of Cu metal by the boehmite phase formed therein, and hence can be prevented from sintering of copper caused due to steam, thereby achieving improved durability with respect to the function as the CO conversion catalyst.Type: GrantFiled: March 30, 2009Date of Patent: July 22, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Masanao Yonemura, Toshinobu Yasutake, Tetsuya Shishido
-
Publication number: 20140186747Abstract: A method of fabricating composite filaments is provided. An initial composite filament including a core and a cladding (such as a Pt-group metal) is cut into smaller pieces (or is first mechanically reduced and then cut into smaller pieces). The smaller pieces of the filaments are inserted into a metal matrix, and the entire structure is then further reduced mechanically in a series of reduction steps. The process can be repeated until the desired cross sectional dimension of the filaments is achieved. The matrix can then be chemically removed to isolate the final composite filaments with the cladding thickness down to the nanometer range. The process allows the organization and integration of filaments of different sizes, compositions, and functionalities into arrays suitable for various applications.Type: ApplicationFiled: February 24, 2014Publication date: July 3, 2014Applicant: The Trustees of Columbia University in the city of New YorkInventor: Jose Bevk
-
Publication number: 20140187412Abstract: In one embodiment, an aqueous dispersion liquid contains at least one particles selected from tungsten oxide particles and tungsten oxide composite particles. A mean primary particle diameter (D50) of the particles is in the range of 1 nm to 400 nm. In the aqueous dispersion liquid, concentration of the particles is in the range of 0.1 mass % to 40 mass %, and pH is in the range of 1.5 to 6.5. The aqueous dispersion liquid excels in dispersibility of particles and capable of maintaining good liquidity for a long period.Type: ApplicationFiled: March 6, 2014Publication date: July 3, 2014Applicants: TOSHIBA MATERIALS CO., LTD., KABUSHIKI KAISHA TOSHIBAInventors: Kayo NAKANO, Akira SATO, Yasuhiro SHIRAKAWA, Keiichi FUSE, Shinya KASAMATSU, Akito SASAKI
-
Patent number: 8765625Abstract: An emission control catalyst includes copper-ceria to boost low temperature CO oxidation performance, generate exothermic heat during the process, and reduce HC and NOx emissions. As a result, system performance is boosted at equal catalyst cost or maintained at a reduced catalyst cost. In one embodiment, an engine exhaust catalyst includes a first washcoat layer having at least one of a platinum-based catalyst, a palladium-based catalyst, and combinations thereof; and a second washcoat layer having copper-ceria.Type: GrantFiled: December 9, 2010Date of Patent: July 1, 2014Assignee: Shubin, Inc.Inventors: Xianghong Hao, Juan Cai
-
Publication number: 20140135209Abstract: Provided is a means which is capable of improving the durability of a hydrophilic member that has a photocatalyst layer containing tungsten oxide. The hydrophilic member includes a substrate, a first intermediate layer which is disposed on the substrate and contains a metal oxide that contains an element of Group 4, Group 6, Group 13 or Group 14 of the periodic table, and a photocatalyst layer which is disposed on the first intermediate layer and contains tungsten oxide.Type: ApplicationFiled: July 5, 2012Publication date: May 15, 2014Inventors: Tomohiro Kaburagi, Yasuaki Kai, Yuji Noguchi, Hirosumi Ogawa, Kenji Tsushima
-
Patent number: 8697597Abstract: A method and system for the reduction of pollutant NOx gases from automobile exhaust, as well as a method of reforming hydrocarbons, using a self-sustaining catalyst comprising an ion conductive support, a dispersed cathodic phase, a dispersed anodic phase, and a dispersed sacrificial phase, and a method of forming the self-sustaining catalyst.Type: GrantFiled: April 6, 2010Date of Patent: April 15, 2014Assignee: University of MiamiInventor: Xiangyang Zhou
-
Patent number: 8691723Abstract: The sequential production of a library of N different solids, in particular heterogeneous catalysts, where N within a day is an integer of at least 2, is performed by a) producing at least two different sprayable solutions, emulsions and/or dispersions of elements and/or element compounds of the chemical elements present in the catalyst and optionally of dispersions of inorganic support materials, b) continuously metering the at least two different solutions, emulsions and/or dispersions in a predefined ratio into a mixing apparatus in which the solutions, emulsions and/or dispersions are homogeneously mixed, c) continuously drying the mixture removed from the mixing apparatus and recovering the dried mixture, d) changing the ratios in step b) and repeating steps b), c) and d) (N?1) times until N different dried mixtures are obtained, e) optionally shaping and optionally calcining the mixtures to give the solids.Type: GrantFiled: July 30, 2004Date of Patent: April 8, 2014Assignee: BASF AktiengesellschaftInventors: Hartmut Hibst, Frieder Borgmeier, Martin Dieterle
-
Patent number: 8663567Abstract: The present invention is to provide a catalyst for removing nitrogen oxides which is capable of keeping sufficient denitrification performance, i.e., a high removal rate of nitrogen oxides in exhaust gas having a high NO2 content especially under conditions where the ratio of NO2/NO in exhaust gas is 1 or higher, a catalyst molded product therefor, and an exhaust gas treating method. The catalyst is designed for removing nitrogen oxides, which is used to denitrify exhaust gas containing nitrogen oxides having a high NO2 content, which comprises: at least one kind of oxide selected from the group consisting of copper oxides, chromium oxides, and iron oxides as a component for reducing NO2 to NO; and which further comprises: at least one kind of titanium oxide; at least one kind of tungsten oxide; and at least one kind of vanadium oxide as components for reducing NO to N2.Type: GrantFiled: October 24, 2011Date of Patent: March 4, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Shigeru Nojima, Kozo Iida, Yoshiaki Obayashi, Masashi Kiyosawa, Masanori Demoto
-
Patent number: 8652991Abstract: The present invention relates to a method for producing a tungsten oxide photocatalyst having titanium oxide and copper ion supported thereon, comprising dissolving urea in a solution in which copper-ion supporting tungsten oxide particles are uniformly dispersed in a titanium oxide sol, thermally decomposing the urea to thereby allow the titanium oxide to precipitate on the surface of copper ion-supporting tungsten oxide and to be supported thereon; and a tungsten oxide photocatalyst modified by both titanium oxide and copper ion obtained by the method, wherein the rate of change of diffuse reflectivity (at wavelength of 700 nm) is less than 3% before and after the irradiation of ultraviolet and the titanium oxide is supported on the tungsten oxide in an island shape of 1 to 100 nm in size. The tungsten oxide photocatalyst having titanium oxide and copper ion supported thereon of the present invention exhibits high catalyst activity under visible light irradiation.Type: GrantFiled: May 23, 2012Date of Patent: February 18, 2014Assignee: Showa Denko K.K.Inventors: Yasuhiro Hosogi, Yasushi Kuroda
-
Patent number: 8648005Abstract: The present invention provides a method of preparing the copper-containing hydrogenation catalyst having high activity by liquid phase reduction without decreasing purity of the solvent and a method for efficiently producing an alcohol. The present invention provides the method of preparing the copper-containing hydrogenation catalyst, including reducing a molded precursor of the copper-containing hydrogenation catalyst by supplying hydrogen gas or a mixture of hydrogen gas with an inert gas at a temperature of 50 to 150° C. in the presence of a solvent to obtain the copper-containing hydrogenation catalyst, wherein the reduction is conducted at an average reduction velocity of the copper-containing hydrogenation catalyst of not more than 3.0% by weight/hour.Type: GrantFiled: September 10, 2009Date of Patent: February 11, 2014Assignee: Kao CorporationInventors: Toru Sakamoto, Shoji Hasegawa
-
Publication number: 20140024861Abstract: [Problem] Catalyst for use in selective reduction of propionaldehyde in acrolein and/or acrylic acid and/or acrylonitrile containing propionaldehyde and/or propionic acid and/or propionitrile at low concentration. In particular, a novel catalyst for selectively reducing propionaldehyde from acrolein containing the propionaldehyde. [Solution] Catalyst for use in selective reduction of propionaldehyde in acrolein containing the propionaldehyde, characterized in that the catalyst contains Mo as an indispensable component, and at least one element selected from a group comprising P, Si, W, Ti, Zr, V, Nb, Ta, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Tl, Sn, Ag, As, Ge, B, Bi, La, Ba, Sb, Te, Ce, Pb, Mg, K, Rb, Cs and Al.Type: ApplicationFiled: January 26, 2012Publication date: January 23, 2014Applicant: NIPPON KAYAKU KABUSHIKI KAISHAInventors: Kimito Okumura, Toru Kawaguchi, Yasushi Kobayashi
-
Patent number: 8633131Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.Type: GrantFiled: October 29, 2010Date of Patent: January 21, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
-
Publication number: 20140015158Abstract: Multilayer substrates for the growth and/or support of CNT arrays are provided. These multilayer substrates both promote the growth of dense vertically aligned CNT arrays and provide excellent adhesion between the CNTs and metal surfaces. Carbon nanotube arrays formed using multilayer substrates, which exhibit high thermal conductivity and excellent durability, are also provided. These arrays can be used as thermal interface materials.Type: ApplicationFiled: July 11, 2012Publication date: January 16, 2014Inventor: Baratunde A. Cola
-
Patent number: 8609575Abstract: A catalyst of one or more complex oxides having a nominal composition as set out in formula (1): AxB1-y-zMyPzOn (1) wherein A is selected from one or more group III elements including the lanthanide elements or one or more divalent or monovalent cations; B is selected from one or more elements with atomic number 22 to 24, 40 to 42 and 72 to 75; M is selected from one or more elements with atomic number 25 to 30; P is selected from one or more elements with atomic number 44 to 50 and 76 to 83; x is defined as a number where 0<x?1; y is defined as a number where 0?y<0.5; and z is defined as a number where 0<z<0.2.Type: GrantFiled: April 12, 2007Date of Patent: December 17, 2013Assignee: Very Small Particle Company LimitedInventors: Peter Cade Talbot, Jose Antonio Alarco, Geoffrey Alan Edwards
-
Patent number: 8603938Abstract: The present invention provides the method for preparing a catalyst including the following steps 1 and 2, and the method for producing an alcohol including preparing a catalyst by the method and subjecting a carboxylic acid or a carboxylic acid ester to catalytic reduction with hydrogen in the presence of the prepared catalyst: step 1: immersing a molded precursor of a catalyst containing metal oxide in a solvent, step 2: supplying hydrogen gas or a mixture of hydrogen gas with an inert gas to a catalyst layer in the presence of a solvent to reduce the catalyst precursor prepared in the step 1.Type: GrantFiled: September 10, 2009Date of Patent: December 10, 2013Assignee: Kao CorporationInventors: Toru Sakamoto, Taku Mimura
-
Publication number: 20130324393Abstract: To provide a novel visible light-responsive photocatalyst or tungsten oxide visible light-responsive semiconductor improved in environmental resistance under an alkaline condition. The tungsten oxide visible light-responsive semiconductor unstable under an alkaline condition is improved in environmental resistance without losing photocatalytic function thereof by adding thereto at least one element selected from the group consisting of copper, tantalum, niobium, lanthanum, bismuth, calcium, chromium, manganese and zinc. The obtained environmental resistant visible light-responsive photocatalyst is subjected to an alkaline treatment to thereby be improved in photocatalytic activity.Type: ApplicationFiled: February 15, 2012Publication date: December 5, 2013Inventors: Kazuhiro Sayama, Yoshinari Konishi
-
Patent number: 8536084Abstract: The present invention provides a tungsten trioxide microparticle carrying on its surface divalent copper salt. The divalent copper salt is utilized to perform a multi-electron reduction of oxygen. The tungsten trioxide exhibits a high oxidative decomposition activity when exposed to visible light.Type: GrantFiled: March 19, 2009Date of Patent: September 17, 2013Assignees: The University of Tokyo, Panasonic CorporationInventors: Kazuhito Hashimoto, Hiroshi Irie, Syuhei Miura, Kazuhide Kamiya, Shinichiro Miki, Koichi Takahama, Mitsuo Yaguchi
-
Patent number: 8518853Abstract: Disclosed is a nano-sized Cu based catalyst and a method of preparing the same including dissolving, in an aqueous solution, a first component comprising a Cu precursor, a second component precursor comprising one or more selected from the group consisting of a transition metal, an alkaline earth metal and a Group IIIb metal, and a third component precursor comprising one or more selected from the group consisting of alumina, silica, silica-alumina, magnesia, titania, zirconia and carbon and then performing stirring; precipitating the stirred mixture solution using Na2CO3 and NaOH to form a catalyst precursor precipitate; and washing and filtering the formed catalyst precursor precipitate. Also a method of preparing alcohol is provided, including reacting hydrogen with carboxylic acid including a single acid or an acid mixture of two or more acids derived from a microorganism fermented solution, using the nano-sized Cu based catalyst.Type: GrantFiled: April 21, 2011Date of Patent: August 27, 2013Assignee: SK Innovation Co., Ltd.Inventors: Hee Soo Kim, Seong Ho Lee, Young Seek Yoon, Seung Hoon Oh, Young Min Chung, Ok Youn Kim, Hee Jung Jeon
-
Patent number: 8507403Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.Type: GrantFiled: June 27, 2008Date of Patent: August 13, 2013Assignee: Cabot CorporationInventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
-
Publication number: 20130178670Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst comprises an extruded modified support, and a precious metal. The processes for making the catalysts comprises modifying the catalyst, extruding the catalyst, and impregnating the precious metal onto the catalyst.Type: ApplicationFiled: January 4, 2013Publication date: July 11, 2013Applicant: Celanese International CorporationInventor: Celanese International Corporation
-
Publication number: 20130178361Abstract: The present invention relates to a process for producing a dispersion of a copper ion-modified tungsten oxide photocatalyst, including the steps of subjecting copper ion-modified tungsten oxide particles to mechanical pulverization treatment in a solvent and then contacting the resulting dispersion of the pulverized particles with an oxygen gas or ozone; and a copper ion-modified tungsten oxide photocatalyst which is produced by subjecting copper ion-modified tungsten oxide particles to mechanical pulverization treatment in a solvent and then contacting the resulting dispersion of the pulverized particles with an oxidative gas, wherein a photocatalyst powder obtained by drying the dispersion after being contacted with the oxidative gas exhibits a diffuse reflectance of 75% or more as measured at a wavelength of 700 nm.Type: ApplicationFiled: July 8, 2011Publication date: July 11, 2013Applicant: SHOWA DENKO K.K.Inventor: Yasuhiro Hosogi
-
Patent number: 8475921Abstract: A composite material includes an aggregate which contains a first metal particle constituting a core and second metal oxide particulates surrounding the first metal particle and having an average primary particle diameter ranging from 1 to 100 nm.Type: GrantFiled: July 20, 2006Date of Patent: July 2, 2013Assignee: Kabushiki Kaisha Toyota Chuo KenkyushoInventors: Tomoyuki Kayama, Kouzi Banno, Kiyoshi Yamazaki, Koji Yokota
-
Publication number: 20130123549Abstract: The present disclosure provides a hydrogenation catalyst, the preparation process thereof and the application thereof in the production of 1,4-butanediol by hydrogenating dialkyl maleate and/or dialkyl succinate. The catalyst comprises Cu—Al-A-B-G, wherein A comprises at least one of Zn. Mo and W, B comprises at least one of Ba, Mn, Mg, Ti, Ce and Zr. In the process for preparing said hydrogenation catalyst, a part of Cu and A are precipitated first and the rest of Cu, Al and B are precipitated successively.Type: ApplicationFiled: October 30, 2012Publication date: May 16, 2013Applicants: FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICAL, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATIONInventors: CHINA PETROLEUM & CHEMICAL CORPORATI, FUSHUN RESEARCH INSTITUTE OF PETROLEU
-
Patent number: 8435482Abstract: Hopcalite-type catalysts for oxidation of CO are formed by preparing a mixed-metal oxide precursor by firstly preparing a solution of a mixture of metal precursor compounds in a solvent, followed by contacting the solution with a supercritical antisolvent to precipitate the mixed-metal oxide precursor. A mixed-metal oxide may then be prepared from the precursor by oxidation, for example by calcination. The mixed-metal oxide is then collected and optionally activated for use as a catalyst. The activated or calcined catalyst contains a nano-structured mixed-phase composition comprising phase-separated intimately mixed nanoparticles of copper and manganese oxide.Type: GrantFiled: December 1, 2006Date of Patent: May 7, 2013Assignee: University College Cardiff Consultants LtdInventors: Graham John Hutchings, Stuart Hamilton Taylor, Jonathan Keith Bartley
-
Patent number: 8415268Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.Type: GrantFiled: June 30, 2009Date of Patent: April 9, 2013Assignee: BASF SEInventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
-
Publication number: 20130053238Abstract: The present invention relates to a copper ion-modified tungsten oxide photocatalyst subjected to chemical etching treatment with a basic aqueous solution in which a rate of change in diffuse reflectance of the photocatalyst as measured at a wavelength of 700 nm between before and after irradiated with an ultraviolet light in atmospheric air is less than 10%; and a process for producing a copper ion-modified tungsten oxide photocatalyst which includes a copper ion modifying step of modifying a tungsten oxide powder with a copper ion; a chemical etching step of subjecting the tungsten oxide powder to chemical etching treatment with a basic aqueous solution, the chemical etching treatment being carried out either before or after the copper ion modifying step; and a drying step of drying the product obtained after the above steps at a temperature of 200° C. or lower.Type: ApplicationFiled: February 15, 2011Publication date: February 28, 2013Applicant: SHOWA DENKO K.K.Inventor: Yasuhiro Hosogi
-
Patent number: 8361924Abstract: Disclosed herein is fine particles of core-shell structure, each particle being composed of a core particle which is formed from a first material and has the face-centered cubic crystal structure and a shell layer which is formed from a second material differing from the first material on the surface of the core particle and has the face-centered cubic crystal structure, the fine particles containing particles which are multiply twinned fine particles and are surrounded by the {111} crystal plane.Type: GrantFiled: August 2, 2011Date of Patent: January 29, 2013Assignee: Sony CorporationInventors: Shinji Tanaka, Shuji Goto, Shigetaka Tomiya
-
Publication number: 20120316056Abstract: In one embodiment, an aqueous dispersion liquid contains at least one particles selected from tungsten oxide particles and tungsten oxide composite particles. A mean primary particle diameter (D50) of the particles is in the range of 1 nm to 400 nm. In the aqueous dispersion liquid, concentration of the particles is in the range of 0.1 mass % to 40 mass %, and pH is in the range of 1.5 to 6.5. The aqueous dispersion liquid excels in dispersibility of particles and capable of maintaining good liquidity for a long period.Type: ApplicationFiled: August 23, 2012Publication date: December 13, 2012Inventors: Kayo NAKANO, Akira SATO, Yasuhiro SHIRAKAWA, Keiichi FUSE, Shinya KASAMATSU, Akito SASAKI
-
Patent number: 8288309Abstract: A highly durable mercury oxidation catalyst contains V2O5 and MoO3 as active components, and is capable of preventing volatilization of MoO3 in the mercury oxidation catalyst. A method of producing the mercury oxidation catalyst is provided. A mercury oxidation catalyst oxidizing mercury in an exhaust gas into mercury oxide includes: TiO2 as a carrier, V2O5 and MoO3 supported on the carrier as active components, and at least one kind of element or compound selected from the group consisting of W, Cu, Co, Ni, and Zn or the compounds thereof supported on the carrier as a MoO3 volatilization preventing component.Type: GrantFiled: September 30, 2010Date of Patent: October 16, 2012Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Katsumi Nochi, Masanao Yonemura, Masashi Kiyosawa
-
Publication number: 20120189489Abstract: A complex metal oxide catalyst having a composition including about 5 to about 75 wt % of manganese (Mn); about 5 to about 55 wt % of copper (Cu); and about 3 to about 60 wt % of an active compound, based on a total weight of the complex metal oxide catalyst. The complex metal oxide catalyst has excellent low-temperature activity and improved catalyst efficiency so as to be repeatedly used, and thus is effectively used in a filter module and an air cleaner.Type: ApplicationFiled: January 20, 2012Publication date: July 26, 2012Applicant: Samsung Electronics Co., Ltd.Inventors: Myung-jong Kwon, Sik-sun Choi, Duck-hee Lee, Jun-cheol Bae, Hae-ree Joo, Do-hoon Kim, Sang-woong Kim, Sang-hyun Park, Chang-ick Lee
-
Publication number: 20120136179Abstract: Provided are hydrogenation catalysts for processing esters into fatty alcohols. More particularly, the catalysts are for vapor-phase hydrogenation of methyl esters to fatty alcohols under fixed-bed conditions, where conditions are typically in a temperature range of 200 to 250° C. and a pressure range of 30 to 50 bar. Methods of making and using the same are also provided. These catalysts comprise a copper chromite, an alkali metal or alkaline earth metal component, and an inorganic matrix component, which are processed together to form the catalyst. The alkali metal component can comprise sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), or combinations thereof. The alkaline earth metal can comprise magnesium (Mg), calcium (Ca), barium (Ba), or combinations thereof.Type: ApplicationFiled: November 22, 2011Publication date: May 31, 2012Applicant: BASF CorporationInventors: Deepak S. Thakur, William J. Carrick
-
Patent number: 8188328Abstract: The present invention is an improved cyclic, endothermic hydrocarbon conversion process and a catalyst bed system for accomplishing the same. Specifically, the improved process comprises reacting a hydrocarbon with a multi-component catalyst bed in such a manner that the temperature within the catalyst bed remains within controlled temperature ranges throughout all stages of the process. The multi-component catalyst bed comprises a reaction-specific catalyst physically mixed with a heat-generating material.Type: GrantFiled: June 27, 2011Date of Patent: May 29, 2012Assignee: Sud-Chemie Inc.Inventors: Vladimir Fridman, Michael A. Urbancic
-
Publication number: 20120122674Abstract: The present invention relates to petrochemistry and gas chemistry, and discloses a support for catalysis of exothermic processes, particularly the Fischer-Tropsch process, methanol synthesis, hydrogenation and purification of exhaust gases. The support comprises metallic aluminium in the form of a mixture of dispersed powders of flaky and spherical aluminium and the support is in the form of pellets, preferably cylinders, tablets, balls, obtained by extrusion, pelletization, tabletting, rounding or liquid molding. The catalyst prepared on the support comprises an active metal selected from the group consisting of Co, Fe, Ni, Ru, Rh, Pt, Pd, Cu and mixtures thereof.Type: ApplicationFiled: August 3, 2010Publication date: May 17, 2012Applicant: INFRA TECHNOLOGIES LTD.Inventors: Vladimir Zalmanovich Mordkovich, Lilia Vadimovna Sineva, Igor Grigorievich Solomonik, Vadim Sergeevich Ermolaev, Eduard Borisovich Mitberg
-
Publication number: 20120115713Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an active catalyst component comprising a surface, and a metal oxide film coated on the surface of the active catalyst component. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as improved resistance to catalytic deactivation due to sulfur and nitrogen compounds present in the hydrocarbon feedstreams.Type: ApplicationFiled: November 9, 2010Publication date: May 10, 2012Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, William G. Borghard, Cody R. Cole
-
Patent number: 8173573Abstract: In one embodiment, a visible light responsive photocatalyst powder has organic gas decomposition performance that responds nonlinearly to an amount of irradiated light under visible light in an illuminance range of not less than 200 lx nor more than 2500 lx. The visible light responsive photocatalyst powder has a gas decomposition rate of 20% or more, for example, when visible light having only a wavelength of not less than 380 nm and an illuminance of 2500 lx is irradiated, the gas decomposition rate (%) being set as a value calculated based on [formula: (A?B)/A×100], where A represents a gas concentration before light irradiation and B represents a gas concentration when not less than 15 minutes have elapsed from the light irradiation and, at the same time, the gas concentration is stable, the gas concentrations being measured while allowing an acetaldehyde gas having an initial concentration of 10 ppm to flow into a flow-type apparatus in which 0.2 g of a sample is placed.Type: GrantFiled: July 27, 2010Date of Patent: May 8, 2012Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.Inventors: Kayo Nakano, Akira Sato, Yasuhiro Shirakawa, Keiichi Fuse, Masami Okamura, Shinya Kasamatsu, Yumi Ito
-
Patent number: 8148291Abstract: It is an object of the present invention to provide a catalyst having excellent performance and high mechanical strength for use in the production of methacrylic acid. A method for manufacturing a catalyst comprising essential active components of molybdenum, phosphorus, vanadium, cesium, ammonia, copper, and antimony for use in the production of methacrylic acid, comprising drying a slurry prepared by mixing a compound(s) containing the essential active components with water and then calcining the resulting dry powder and molding the calcined powder.Type: GrantFiled: June 8, 2011Date of Patent: April 3, 2012Assignee: Nippon Kayaku Kabushiki KaishaInventors: Atsushi Sudo, Tatsuhiko Kurakami, Toshitake Kojima, Shigeo Hayashimoto, Yasushi Kobayashi
-
Patent number: 8114805Abstract: The present invention relates to a method of preparing a heteropoly acid catalyst used for the production of methacrylic acid by gas phase oxidation of methacrolein, more precisely a method of preparing a heteropoly acid catalyst comprising the steps of preparing a slurry by adding metal precursors and ammonium salt to protonic acid Keggin-type heteropoly acid aqueous solution and stirring thereof; and drying, molding and firing the slurry to give a catalyst. The present invention provides a method of preparing a heteropoly acid catalyst exhibiting high methacrolein conversion rate and methacrylic acid selectivity without pre-firing process by using high purity protonic acid Keggin-type heteropoly acid and ammonium salt.Type: GrantFiled: June 13, 2008Date of Patent: February 14, 2012Assignee: LG Chem, Ltd.Inventors: Hyun-Kuk Noh, Hyun-jong Shin, Won-ho Lee, Byung-yul Choi, Gyo-hyun Hwang, Ju-yeon Park, Duk-ki Kim, Young-hyun Choe, Min-ho Kil, Min-suk Kim, Young-jin Cho, Sung-chul Lim
-
Publication number: 20120027670Abstract: A method and system for the reduction of pollutant NOx gases from automobile exhaust, as well as a method of reforming hydrocarbons, using a self-sustaining catalyst comprising an ion conductive support, a dispersed cathodic phase, a dispersed anodic phase, and a dispersed sacrificial phase, and a method of forming the self-sustaining catalyst.Type: ApplicationFiled: April 6, 2010Publication date: February 2, 2012Applicant: University of MiamiInventor: Xiangyang Zhou
-
Patent number: 8101539Abstract: A purifying catalyst includes catalyst powder composed of a transition metal oxide of which an average particle diameter is within 1 nm to 2 ?m and in which an electron binding energy of oxygen is shifted to an energy side lower than 531.3 eV. The purifying catalyst shows good purification performance even when noble metal is not contained as an essential component.Type: GrantFiled: November 20, 2008Date of Patent: January 24, 2012Assignee: Nissan Motor Co., Ltd.Inventors: Hirofumi Yasuda, Yasunari Hanaki, Toru Sekiba, Shigeru Chida, Junji Ito
-
Patent number: 8088708Abstract: The present invention provides a catalyst precursor substance containing copper, zinc, and aluminum and exhibiting an X-ray diffraction pattern having a broad peak at a specific interplanar spacing d (?). The present invention also provides a method for producing the catalyst precursor substance by mixing a solution containing a copper salt, a zinc salt, and an aluminum salt with a solution containing an alkali metal hydroxide or an alkaline earth metal hydroxide, thereby forming a precipitate. In the present invention, a catalyst is prepared through calcining of the catalyst precursor; the catalyst is employed for water gas shift reaction; and carbon monoxide conversion is carried out by use of the catalyst.Type: GrantFiled: April 2, 2008Date of Patent: January 3, 2012Assignee: Idemitsu Kosan Co., Ltd.Inventors: Kozo Takatsu, Yoshimi Kawashima, Satoshi Nakai