And Group Iii Metal Containing (i.e., Sc, Y, Al, Ga, In Or Tl) Patents (Class 502/327)
  • Patent number: 8637719
    Abstract: The invention concerns a catalyst comprising a porous support, palladium, at least one metal selected from the group constituted by alkalis and alkaline-earths, in which: the specific surface area of the porous support is in the range 50 to 210 m2/g; the palladium content in the catalyst is in the range 0.05% to 2% by weight; at least 80% by weight of the palladium is distributed in a crust at the periphery of the support, the thickness of said crust being in the range 20 to 200 ?m; the metallic dispersion D is in the range 25% to 70%; the density of the palladium particles in the crust is in the range 1500 to 4100 particles of palladium per ?m2; and said alkali and/or alkaline-earth metal is distributed homogeneously across the support. The invention also concerns the preparation of the catalyst and its use in selective hydrogenation.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: January 28, 2014
    Assignee: IFP Energies nouvelles
    Inventors: Lars Fischer, Carine Petit-Clair, Cecile Thomazeau, Lois Sorbier, Catherine Verdon
  • Patent number: 8637193
    Abstract: In some embodiments, the present disclosure provides a fuel cell catalyst having a catalyst surface bearing a non-occluding layer of iridium. In some embodiments, the present disclosure provides a fuel cell catalyst comprising a catalyst surface bearing a sub-monolayer of iridium. In some embodiments, the present disclosure provides a fuel cell catalyst comprising a catalyst surface bearing a layer of iridium having a planar equivalent thickness of between 1 and 100 Angstroms. In some embodiments, the fuel cell catalyst comprises nanostructured elements comprising microstructured support whiskers bearing a thin film of nanoscopic catalyst particles. The layer of iridium typically has a planar equivalent thickness of between 1 and 100 Angstroms and more typically between 5 and 60 Angstroms. The fuel cell catalyst typically comprises no electrically conductive carbon material and typically comprises at least a portion of the iridium in the zero oxidation state.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: January 28, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. L. Steinbach, George D. Vernstrom, Mark K. Debe, Radoslav Atanasoski
  • Patent number: 8633131
    Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
  • Patent number: 8633127
    Abstract: A composition comprising a supported hydrogenation catalyst comprising palladium and an organophosphorous compound, the supported hydrogenation catalyst being capable of selectively hydrogenating highly unsaturated hydrocarbons to unsaturated hydrocarbons. A method of making a selective hydrogenation catalyst comprising contacting a support with a palladium-containing compound to form a palladium supported composition, contacting the palladium supported composition with an organophosphorus compound to form a catalyst precursor, and reducing the catalyst precursor to form the catalyst.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: January 21, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Zongxuan Hong
  • Publication number: 20130334097
    Abstract: Novel catalysts comprising nickel oxide nanoparticles supported on alumina nanoparticles, methods of their manufacture, heavy oil compositions contacted by these nanocatalysts and methods of their use are disclosed. The novel nanocatalysts are useful, inter alia, in the upgrading of heavy oil fractions or as aids in oil recovery from well reservoirs or downstream processing.
    Type: Application
    Filed: May 17, 2013
    Publication date: December 19, 2013
    Applicant: Petroraza SAS
    Inventors: Jose Edgar Patiño, Farid Bernardo Cortés
  • Patent number: 8609570
    Abstract: The present invention relates to a method for producing a precursor of a supported platinum catalyst. To provide a method for producing a platinum catalyst precursor, by means of which supported platinum catalysts can be produced which have a relatively high activity, a method is proposed, comprising the steps of: a) impregnating an open-pored support material with platinum sulphite acid; b) calcining the impregnated zeolite material under a protective gas.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: December 17, 2013
    Assignee: Sud-Chemie IP GmbH & Co. KG
    Inventors: Hans-Christoph Schwarzer, Arno Tissler, Markus Hutt
  • Patent number: 8609578
    Abstract: An exhaust gas purifying catalyst is constituted by: noble metal particles (1); first compounds (2) which support the noble metal particles (1); second compounds (3) different in type from the first compounds (2); and oxides (4) which surround the noble metal particles (1), the first compounds (2) and the second compounds (3). A median diameter of the first compounds (2) and a median diameter of the second compounds (3) satisfy a relationship of a following inequality: median diameter of first compounds<median diameter of second compounds.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: December 17, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masanori Nakamura, Yoshiaki Hiramoto, Hiroto Kikuchi, Hironori Wakamatsu, Kazuyuki Shiratori, Tetsuro Naito, Katsuo Suga
  • Patent number: 8604248
    Abstract: The present invention provides catalyst compositions useful for transamination reactions. The catalyst compositions have a catalyst support that includes transitional alumina, use a low metal loading (for example, less than 25 wt. %), and do not require the presence of rhenium. The catalyst compositions are able to advantageously promote transamination of a reactant product (such as the transamination of EDA to DETA) with excellent activity and selectivity, and similar to transaminations promoted using a precious metal-containing catalyst.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: December 10, 2013
    Assignee: Union Carbide Chemicals & Plastics Technolgy LLC
    Inventors: Stephen W. King, Stefan K. Mierau
  • Patent number: 8603400
    Abstract: A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: December 10, 2013
    Assignee: California Institute of Technology
    Inventors: Charles C. Hays, Sri R. Narayan
  • Patent number: 8586501
    Abstract: According to various embodiments, a catalyst composition includes a catalytic metal secured to a porous substrate. The substrate has pores that are templated. The substrate is a product of adding a substrate precursor to a water-in-oil microemulsion including a catalytic metal salt, a solvent, a templating agent, and water.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: November 19, 2013
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Robert Edgar Colborn, Ashish Balkrishna Mhadeshwar, Dan Hancu
  • Patent number: 8586780
    Abstract: A shell catalyst for producing vinyl acetate monomer (VAM), comprising an oxidic porous catalyst support, formed as a shaped body, with an outer shell in which metallic Pd and Au are contained. To provide a shell catalyst for producing VAM which has a relatively high activity and can be obtained at relatively low cost, the catalyst support is doped with at least one oxide of an element selected from the group consisting of Li, P, Ca, V, Cr, Mn, Fe, Sr, Nb, Ta, W, La and the rare-earth metals.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: November 19, 2013
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck
  • Patent number: 8580706
    Abstract: An exhaust gas-purifying catalyst according to the present invention includes a substrate, a first catalytic layer facing the substrate and includes at least one precious metal selected from the group consisting of palladium and platinum, and alumina doped with an alkaline-earth metal element, and a second catalytic layer facing the substrate with the first catalytic layer interposed therebetween or intervening between the substrate and the first catalytic layer, the second catalytic layer includes rhodium and alumina doped with the alkaline-earth metal element.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: November 12, 2013
    Assignee: Cataler Corporation
    Inventors: Satoshi Matsueda, Akimasa Hirai, Kenichi Taki, Yuji Yabuzaki
  • Patent number: 8575060
    Abstract: A fuel reforming catalyst is fabricated. The catalyst is used in solid oxide fuel cell. By using the catalyst, the hydrogen generation is enhanced with a great reforming ratio. In addition, the catalyst is coking-resistant and will not be broken into powder after a long time of use.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 5, 2013
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council
    Inventors: Ning-Yih Hsu, Chun Ching Chien
  • Publication number: 20130287658
    Abstract: A NOx trap composition, and its use in an exhaust system for internal combustion engines, is disclosed. NOx trap composition comprises a platinum group metal, barium, cobalt, and a magnesia-alumina support. The NOx trap composition is less prone to storage deactivation and exhibits reduced N2O formation.
    Type: Application
    Filed: April 26, 2012
    Publication date: October 31, 2013
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventor: FIONA-MAIREAD McKENNA
  • Patent number: 8569197
    Abstract: For preparing a reforming catalyst comprising a support, a group VIIIB metal and a group VIIB metal, comprises the following steps in the order a) then b) or b) then a): a step a) impregnating the support with an aqueous solution of hydrochloric acid comprising a group VIIIB metal; a step b) impregnating the support with an aqueous solution comprising a group VIIB metal and a sulphur-containing complexing agent in a reducing environment, or a step b) impregnation with an aqueous solution comprising a group VIIB metal, then with a solution comprising a sulphur-containing complexing agent in a reducing environment. The reducing environment is any reducing atmosphere comprising more than 0.1% by weight of a reducing gas or a mixture of reducing gases; or reducing solutions comprising, with respect to the group VIIB metal, in the range 0.1 to 20 equivalents of reducing metals, reducing organic compounds or inorganic reducing compounds.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: October 29, 2013
    Assignee: IFP Energies Nouvelles
    Inventor: Yohan Oudart
  • Patent number: 8569201
    Abstract: An exhaust gas purifying catalyst includes: rhodium; a zirconium-containing oxide which supports rhodium, and comprises: at least one element selected from the group consisting of calcium, lanthanum, cerium, neodymium and yttrium; and zirconium; and a NOx absorbing material comprising at least one selected from the group consisting of magnesium, barium, sodium, potassium and cesium. A degree of dispersion of rhodium is 20% or more after baking at 900° C. in air for three hours. A method for manufacturing the exhaust gas purifying catalyst includes: mixing the zirconium-containing oxide with water, thereby preparing an aqueous liquid of the zirconium-containing oxide; and supporting rhodium on the zirconium-containing oxide by mixing the aqueous liquid of the zirconium-containing oxide with an aqueous solution of a rhodium salt. A pH of a mixed liquid of the aqueous solution of the rhodium salt and the aqueous liquid of the zirconium-containing oxide is adjusted to 7 or more.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: October 29, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tetsuro Naito, Masanori Nakamura, Hironori Wakamatsu
  • Patent number: 8562926
    Abstract: A method and device for catchment of platinum group metals (PGM) in a gaseous steam, where the method comprises using a catalyst comprising a porous ceramic body in which at least a part of the surface area is covered by one or more PGM-catching metal(s)/alloy(s), and where the device comprises the porous ceramic body in which at least a part of the surface area is covered by one or more PGM-catching metal(s)/alloy(s). In a further aspect, the invention also relates to a method for producing the inventive device.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: October 22, 2013
    Assignee: Yara International ASA
    Inventors: David Waller, David M. Brackenbury, Ketil Evjedal
  • Patent number: 8557204
    Abstract: Disclosed herein is a layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides being separated in a front and rear portion is disclosed. Provided is a catalytic composite material of a single front and two rear layers in conjunction with a substrate, where each of the layers includes a support, all layers comprise a platinum group metal component, and the rear bottom layer is substantially free of an oxygen storage component (OSC).
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: October 15, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: John G. Nunan, Raoul Klingmann, Ryan Andersen, Davion Clark, David H. Moser
  • Patent number: 8551908
    Abstract: An exhaust gas purification catalyst includes: a lower catalyst layer that contains a ceria-zirconia mixed oxide having 50 to 70 mass % of CeO2 and 5 mass % or more of Pr2O3 and carries at least one of Pt and Pd; and an upper catalyst layer that contains at least zirconia and carries at least Rh, wherein the total amount of CeO2 per liter of the carrier base is 15 to 30 g. Because the amount of CeO2 is small, formation of H2S is suppressed and a high capability of adsorbing and releasing oxygen is brought out in spite of the small amount of CeO2.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akemi Satou, Masahiko Takeuchi, Keizo Hiraku, Yusuke Kawamura, Takahiro Fujiwara, Tadashi Suzuki, Naoki Takahashi
  • Patent number: 8544261
    Abstract: This invention provides an exhaust gas purification catalyst, which can burn PM (particulate matter) at a temperature below the temperature required in the prior art technique and can realize a high PM combustion rate at elevated temperatures, and an exhaust gas purification apparatus using the exhaust gas purification catalyst. The exhaust gas purification catalyst comprises a composite oxide having oxygen release properties and Ag and a noble metal co-supported on the composite oxide. The exhaust gas purification catalyst and an exhaust gas purification apparatus (1) using the exhaust gas purification catalyst can increase the PM combustion rate at elevated temperatures and, at the same time, can burn PM at a temperature below the temperature required in the prior art technique. Further, fuel consumption loss caused by forced regeneration, EM deterioration, and catalyst deterioration can be suppressed, and, thus, the load on automobiles can be reduced.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: October 1, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takeshi Mori, Norihiko Suzuki, Yuichi Matsuo, Atsushi Furukawa
  • Patent number: 8535632
    Abstract: The present invention relates to a catalyst-containing nanofiber composition, comprising a ceramic nanofiber having a plurality of metal catalysts wherein the metal catalysts exist as dispersed particles partially embedded in the nanofiber and cover from about 1% to about 90% of the surface area of the ceramic nanofiber.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: September 17, 2013
    Assignee: The University of Akron
    Inventors: George G. Chase, George R Newkome, Sphurti Bhargava, Soo-Jin Park, Sneha Swaminathan
  • Patent number: 8530113
    Abstract: Non-platinum (Pt) electrode catalysts for fuel cells, methods of manufacturing the same, and fuel cells including the non-Pt electrode catalysts. Each of the non-Pt electrode catalysts for fuel cells includes at least palladium (Pd) and iridium (Ir), and further includes a metal, oxide of the metal, or mixture thereof for compensating for the activity of Pd and Ir.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: September 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kang-hee Lee, Chan-ho Pak, Kyung-jung Kwon, Seon-ah Jin, Dae-jong Yoo, Jong-won Lee
  • Publication number: 20130224090
    Abstract: Disclosed is a catalyst which can convert ammonia contained in exhaust gas from an engine of a vehicle equipped with a Urea-SCR (Urea-Selective Catalytic Reduction) system, to nitrogen, and a method for preparating the same. The catalyst can convert ammonia which is failed to participate in a conversion reaction of NOx to N2 and slipped out of the SCR catalyst, to nitrogen via a SCO (Selective Catalytic Oxidation) reaction, before the ammonia is released to the air.
    Type: Application
    Filed: November 19, 2010
    Publication date: August 29, 2013
    Applicant: SK INNOVATION CO., LTD.
    Inventors: Seong Ho Lee, Woo Jin Lee, Young Eun Cheon, Seung Hoon Oh, Sung Hwan Kim, Hong Seok Jung, Yong Woo Kim, Gi Ho Goh
  • Patent number: 8518846
    Abstract: In the present invention, slurry is formed by mixing noble metal-supported powder particles (3) and a binder (4) with each other in a liquid (Step S1), and the noble metal-supported powder particles (3) are dispersed by applying vibrations to the slurry (Step S2), and thereafter, the slurry is spray dried while keeping a state where the noble metal-supported powder particles (3) are dispersed (Step S3), whereby noble metal-supported powder (1) is produced. In the noble metal-supported powder (1) produced by such a method, pores through which exhaust gas flows are formed appropriately, and accordingly, exhaust gas purification performance can be enhanced.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: August 27, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Fumihiro Uchikawa, Yoshiaki Hiramoto, Haruhiko Shibayama, Keita Manyu
  • Publication number: 20130217793
    Abstract: The disclosed invention relates to a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. The disclosed invention also relates to a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Patent number: 8513155
    Abstract: An exhaust aftertreatment system for a lean-burn engine may include a lean NOX trap that comprises a catalyst material. The catalyst material may remove NOX gases from the engine-out exhaust emitted from the lean-burn engine. The catalyst material may include a NOX oxidation catalyst that comprises a perovskite compound.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: August 20, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Wei Li, Chang H Kim, Gongshin Qi
  • Patent number: 8507403
    Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 13, 2013
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
  • Patent number: 8507720
    Abstract: A catalyst comprising palladium supported on a titania-alumina extrudate is disclosed. The extrudate comprises at least 80 wt % titania and 0.1 to 15 wt % alumina. A palladium catalyst prepared from the titania-alumina extrudate has significantly higher crush strength. Its catalytic performance in vinyl acetate production is improved.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: August 13, 2013
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Daniel Travis Shay
  • Patent number: 8501133
    Abstract: A catalyst for treating exhaust gases containing nitrogen monoxide, carbon monoxide and volatile organic compounds includes a plurality of layers, an upper layer of which has an active component contained uniformly therein and a lower layer of which has no active component contained therein. The catalyst is obtained through the steps of: forming the lower layer by coating the surface of substrate with a slurry of a porous inorganic compound, followed by drying; and forming the upper layer, which is to be the top surface of the catalyst, by coating the surface of the lower layer with a slurry of a porous inorganic compound that has the active component composed of one or more precious metals supported thereon, followed by drying. The oxidation power of the resulting catalyst is enhanced without increasing the amount of precious metal supported thereon.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 6, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Masanao Yonemura, Yoshiaki Obayashi, Hitoshi Nakamura
  • Patent number: 8501132
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Cristal USA Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 8496899
    Abstract: An exhaust gas purifying catalyst 1 has a catalyst substrate 3 and catalyst coating layers 5, 7 that are formed on the catalyst substrate 3 and contain (a) Rh, (b) Pt, (c) an alkali metal or alkaline earth element, and (d) an inorganic oxide. The catalyst coating layers 5, 7 has a layered structure including an inside layer 5 where the component (a) is substantially locally existing, and an outside layer 7 where the component (b) is substantially locally existing. The inside layer 5 also contains a zirconia oxide.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: July 30, 2013
    Assignee: Cataler Corporation
    Inventor: Hiroto Imai
  • Patent number: 8492592
    Abstract: The invention provides a method of transaminating a reactant with a catalyst composition comprising support and catalyst portions. The support includes an acidic mixed metal oxide including a transitional alumina and a second metal oxide. The transitional alumina can comprise delta or theta alumina, in combination with other transitional phases, or an alpha or gamma alumina. The second metal oxide has a weight percentage less than the weight percentage of alumina. The catalyst portion is 25 weight percent or less of the catalyst composition and is composed of nickel and rhenium. The catalyst portion includes nickel in an amount in the range of 2 to 20 weight percent, based upon total catalyst composition weight, and there is no boron in the catalyst portion. The method provides high activity and selectivity for reactant transamination to a desired product while minimizing the formation of unwanted cyclic products.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: July 23, 2013
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Stephen W. King, Stefan K. Mierau
  • Patent number: 8486368
    Abstract: A process for producing the porous catalyst body for decomposing hydrocarbons, the body containing at least magnesium, aluminum and nickel, and has a pore volume of 0.01 to 0.5 cm3/g, an average pore diameter of not more than 300 ? and an average crushing strength of not less than 3 kgf. The process includes molding hydrotalcite containing at least magnesium, aluminum and nickel, and calcining the resulting molded product at a temperature of 700 to 1500° C.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: July 16, 2013
    Assignee: Toda Kogyo Corporation
    Inventors: Shinji Takahashi, Naoya Kobayashi
  • Patent number: 8486853
    Abstract: An exhaust gas purifying catalyst (1) according to the present invention includes noble metal particles (6), a first compound (7) supporting the noble metal particles (6), and a second compound (9) disposed not in contact with the noble metal particles (6) and having an oxygen storage capacity. An average distance between the first compound (7) and the second compound (9) is between 5 nm and 300 nm.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: July 16, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Shiratori, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Hiroto Kikuchi, Tetsuro Naito, Jun Ikezawa
  • Patent number: 8481450
    Abstract: Methods and systems for contacting of a crude feed with one or more catalysts to produce a total product that includes a crude product are described. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The crude product has an MCR content of at most 90% of the MCR content of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: July 9, 2013
    Assignee: Shell Oil Company
    Inventor: Opinder Kishan Bhan
  • Patent number: 8476321
    Abstract: The present invention is directed to a catalyst suitable for catalyzing a Fischer-Tropsch reaction, said catalyst comprising cobalt metal supported on zinc-oxide and an amount of zirconium(IV)oxide and/or aluminum oxide of between 0.5 and 2.5 wt. % calculated as metal, based on the weight of the calcined catalyst.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 2, 2013
    Assignee: BASF Corporation
    Inventor: Cornelis Roeland Baijense
  • Patent number: 8475684
    Abstract: A composite oxide for a hydrocarbon reforming catalyst which maintains the catalytic activity at a high level over a long period of time, a process for producing the catalyst, and a process for producing syngas using the catalyst, are provided. The composite oxide for a hydrocarbon reforming catalyst is obtained by a process including preparing a mixed solution for impregnation which contains catalytic active components of Co, or Co and Ni, one or more oxidation resistance enhancing components selected from the elements of Group 3B and the elements of Group 6A of the Periodic Table, and one or more additive metal components selected from Ca and Mg; impregnating a carrier formed from a porous molded body selected from magnesia and a composite of magnesia and calcia, with the mixed solution for impregnation; drying the impregnated carrier; and calcining the dried carrier in an oxidizing atmosphere.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: July 2, 2013
    Assignee: Japan Petroleum Exploration Co., Ltd.
    Inventor: Toshiya Wakatsuki
  • Patent number: 8475921
    Abstract: A composite material includes an aggregate which contains a first metal particle constituting a core and second metal oxide particulates surrounding the first metal particle and having an average primary particle diameter ranging from 1 to 100 nm.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Tomoyuki Kayama, Kouzi Banno, Kiyoshi Yamazaki, Koji Yokota
  • Patent number: 8466082
    Abstract: A shell catalyst for the preparation of vinyl acetate monomer, comprising an oxidic porous catalyst support with an outer shell, containing metallic Pd and Au, wherein the framework structure of the porous catalyst support contains hafnium oxide units. This shell catalyst is suitable for the preparation of VAM and is characterized by a relatively high activity and VAM selectivity and maintains this activity and selectivity over relatively long service lives. Also, processes for the preparation and use of the shell catalyst.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: June 18, 2013
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck
  • Publication number: 20130150617
    Abstract: Provided is a monolithic catalyst for synthesizing an oxalate by carbon monoxide (CO) gaseous-phase coupling, a preparation method and the use thereof. In the catalyst, a ceramic honeycomb or a metal honeycomb was used as skeletal carrier, metal oxides were used as a carrier coating, precious metals Pt, Pd, Ir, Rh were used as active ingredients, as well as Fe, Co, Ni were used as additives, wherein the carrier coating accounts for 5 to 50 wt % of the honeycomb carrier the active ingredients of the catalyst account for 0.1 to 5 wt. % of the carrier coating; the additives of the catalyst account for 0.3 to 10 wt. % of the carrier coating; and the atomic ratio of the active ingredients to the additives was 0.1 to 3. the reaction for synthesizing the oxalate was carried out in a fixed bed reactor, wherein, N2 was used as a carrier gas. The volume ratio of N2:CO: Alkyl nitrite was 20-80:5-60:10-40, and the retention time was 0.5-10 s.
    Type: Application
    Filed: May 31, 2011
    Publication date: June 13, 2013
    Inventors: Xinbin Ma, Yujun Zhao, Baowei Wang, Shengping Wang, Jing Lv, Zhenghua Li
  • Patent number: 8461073
    Abstract: An object of the present invention is to provide a catalyst support which can maintain the purifying ability of HC, CO and NO even after being exposed to a high temperature atmosphere such as about 1000° C. for a long term and a method which can easily produce the catalyst support. According to the present invention there is provided a method for producing a catalyst support of porous alumina formed with pores within which magneto-plumbite type complex oxide ((La.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: June 11, 2013
    Assignee: Kabushiki Kaisha F.C.C.
    Inventors: Akihiko Tomoda, Ryou Suzuki, Shintaro Yagi
  • Patent number: 8460937
    Abstract: A method of screening catalysts for liquid-phase selective hydrogenation by preparing a test catalyst by adding a promoter to a reference catalyst; preparing a liquid reactant stream comprising C2H2 dissolved in n-methyl-2-pyrrolidone; testing the test and reference catalysts by contacting the reactant stream and gas mixture comprising hydrogen and carbon monoxide in continuous flow with the test catalyst and reference catalyst, respectively, at selective hydrogenation reaction conditions to produce a product stream, condensing substantially all of the n-methyl-2-pyrrolidone from the product stream; measuring the concentrations of products comprising C2H2, C2H4, and C2H6 in the product stream at steady state; determining performance parameters for the test catalyst and the reference catalyst comprising the respective C2H2 conversion Sc and C2H4 selectivity relative to C2H6 Ss; and comparing the test catalyst performance parameters to those for the reference catalyst.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: June 11, 2013
    Assignee: Synfuels International, Inc.
    Inventors: Marvin M. Johnson, Edward R. Peterson, Sean C. Gattis
  • Patent number: 8450236
    Abstract: A process for making a catalyst having precious metal nanoparticles deposited on a support includes first providing an aqueous dispersion of support particles. A pre-treatment slurry is prepared by mixing the aqueous dispersion of support particles with a water-soluble precious metal precursor and a reducing agent. The pre-treatment slurry is hydrothermally treated at a temperature in the range of from about 40° C. to about 220° C. for a time sufficient to deposit precious metal nanoparticles on the surface of the support particles, the precious metal nanoparticles having an average particle size less about 50 nm.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: May 28, 2013
    Assignee: Cristal USA Inc.
    Inventors: Guoyi Fu, Mark B. Watson, Charles B. Muehlberger
  • Patent number: 8450235
    Abstract: A supported composite particle material comprises: a composite particle formed of an oxidized nickel and X (wherein X represents at least one of elements selected from the group consisting of nickel, palladium, platinum, ruthenium, gold, silver and copper); and a support on which the composite particle is supported, the supported composite particle material having a supported layer in which the composite particle is localized.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: May 28, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Ken Suzuki, Tatsuo Yamaguchi
  • Publication number: 20130129609
    Abstract: The present invention relates to a catalytic system comprising at least two catalytic zones of which at least one zone exclusively contains one or more noble metals selected from the group consisting of Rhodium, Ruthenium, Iridium, Palladium and Platinum and at least another zone contains Nickel, said catalytic system characterized in that at least one zone exclusively containing noble metals selected from the group consisting of Rhodium, Ruthenium, Iridium, Palladium and Platinum is always distinct but in contact with at least one zone containing Nickel. One or more metals selected from the group consisting of Rhodium, Ruthenium, Iridium, Palladium and Platinum are possibly added to the catalytic zone or zones comprising Nickel.
    Type: Application
    Filed: May 31, 2011
    Publication date: May 23, 2013
    Applicant: ENI S.p.A.
    Inventors: Luca Eugenio Basini, Alessandra Guarinoni, Luciano Cosimo Carluccio
  • Publication number: 20130131399
    Abstract: A process for producing a catalyst, the process comprising the steps of: impregnating a first metal from a first metal precursor on a support to form a first impregnated support; calcining the first impregnated support; impregnating a second metal from a second metal precursor on the first impregnated support to form a second impregnated support; calcining the second impregnated support to form the catalyst, wherein the catalyst has a total metal loading of at least 2 wt. % based on the total weight of the catalyst. A method for hydrogenating alkanoic acids in the presence of the catalyst is also disclosed.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Ana Rita Almeida, Graham Ormsby
  • Publication number: 20130085062
    Abstract: The invention is directed to a catalyst and a method for making a reforming catalyst for the production of hydrogen from organic compounds that overcomes the problems of catalyst poisoning and deactivation by coking and high temperature sintering, yet provides excellent durability and a long working life in process use. An embodiment is the formation of a unique four-metal ion hexa-aluminate of the formula M1aM2bM3cM4dAl11O19-?. M1 and M2 are selected from the group consisting of beryllium, magnesium, calcium, strontium, barium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and gadolinium. M3 and M4 are selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, molybdenum, ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, platinum, wherein 0.010?a+b+c+d?2.0. Also, 1???1. Further, M1?M2 and M3?M4.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: UCHICAGO ARGONNE, LLC
    Inventor: Magali S. Ferrandon
  • Patent number: 8409518
    Abstract: A sulfur tolerant oxidation catalyst with appreciable NO and HC oxidation capabilities has been developed for use in any component of an exhaust aftertreatment system for a lean-burn engine where the oxidation of at least NO is desired. Several non-exclusive examples of such components where the oxidation catalyst may be employed include a DOC and a LNT. The oxidation catalyst may comprise perovskite oxide particles that support palladium particles. The ability of the palladium supported perovskite oxide particles to concurrently oxidize NO and HC's can significantly diminish or altogether eliminate the use of platinum in the exhaust aftertreatment system for at least NO oxidation. The oxidation catalyst, moreover, may exhibit superior thermal durability and better NO and HC oxidation activities than platinum in some instances.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: April 2, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chang H Kim, Wei Li, Richard J. Blint
  • Patent number: 8410014
    Abstract: Especially physically stable metal oxide catalyst supports are prepared by suspending a metal oxide in a continuous phase, activating by fine dispersion, coagulation to a viscoelastic mass, shaping, drying, and calcining. The catalyst support thus prepared may be treated with catalytic agents to produce supported catalysts for olefin oxidation.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: April 2, 2013
    Assignee: Wacker Chemie AG
    Inventors: Roland Heidenreich, Hans-Jurgen Eberle, Johann Weis
  • Publication number: 20130065751
    Abstract: A metal oxide-supported nickel catalyst includes a matrix containing a metal oxide and catalytic sites distributed throughout the matrix and having an intricate interface with the matrix, in which the catalytic sites are selected from the group consisting of nano-nickel(0) domains and nano-nickel(0)-A(0) alloy domains. Also disclosed are a method for preparing this catalyst and a method for using it to produce carbon monoxide and hydrogen by partial oxidation of a C1-C5 hydrocarbon.
    Type: Application
    Filed: March 8, 2011
    Publication date: March 14, 2013
    Applicant: National University of Singapore
    Inventors: Liang Hong, Xiong Yin