Of Platinum Patents (Class 502/334)
  • Patent number: 7608561
    Abstract: An exhaust gas purifying catalyst comprising: a honeycomb-like substrate disposed in an exhaust passage for an engine; and a catalytic layer formed on a cell wall of said substrate, said catalytic layer including a mixed oxide which contains Ce (cerium) and Zr (zirconium), and retains a catalytic noble metal in such a manner that said noble metal atoms are located at crystal lattice points or between the lattice points of the mixed oxide, wherein said mixed oxide includes a first mixed oxide containing CeO2 in a mass greater than that of ZrO2, and a second mixed oxide containing ZrO2 in a mass greater than that of CeO2.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: October 27, 2009
    Assignee: Mazda Motor Corporation
    Inventors: Seiji Miyoshi, Hiroshi Yamada, Koji Minoshima, Akihide Takami, Hideharu Iwakuni
  • Patent number: 7605109
    Abstract: An engine exhaust catalyst containing precious metal nanoparticles is promoted with bismuth. The bismuth promotion improves the catalyst's CO oxidation performance. Also, by varying the amount of bismuth that is added, the NO conversion rate that can be realized with the catalyst can be controlled. The control over the NO conversion rate is important because the passive regenerative performance of a particulate filter used in engine exhaust systems is based on the amount NO2 that is present in the exhaust stream that reaches the particulate filter. The amount of NO2 being produced needs to be optimized (not necessarily maximized) so that adequate particulate filter regeneration performance can be maintained while avoiding unused, toxic NO2 from being exhausted into the atmosphere.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: October 20, 2009
    Assignee: Nanostellar, Inc.
    Inventors: Jifei Jia, Kyle L. Fujdala, Timothy J. Truex
  • Patent number: 7605106
    Abstract: Alkadienes may be telomerized in the presence of a heterogeneous catalyst comprising an alumina or titania support which is modified with one or more ionic complexes of Pd or Pt and activated at a temperature from 450° C. to 850° C. for a time not less than two hours. The resulting telomere may be useful in a number of applications.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: October 20, 2009
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Antonio Pietro Nicola, Andrzej Krzywicki
  • Patent number: 7605108
    Abstract: A catalyst which suppresses aggregation of metal particles and which has superior heat resistance. In the catalyst, metal particles are supported by a surface of a carrier while being partially embedded therein.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: October 20, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hironori Wakamatsu, Hirofumi Yasuda, Kazuyuki Shiratori, Masanori Nakamura, Katsuo Suga, Toru Sekiba
  • Patent number: 7601670
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating any one of a noble metal particle (5) and a transition metal particle (10) in a reversed micelle (1); a step of precipitating, in the reversed micelle (1) in which any one of the noble metal particle (5) and the transition metal particle (10) is precipitated, a porous support material (7) which supports the noble metal particle (5) and the transition metal particle (10); and a step of precipitating the other of the noble metal particle (5) and the transition metal particle (10) in the reversed micelle (1) in which any one of the noble metal particle (5).
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: October 13, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hirofumi Yasuda, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Kazuyuki Shiratori, Toru Sekiba
  • Patent number: 7601669
    Abstract: In a powdery catalyst (1), a porous carrier (2) has a complex part (3) configured to hold a noble metal particle (4), the complex part being composed of a transition metal material and a constituent material of the porous carrier (2).
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: October 13, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masanori Nakamura, Hironori Wakamatsu, Katsuo Suga, Toru Sekiba
  • Patent number: 7601671
    Abstract: A method for preparing an exhaust gas catalyst includes preparing a washcoat comprising a catalytically effective amount of at least one catalytically active metal disposed upon an oxide support; disposing the catalytically active metal-oxide support washcoat upon a catalyst substrate; drying the washcoated catalyst substrate using microwave energy to affix the precious metals to the oxide support; and conventionally calcining the dried washcoated catalyst substrate. The catalysts comprising a substrate having dispersed thereon an inorganic oxide washcoat, the washcoat having been affixed to the substrate by microwave drying, exhibit high exhaust gas purifying performance and long durability. The catalysts thus produced further provide a long in-service lifetime for reforming organic fuel species into hydrogen, carbon monoxide and light hydrocarbons used in the nitrogen oxides reduction process.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: October 13, 2009
    Assignee: Umicore AG & Co. KG
    Inventor: William J. LaBarge
  • Publication number: 20090250353
    Abstract: A method of fabricating a nanoporous material, the method comprising the steps of: (i) heating a substrate in the presence of at least one reducing agent and at least one precursor solution; and (ii) cooling the resulting nanoporous material. The nanoporous material may be used for detection of a substrate, for an electrode in a fuel cell, and as a catalyst in the electro-oxidation of an organic species.
    Type: Application
    Filed: May 25, 2007
    Publication date: October 8, 2009
    Inventors: Aicheng Chen, Kallum Koczkur, Jingpeng Wang
  • Patent number: 7598204
    Abstract: A reagent suitable for use as a catalyst comprises a first metal species substrate having a second reduced metal species coated thereon, the second reduced metal species being less electropositive than the first metal. Methods of manufacture are also provided.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: October 6, 2009
    Assignee: General Motors Corporation
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui
  • Patent number: 7598205
    Abstract: In a three-way catalyst for purifying exhaust gases from internal combustion engines, scattering of bismuth components can be suppressed by employing a Bi—Ti composite oxide at a predetermined ratio. Accordingly, the effect of suppressing hydrogen sulfide emissions can be retained for a long time. This catalyst comprises a support substrate, and a catalyst layer formed on the support substrate and including a noble metal, a porous oxide, and a Bi—Ti composite oxide, and satisfies 0.3?R?1.5, where R is the molar ratio of the Bi content to the Ti content per unit volume of the support substrate.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: October 6, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiromasa Suzuki
  • Patent number: 7592290
    Abstract: The invention relates to supported catalysts and a process for the production of these catalysts. These supported catalysts may be used in various reactions such as reforming reactions (e.g. steam methane reforming (SMR) reactions and autothermal reforming (ATR) reactions). In one aspect of the invention, the supported catalyst comprises a transition metal oxide; optionally a rare-earth metal oxide; and a transition metal aluminate.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: September 22, 2009
    Assignee: Sulzer Metco(Canada) Inc.
    Inventors: Syed Tajammul Hussain, Eugene Stelmack
  • Publication number: 20090233790
    Abstract: Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 17, 2009
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Stefan Vajda, Michael J. Pellin, Jeffrey W. Elam, Christopher L. Marshall, Randall A. Winans, Karl-Heinz Meiwes-Broer
  • Publication number: 20090226357
    Abstract: The invention concerns a process for preparing metallic nanoparticles with an anisotropic nature by using two different reducing agents, preferably with different reducing powers, on a source of a metal selected from columns 8, 9 or 10 of the periodic table of the elements.
    Type: Application
    Filed: November 14, 2006
    Publication date: September 10, 2009
    Inventors: Denis Uzio, Catherine Verdon, Cecile Thomazeau, Bogdan Harbuzaru, Gilles Berhault
  • Patent number: 7585812
    Abstract: A catalyst for use in the Fischer-Tropsch process, and a method to prepare the catalyst is disclosed. The catalyst of the present invention has a higher surface area, more uniform metal distribution, and smaller metal crystallite size than Fischer-Tropsch catalysts of the prior art.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: September 8, 2009
    Assignee: Sud-Chemie Inc.
    Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
  • Patent number: 7585811
    Abstract: A method of producing catalyst powder of the present invention has a step of precipitating a noble metal particle (2) and a porous carrier (1) in a reversed micelle substantially simultaneously; and a step of precipitating a transition metal particle (3) in the reversed micelle. By this method, it is possible to obtain catalyst powder which restricts an aggregation of the noble metal particles even at a high temperature and is excellent in a catalytic activity.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: September 8, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masanori Nakamura, Katsuo Suga, Toru Sekiba, Hironori Wakamatsu, Kazuyuki Shiratori, Hirofumi Yasuda
  • Publication number: 20090217922
    Abstract: A catalyst for cellulose hydrolysis and/or the reduction of hydrolysis products, in which a transition metal of group 8 to 11 is supported on a solid support. A method of producing sugar alcohols comprising: hydrolyzing cellulose in the presence of the catalyst in a hydrogen-containing atmosphere with pressurization; and reducing the hydrolysis product of cellulose. Provided are a catalyst for use in the production of sugar alcohols by the hydrolysis and hydrogenation of cellulose that affords easy separation of catalyst and product, and that does not require pH adjustment, acid or alkali neutralization, or activation of the catalyst during reuse, and a method of producing sugar alcohols from cellulose employing this catalyst.
    Type: Application
    Filed: March 1, 2007
    Publication date: September 3, 2009
    Inventors: Atsushi Fukuoka, Paresh Dhepe
  • Publication number: 20090215613
    Abstract: The present invention is directed to yttrium compositions and methods for making such metal oxide compositions, specifically, metal oxide compositions having high surface area, high metal/metal oxide content, and/or thermal stability with inexpensive and easy to handle materials.
    Type: Application
    Filed: November 1, 2007
    Publication date: August 27, 2009
    Applicant: Symyx Technologies, Inc.
    Inventor: Alfred Hagemeyer
  • Publication number: 20090208403
    Abstract: This invention relates primarily to a novel method to manufacture single/multi/fibers carbon filaments (nano tubes) in pure form optionally with antiferromagnetic and electrical property wherein the byproduct is hydrogen gas resulting in reduction of environmental carbon emissions by at least 20%; both carbon filaments and resultant exhaust are useful products.
    Type: Application
    Filed: February 17, 2008
    Publication date: August 20, 2009
    Applicant: Quaid-e-Azam University
    Inventors: Syed Tajammul Hussain, Mohammed Mazhar, Sheraz Gul, M. Abdullah Khan
  • Publication number: 20090209412
    Abstract: A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.
    Type: Application
    Filed: October 7, 2005
    Publication date: August 20, 2009
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Yves O. Parent, Kim Magrini, Steven M. Landin, Marcus A. Ritland
  • Patent number: 7572427
    Abstract: The present invention is related to single and/or multiple-wall carbon nanotubes which may contain interstitial metals obtainable by a preparation process. The process includes a catalytic step using a catalytic system which includes a catalyst and a support. The support comprises hydroxides and/or carbonates or mixtures thereof with or without metal oxides. The present invention is also related to carbon fibers obtainable by said preparation process. The present invention also pertains in particular to said catalytic system and to said preparation process. Another aspect concerns the use of the nanotubes and of the catalytic system according to the invention.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: August 11, 2009
    Assignee: Facultes Universitaires Notre-Dame De La Paix
    Inventors: Janos B. Nagy, Narasimaiah Nagaraju, Isabelle Willems, Antonio Fonseca
  • Patent number: 7566393
    Abstract: Compounds and methods for sorbing organosulfur compounds from fluids are provided. Generally, compounds according to the present invention comprise mesoporous, nanocrystalline metal oxides. Preferred metal oxide compounds either exhibit soft Lewis acid properties or are impregnated with a material exhibiting soft Lewis acid properties. Methods according to the invention comprise contacting a fluid containing organosulfur contaminants with a mesoporous, nanocrystalline metal oxide. In a preferred embodiment, nanocrystalline metal oxide particles are formed into pellets (14) and placed inside a fuel filter housing (12) for removing organosulfur contaminants from a hydrocarbon fuel stream.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 28, 2009
    Assignee: NanoScale Corporation
    Inventors: Kenneth Klabunde, Bill R. Sanford, P. Jeevanandam
  • Patent number: 7563744
    Abstract: The present invention relates to a catalyst for the purification of exhaust gases from an internal combustion engine, which comprises a catalytically active coating on an inert ceramic or metal honeycomb body, said coating comprising at least one platinum group metal selected from the group consisting of platinum, palladium, rhodium and iridium on a fine, oxidic support material. As an oxidic support material, the catalyst comprises a low-porosity material on the basis of silicon dioxide that comprises aggregates of essentially spherical primary particles having an average particle diameter of between 7 and 60 nm.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: July 21, 2009
    Assignee: Umicore AG & Co. KG
    Inventors: Harald Klein, Ulrich Neuhausen, Egbert Lox, Jürgen Gieshoff, Thomas Kreuzer
  • Patent number: 7563747
    Abstract: The present invention relates to a catalyst comprising particles of a cobalt and zinc co-precipitate, having a volume average particle size of less than 150 ?m. Another aspect of the invention is the use of such a catalyst in a Fischer-Tropsch process. The present invention further relates to a method for preparing a catalyst comprising cobalt and zinc oxide, wherein an acidic solution comprising zinc ions and cobalt ions and a alkaline solution are contacted and the precipitate is isolated.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: July 21, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Cornelis Roeland Baijense, Tjalling Rekker
  • Patent number: 7563743
    Abstract: This invention relates to doped catalysts on an aluminosilicate substrate with a low content of macropores and the hydrocracking/hydroconversion and hydrotreatment processes that use them. The catalyst comprises at least one hydro-dehydrogenating element that is selected from the group that is formed by the elements of group VIB and group VIII of the periodic table and a dopant in a controlled quantity that is selected from among phosphorus, boron, and silicon and a non-zeolitic substrate with a silica-alumina base that contains a quantity of more than 15% by weight and of less than or equal to 95% by weight of silica (SiO2).
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: July 21, 2009
    Assignee: Institute Francais du Petrole
    Inventors: Patrick Euzen, Alexandra Chaumonnot, Carole Bobin, Patrick Bourges, Christophe Gueret, Hugues Dulot
  • Patent number: 7563745
    Abstract: The invention relates to a shaped catalyst or catalyst precursor containing a catalytically active component or a precursor therefore, the component selected from elements of Group VIII of the Periodic Table of the Elements, supported on a carrier, which catalyst or catalyst precursor is an elongated shaped particle having three protrusions each extending from and attached to a central position, wherein the central position is aligned along the longitudinal axis of the particle, the cross-section of the particle occupying the space encompassed by the outer edges of six circles around a central circle, each of the six circles touching two neighboring circles while three alternating circles are equidistant to the central circle and may be attached to the central circle, minus the space occupied by the three remaining outer circles and including the six interstitial regions.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: July 21, 2009
    Assignee: Shell Oil Company
    Inventors: Arend Hoek, Hans Michiel Huisman, Carolus Matthias Anna Maria Mesters
  • Publication number: 20090180942
    Abstract: Catalysts, methods and systems for treating diesel engine exhaust streams are described. In one or more embodiments, the catalyst comprises a refractory metal oxide, a transition metal oxide, and platinum, the catalyst being effective to oxidize ammonia at temperatures less than about 300° C. and exhibiting no significant decrease in ammonia oxidation efficiency upon hydrothermal aging. Methods and systems including such catalysts are also provided.
    Type: Application
    Filed: January 16, 2008
    Publication date: July 16, 2009
    Inventor: Matthew T. Caudle
  • Publication number: 20090176053
    Abstract: There are disclosed a honeycomb structure capable of providing a honeycomb catalytic body which is excellent in purification efficiency with a small pressure loss and which can be mounted even in a limited space, a honeycomb catalytic body which is excellent in purification efficiency with a small pressure loss and which can be mounted even in a limited space, and a manufacturing method of the same. A honeycomb catalytic body 50 of the present invention is a honeycomb catalytic body of a flow-through type through which cells as through channels extend from an inlet to an outlet, both the surfaces of partition walls 4 of a honeycomb structure 1 and the inner surfaces of pores 25 carry a catalyst to form catalyst layers 5, and the catalyst carrying partition walls have a permeability of 1×10?12 [m2] or more, preferably 1×10?9 [m2] or less.
    Type: Application
    Filed: November 28, 2008
    Publication date: July 9, 2009
    Applicant: NGK INSULATORS, LTD.
    Inventors: Yukio MIYAIRI, Yoshihiro YAMAMOTO, Shogo HIROSE
  • Patent number: 7547656
    Abstract: An exhaust gas cleaning catalyst comprising: a carrier substrate; a catalyst carrying layer formed on the carrier substrate; and a noble metal catalyst carried by the catalyst carrying layer; wherein said catalyst carrying layer comprises at least two layers, and of the at least two layers, lower layer on the side of the carrier substrate is a metal oxide layer with porosity of 40˜75% and upper layer on the side of the top surface is a metal oxide layer having thermal conductivity of 5 W/mK or less.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: June 16, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masahide Miura
  • Publication number: 20090149323
    Abstract: It is to provide a method for producing a monolithic catalyst for exhaust gas purification, which can effectively perform exhaust gas purification in accordance with the shape of an exhaust manifold of a catalytic converter, and to provide a monolithic catalyst. The monolithic catalyst has a catalyst coat layer in the axial center region of a substrate, which includes the axial center of an exhaust pipe and has a lower end corresponding to a projected plane of the cross-section of the exhaust pipe, in an amount larger than in a peripheral region other than the axial center region of the substrate. The process of forming the catalyst coat layer which has this distribution of coating amount comprises maintaining a slurry for forming the catalyst coat layer in an approximately truncated conical shape, bringing one end of the monolithic catalyst substrate into close contact with a horizontal side of the slurry, and sucking once the slurry from the other end of the substrate.
    Type: Application
    Filed: December 2, 2008
    Publication date: June 11, 2009
    Inventors: Tomoaki SUNADA, Yoshihide Segawa
  • Patent number: 7541311
    Abstract: A vermiculite supported catalyst for carbon monoxide (CO) preferential oxidation (PROX) is disclosed. The CO PROX catalyst comprises at least one catalytic agent, one optional modifier agent, one carrier material, and a vermiculite support. The process for preparing the vermiculite supported catalyst in this invention includes depositing first the carrier material on a vermiculite support followed by calcination to form the carrier-containing support, and wet impregnating the catalytic agent and the optional modifier agent on the carrier-containing support followed by drying and calcination to form the CO preferential oxidation catalyst.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: June 2, 2009
    Assignee: Institute of Nuclear Energy Research
    Inventors: Chao-Yuh Chen, Ching-Tsuen Huang, Chi-Hung Liao, Ching-Tu Chang
  • Patent number: 7541012
    Abstract: The present invention features a catalytic material which includes a metal catalyst anchored to a nano-sized crystal containing a metal oxide. Furthermore, the present invention features a method of producing the catalytic material described herein. Finally, the present invention features using the catalytic material for removing contaminants and for getting the desired products.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: June 2, 2009
    Assignee: The Hong Kong University of Science and Technology
    Inventors: King Lun Yeung, Nan Yao, Ka Yee Ho
  • Patent number: 7541310
    Abstract: This invention relates to catalysts comprising a catalytic metal deposited on a composite support with well-dispersed chemical “anchor” species acting as nucleation centers for catalytic metal crystallites growth. The catalysts have the advantage that the average catalytic metal crystallite size can be controlled by the molar ratio of catalytic metal to chemical “anchor,” and is not limited by the porous structure of the support. A preferred embodiment comprises a cobalt-based catalyst on a silica-alumina support made by a co-gel method, wherein its average pore size can be controlled by the pH. The alumina species in the support most likely serve as chemical “anchors” to control the dispersion of cobalt species, such that the average cobalt crystallite size can be greater than the average pore size.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: June 2, 2009
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Kandaswamy Jothimurugesan, Kevin L. Coy, James Dale Ortego, Jr., Nithya Srinivasan, Olga P. Ionkina
  • Publication number: 20090137386
    Abstract: The invention proposes a particulate filter having a catalytic coating which contains two catalysts arranged one behind the other. The first catalyst is located in the gas inlet region of the filter and contains a palladium/platinum catalyst. The second catalyst is arranged downstream of the first catalyst and preferably contains platinum alone as catalytically active component. The combination of these two catalysts provides the coated filter with a good ageing stability and resistance to sulphur poisoning.
    Type: Application
    Filed: August 13, 2005
    Publication date: May 28, 2009
    Applicant: UMICORE AG & CO. KG
    Inventors: Marcus Pfeifer, Markus Koegel, Roger Staab, Pascal Adolph, Yvonne Demel, Tobias Kuhl, Egbert Lox, Thomas Kreuzer, Frank-Walter Schuetze
  • Patent number: 7538064
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a phosphorus component, and at least one platinum-group metal component which is preferably platinum. The catalyst has a structure other than a hetropoly anion structure.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: May 26, 2009
    Assignee: UOP LLC
    Inventors: Ralph D. Gillespie, Feng Xu
  • Patent number: 7538065
    Abstract: An improved noble metal-containing catalyst containing a specific ratio of silica to aluminum in the framework suitable for use in the hydroprocessing of hydrocarbonaceous feeds, which is directed at a catalyst comprising a hydrogenation-dehydrogenation component selected from the Group VIII noble metals and mixtures thereof on a mesoporous support having aluminum incorporated into its framework and an average pore diameter of about 15 to less than about 40 ?.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: May 26, 2009
    Assignee: International Business Machines Corporation
    Inventors: Stephen J. McCarthy, Wenyih F. Lai, Sylvain S. Hantzer, Ian A. Cody
  • Patent number: 7531479
    Abstract: A method of depositing a catalytically reactive coating to a substrate including selecting a target light off temperature for a predetermined catalytic combustion environment, selecting a thermal barrier coating composition, selecting a catalytic material and codepositing the thermal barrier coating composition and the catalytic material onto the substrate in proportions selected to produce the target light off temperature when exposed to the combustion environment. The method may include controlling the codepositing step to cause the thermal barrier coating composition to interact with the catalytic material to produce a phase having a light off temperature different from the respective light off temperatures of the thermal barrier coating composition and the catalytic material. A catalyst element may include a substrate and a first layer comprising a thermal barrier coating composition and a catalytic material throughout its depth disposed over a first portion of the substrate.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: May 12, 2009
    Assignee: Siemens Energy, Inc.
    Inventors: Andrew Jeremiah Burns, Ramesh Subramanian, Vasudevan Srinivasan
  • Publication number: 20090118119
    Abstract: A water gas shift catalyst comprising a precious metal deposited on a support, wherein the support is prepared from a mixture comprising a low surface area material, such as an aluminate, particularly a hexaaluminate, and a high surface area material, such as a mixed metal oxide, particularly a mixture of zirconia and ceria, to which may be added one or more of a high surface area transitional alumina, an alkali or alkaline earth metal dopant and an additional dopant selected from Ga, Nd, Pr, W, Ge, Au, Ag, Fe, oxides thereof and mixtures thereof.
    Type: Application
    Filed: November 1, 2007
    Publication date: May 7, 2009
    Applicant: SUD-CHEMIE INC.
    Inventors: Chandra Ratnasamy, Jon P. Wagner
  • Patent number: 7527771
    Abstract: A sample preparation method for characterization of nanoparticles embedded in the supports of heterogeneous catalysts, with improved particle dispersion, is introduced. The supported catalyst is first ground or milled into fine powder. Then, the powder is mixed into an organic solvent, and an etchant is added to the solvent to digest the supports and release metallic nanoparticles. The resulting solution is then placed in an ultrasonic bath where ultrasonic waves are generated and applied to the solution. The ultrasonic waves suppress agglomeration of the particles and also break up those particle clusters resulting from agglomeration during the prior steps. Subsequently, a sample is extracted from the solution and prepared for analysis.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: May 5, 2009
    Assignee: Nanostellar, Inc.
    Inventors: Juan Cai, Mats Larsson, Jifei Jia, Xianghong Hao, Jian Wang
  • Patent number: 7521392
    Abstract: The catalytic efficiency of supported catalysts containing metal nanoparticles is strongly related to the chemical softness at the surfaces of such nanoparticles. Supported catalysts containing platinum nanoparticles having average surface softness values (expressed in scaled units ranging from 0 to 1) between 0.07198 and 0.09247 exhibit high catalytic efficiency. The catalytic efficiency of such platinum nanoparticles for CO oxidation, expressed as the turn-over frequency (TOF), was observed to be on or above 0.03062 s?1. The supported catalysts containing platinum nanoparticles with tighter average surface softness ranges exhibit even higher catalytic efficiencies. The TOF for CO oxidation of platinum nanoparticles having average surface softness values between 0.08031 and 0.08679 was observed to be on or above 0.06554 s?1.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: April 21, 2009
    Assignee: Nanostellar, Inc.
    Inventors: Cetin Kilic, Jangsuk Hyun, Ligen Wang, Mats Larsson, Juan Cai, Jifei Jia, Xianghong Hao, Jonathan W. Woo
  • Patent number: 7510993
    Abstract: Compositions and methods for depositing one or more metal or metal alloy films on substrates. The compositions contain a catalyst, one or more carrier particles and one or more water-soluble or water-dispersible organic compounds. Metal or metal alloys may be deposited on the substrates by electroless or electrolytic deposition.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: March 31, 2009
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Peter R. Levey, Nathaniel E. Brese
  • Patent number: 7504355
    Abstract: Catalytic systems are provided that include a metallic catalyst attached to a ceramic support that has alumina as a principal ingredient. The ceramic support is doped with an adhesive agent so that the surface of the support includes the adhesive agent. The adhesive agent is designed to form an open-shell electronic structure at the interface between the metallic catalyst and the support. The open-shell structure promotes extended useful catalyst lifetimes. The adhesive agents are early transition metals that include titanium, zirconium, scandium, hafnium, lanthanum and yttrium. Doping of the ceramic support surface with the adhesive agent also increases the adhesion between the ceramic support and metallic monoliths to which the ceramic support may be attached.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: March 17, 2009
    Assignee: Princeton University
    Inventors: Emily A. Carter, Emily A. Jarvis
  • Patent number: 7504085
    Abstract: An alumina-based perovskite is formed by mixing a lanthanide source with a transitional alumina to form a dual-phase composition comprising in-situ formed LnAlO3 dispersed in alumina. The lanthanide content of the composition ranges from 6-35 wt. % to yield a high surface area composition which is useful as a catalyst or catalyst support such as for precious metals.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: March 17, 2009
    Assignee: BASF Catalysts LLC
    Inventor: Xiaolin David Yang
  • Patent number: 7498288
    Abstract: An exhaust gas-purifying catalyst includes a support and a catalyst active component including at least one noble metal supported by at least a portion of the support. The support includes a stabilized zirconia containing at least one stabilizing element selected from rare earth elements and alkaline earth elements. 20 to 80% by weight of a total amount of the active component is supported in the support in a form of solid solution with the stabilized zirconia, and 80 to 20% by weight of a total amount of the active component is supported on a surface of at least a portion of the support.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: March 3, 2009
    Assignee: Cataler Corporation
    Inventors: Satoshi Matsueda, Mareo Kimura, Naoto Miyoshi
  • Patent number: 7494953
    Abstract: A process for the preparation of an isomerisation catalyst comprising mixed aluminium, tungsten and zirconium oxides and a hydrogenation/dehydrogenation component, such as palladium or other Group VIII metals. The catalyst is useful in an isomerisation process for C4+ paraffins and may optionally also include shorter paraffins, aromatics or cycloparaffins.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: February 24, 2009
    Assignee: Haldor Topsoe A/S
    Inventors: Jindrich Houzvicka, Niels Jørgen Blom
  • Patent number: 7491674
    Abstract: A catalyst body including a catalytic material containing an alkali metal and/or an alkaline earth metal, a carrier carrying the catalytic material, and a method of manufacturing the catalyst body are provided. The carrier has a cordierite binder phase and aggregate phases dispersed in the cordierite binder phase.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: February 17, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Misako Fujii, Kenji Morimoto, Shinji Kawasaki
  • Patent number: 7473668
    Abstract: Process for the catalytic dehydrogenation of alkylaromatic hydrocarbons optionally mixed with ethane which comprises: A) dehydrogenating the hydrocarbon stream, optionally mixed with an inert gas, in a fluid bed reactor in the presence of a catalytic composition based on gallium and manganese supported on alumina modified with silica, at a temperature ranging from 400 to 700° C., at a total pressure ranging from 0.1 to 3 ata and with a GHSV (Gas Hourly Space Velocity) ranging from 50 to 10,000 h?1; and B) regenerating and heating the catalyst, by means of the catalytic oxidation of a fuel, in a fluid bed regenerator at a temperature higher than 400° C.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: January 6, 2009
    Assignee: Snamprogetti S.p.A.
    Inventors: Andrea Bartolini, Domenico Sanfilippo, Rodolfo Iezzi
  • Patent number: 7465690
    Abstract: In one embodiment, a method for making a catalytic element comprises forming a first slurry of a promoter oxide precursor and a refractory inorganic oxide and calcining the first slurry to form a supported promoter. The supported promoter and a noble metal solution are combined to form a second slurry that is calcined to form a catalyst composition. The catalyst composition is applied to a substrate and the substrate is calcined to form the catalytic element. In one embodiment, the catalyzed particulate filter comprises a shell disposed around the catalytic element, wherein the shell has an inlet and an outlet, and a retention member disposed between at least a portion of the shell and the catalytic element.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: December 16, 2008
    Assignee: Umicore AG & Co. Kg
    Inventor: Jiyang Yan
  • Patent number: 7456130
    Abstract: A process for preparing a naphtha reforming catalyst has been developed. The process involves the use of a chelating ligand such as ethylenediaminetetraacetic acid (EDTA). The aqueous solution of the chelating ligand and a tin compound is used to impregnate a support, e.g., alumina extrudates. A platinum-group metal is also an essential component of the catalyst. Rhenium may also be a component. A reforming process using the catalyst has enhanced yield, activity, and stability for conversion of naphtha into valuable gasoline and aromatic products.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: November 25, 2008
    Assignee: UOP LLC
    Inventors: Leonid B. Galperin, Frank S. Modica, Thomas K. McBride, Jr.
  • Patent number: 7452844
    Abstract: The Fischer-Tropsch catalyst of the present invention is a transition metal-based catalyst having a high surface area, a smooth, homogeneous surface morphology, an essentially uniform distribution of cobalt throughout the support, and a small metal crystallite size. In a first embodiment, the catalyst has a surface area of from about 100 m2/g to about 250 m2/g; an essentially smooth, homogeneous surface morphology; an essentially uniform distribution of metal throughout an essentially inert support; and a metal oxide crystallite size of from about 40 ? to about 200 ?. In a second embodiment, the Fischer-Tropsch catalyst is a cobalt-based catalyst with a first precious metal promoter and a second metal promoter on an aluminum oxide support, the catalyst having from about 5 wt % to about 60 wt % cobalt; from about 0.0001 wt % to about 1 wt % of the first promoter, and from about 0.01 wt % to about 5 wt % of the second promoter.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: November 18, 2008
    Assignee: Süd-Chemie Inc
    Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
  • Patent number: 7452843
    Abstract: In one embodiment, an exhaust treatment device includes: a substrate, a shell disposed around the substrate, and a retention material disposed between the shell and the substrate. The substrate includes a catalyst that includes a precious metal and a solid solution comprising solid solution metals, wherein the solid solution metals include yttrium, zirconium, and titanium.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: November 18, 2008
    Assignee: Umicore AG & Co. KG
    Inventors: William J. LaBarge, Joseph V. Bonadies, Joachim Kupe