And Group Iii Metal Containing (i.e., Sc, Y, Al, Ga, In Or Tl) Patents (Class 502/341)
  • Patent number: 6777373
    Abstract: A catalyst is prepared by impregnating a &ggr;-alumina support with a magnesium salt, drying the product, and impregnating the product with a copper salt, preferably together with a lithium salt. The catalyst preferably contains 0.1 to 5% magnesium, 2 to 10% copper and 0 to 5% lithium, by weight, and is particularly effective in oxygen-based processes.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: August 17, 2004
    Assignee: EVC Technology AG
    Inventors: Diego Carmello, Marco Garilli, Pierluigi Fatutto, Letizia Caccialupi
  • Patent number: 6759365
    Abstract: Catalysts for the oxychlorination of ethylene to 1,2-dichloroethylene, comprising compounds of Cu and Mg supported on alumina, in which the copper content, expressed as Cu, is 2 to 8% by weight, the Mg/Cu atomic ratio is from 1.2 to 2.5, and the specific surface of the catalyst is from 30 to 130 m2/g.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: July 6, 2004
    Assignee: SUD Chemie Mt S.r.l.
    Inventors: Luigi Cavalli, Francesco Casagrande
  • Patent number: 6756339
    Abstract: A catalyst for the nonoxidative production of alkenylaromatics from alkylaromatics, wherein the catalyst is predominantly iron oxide, an alkali metal compound, copper oxide, cerium oxide and less than about 100 ppm of a source for a noble metal, such as palladium, platinum, ruthenium, rhenium, osmium, rhodium or iridium. Additional components of the catalyst may include compounds based on molybdenum, tungsten, calcium, magnesium, chromium and other such promoters.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: June 29, 2004
    Assignees: Sud-Chemie Inc., Sud-Chemie Catalysts Japan, Inc.
    Inventors: Andrzej Rokicki, Dennis Smith, David L. Williams
  • Patent number: 6740620
    Abstract: An orthorhombic phase mixed metal oxide is produced selectively in quantitative yield.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: May 25, 2004
    Assignee: Rohn and Haas Company
    Inventors: Leonard Edward Bogan, Jr., Daniel A. Bors, Fernando Antonio Pessoa Cavalcanti, Michael Bruce Clark, Jr., Anne Mae Gaffney, Scott Han
  • Patent number: 6730808
    Abstract: Reactor membranes for used in oxidation reactions of hydrocarbons involving oxygen comprising a selective oxidation catalyst on a mixed conducting, oxide ion selective ceramic membrane of the composition (Sr1-xCax)1-yAyMn1-zBzO3-&dgr;, where A is Ba, Pb, Na, K, Y, an element of the lanthanide group or a combination thereof, B is Mg, Al, Ga, In, Sn, an element of the 3d or 4d period or a combination thereof, x is from 0.2 to 0.8, y is from 0 to 0.4, z is from 0 to 0.6, and &dgr; is a number, dependent on x, y and z, that renders the composition charge neutral.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: May 4, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Stefan Bitterlich, Hartwig Voss, Hartmut Hibst, Andreas Tenten, Ingolf Voigt, Ute Pippardt
  • Patent number: 6723295
    Abstract: A copper-containing catalyst of the composition of N2O contains a compound of the formula MxAl2O4, where M is Cu or a mixture of Cu and Zn and/or Mg and x is from 0.8 to 1.5. The novel catalyst is used in a process for the catalytic decomposition of pure N2O or N2O contained in gas mixtures, at elevated temperatures.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: April 20, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Baier, Thomas Fetzer, Otto Hofstadt, Michael Hesse, Gert Bürger, Klaus Harth, Volker Schumacher, Hermann Wistuba, Bernhard Otto
  • Patent number: 6719821
    Abstract: The production and selection of precursor mixtures used to produce fine powders and methods for making fine powders using the selected precursor. The precursor mixture comprises at least one metal containing precursor, the metal containing precursor has an average molecular weight of less than 2000 grams per unit mol of the metal, the metal containing precursor has a normal boiling point greater than 350K, and the viscosity of the precursor mixture is between 0.1 to 250 cP. The precursor mixture is processed under conditions that produce a fine powder from the precursor mixture. Fine powders produced are of size less than 100 microns, preferably less than 10 micron, more preferably less than 1 micron, and most preferably less than 100 nanometers.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: April 13, 2004
    Assignee: NanoProducts Corporation
    Inventors: Tapesh Yadav, Elena Mardilovich
  • Patent number: 6716791
    Abstract: The present invention relates to a catalyst for the synthesis of ammonia from hydrogen and nitrogen consisting of iron oxides and promoters where the promoters comprise oxides of both cobalt and titanium in addition to Al, K, Ca and Mg oxides, and where the concentration of cobalt is between 0.1% and 3.0% by weight of metal and the concentration of titanium is between 0.1% and 1.0% by weight of metal.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: April 6, 2004
    Assignee: Norsk Hydro ASA
    Inventors: Terje Fuglerud, Per Torbjørn Skaugset
  • Publication number: 20040038815
    Abstract: A catalyst for the full oxidation of volatile organic compounds (VOC), particularly hydrocarbons, and of CO to CO2, comprising:
    Type: Application
    Filed: August 21, 2003
    Publication date: February 26, 2004
    Inventors: Francesco Cino Matacotta, Gianluca Calestani, Chiara Dionigi, Petr Nozar
  • Publication number: 20040031727
    Abstract: Cationic layered materials, a process for their preparation and their use in hydrocarbon conversion, purification, and synthesis processes, such as fluid catalytic cracking. Cationic layered materials are especially suitable for the reduction of SOx and NOx emissions and the reduction of the sulfur and nitrogen content in fuels like gasoline and diesel. The new preparation process avoids the use of metal salts and does not require the formation of anionic clay as an intermediate.
    Type: Application
    Filed: June 24, 2003
    Publication date: February 19, 2004
    Inventors: Paul O'Conner, William Jones, Dennis Stamires
  • Publication number: 20040029729
    Abstract: A hydrotalcite-based material having an improved mechanical strength, said hydrotalcite having the following general formula: M2+aM3+b(OH)c(An−)d*xH2O wherein M2+ is at least one divalent metal; M3+ is at least one trivalent metal; A is an n-valent anion, n is 1 or 2 and a and b are positive numbers, a>b, which hydrotalcite is deposited on alumina or an alumina precursor, a process of preparing said hydrotalcite-based material, the use thereof as a catalyst support material, a catalyst for the dehydrogenation of propane, and a process using such a catalyst in the dehydrogenation of propane.
    Type: Application
    Filed: March 28, 2003
    Publication date: February 12, 2004
    Inventors: Erling Rytter, Morten Ronnekleiv, Unni Olsbye
  • Patent number: 6683225
    Abstract: Oxidic catalysts containing 20 to 25% by weight of aluminum and 40 to 50% by weight of zinc which are suitable for the production of unsaturated fatty alcohols containing 8 to 22 carbon atoms by hydrogenation of unsaturated fatty acids, fatty acid lower alkyl esters or unsaturated fatty acid glycerides are disclosed. A process for the production of the oxidic aluminum/zinc catalysts is also disclosed.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: January 27, 2004
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Guenther Demmering, Lothar Friesenhagen, Stephan Heck, Hans Peter Kubersky
  • Patent number: 6680416
    Abstract: A process for preparing 1,2-dichloroethane by reacting about 2 mols of ethylene, about 4 mols of hydrogen chloride and about 1 mol of oxygen in the presence of a fixed bed of supported catalyst based on copper(II) chloride in only one reaction zone at a pressure of from 2 to 10 bar and at from 220 to 280° C.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: January 20, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Werner Hebgen, Christopher William Rieker, Ruprecht Meissner
  • Patent number: 6677263
    Abstract: Disclosed is a catalytic promoter for fluid catalytic cracking of hydrocarbons, comprising a HZSM-5 zeolite in an amount of 5-65 wt % based on the total weight of the catalytic promoter, said zeolite being modified with Zn and at least one element selected from the group consisting of P, Ga, Al, Ni and rare earth elements, the combined amount of said modifying elements being 0.01-10.37 wt % based on total weight of said modified HZSM-5 zeolite. A reduced olefin content in gasoline from catalytic cracking process, an increased gasoline octane number and an increased lower olefin yield can be obtained using said catalytic promoter.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: January 13, 2004
    Assignees: China Petro Chemical Corporation, Luoyang Petro-Chemical Engineering Corporation SINOPEC
    Inventors: Longyan Wang, Xiaobo Wei, Danhe Liu, Daijun Hao, Jinlong Liu, Xuhui Gong
  • Patent number: 6677272
    Abstract: A ceramic support element for a NOx trap which includes a NOx storage component comprising an alkali metal, the ceramic support having a composition lying within a ternary system selected from the group consisting of Al2TiO5—MgTi2O5—MgAl2O4 and Al2TiO5—FeTiO5—Al2O3, a coefficent of thermal expansion (22-800° C.) of less than 20×10−7/° C. and a modulus of rupture as measured on a solid rod of circular cross section of greater than 1000 pounds per square inch.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: January 13, 2004
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Shahid G. Lakhwani
  • Patent number: 6670303
    Abstract: Catalysts having a bimodal pore radius distribution comprise a) from 10 to 99.9% by weight of zirconium dioxide and b) from 0 to 60% by weight of aluminum oxide, silicon dioxide and/or titanium dioxide and c) from 0.1 to 10% by weight of at least one element of main group I or II, an element of transition group III, an element of transition group VIII, of the Periodic Table of the Elements, lanthanum and/or tin, with the proviso that the sum of the percentages by weight is 100.
    Type: Grant
    Filed: July 25, 2000
    Date of Patent: December 30, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Daniel Heineke, Klaus Harth, Uwe Stabel
  • Patent number: 6656875
    Abstract: The present invention concerns alumina extrudates with characteristics, in particular porosity, which are adapted for their use as catalyst supports or catalysts, in particular for hydrotreating petroleum cuts. It also concerns processes for forming the alumina to achieve the properties of the extrudates of the invention.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: December 2, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Luc Le Loarer, Hubert Nussbaum, Denis Bortzmeyer
  • Patent number: 6645907
    Abstract: A photocatalyst and a manufacturing method therefore, in which the adhesion to a support is increased and a baking step is simplified. The photocatalyst comprises the support and a metallic oxide layer provided on the support by applying and baking a colloidal solution including at least a metallic oxide precursor on the support, wherein the metallic oxide layer includes a high density metallic oxide layer of a less porous structure and a low density metallic oxide layer of a more porous structure.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: November 11, 2003
    Assignee: Yamaha Corporation
    Inventor: Keiichi Muramatsu
  • Patent number: 6646158
    Abstract: A mixed metal oxide Mo—V—Ga—Pd—Nb—X catalytic system, where X is selected from La, Te, and Zn, provides the oxidation of C2-C8 hydrocarbons to corresponding acids with a molecular oxygen-containing gas.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: November 11, 2003
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Yajnavalkya Subrai Bhat, Syed Irshad Zaheer, Abdullah Bin Nafisah, Asad Ahmed Khan
  • Patent number: 6638889
    Abstract: A method of treating a catalyst support comprises introducing onto and/or into an untreated catalyst support which is partially soluble in an aqueous acid solution and/or a neutral aqueous solution, Si, Zr, Cu, Zn, Mn, Ba, Co, Ni and/or La as a modifying component. The modifying component is capable, when present in and/or on the catalyst support, of suppressing the solubility of the catalyst support in the aqueous acid solution and/or the neutral aqueous solution. A protected modified catalyst support which is less soluble or more inert in the aqueous acid solution and/or the neutral aqueous solution, than the untreated catalyst support, is thus formed. A method of forming a catalyst from the modified catalyst support is also provided.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: October 28, 2003
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Peter Jacobus Van Berge, Jan Van De Loosdrecht, Elsie Adriana Caricato, Sean Barradas
  • Patent number: 6630421
    Abstract: A reactive agent for decomposing fluorine compounds comprising alumina and an alkaline earth metal compound; a process for decomposing fluorine compounds, comprising contacting the reactive agent with a fluorine compound at a temperature of 200° C. or more; and a process for manufacturing a semiconductor device, comprising an etching or cleaning and a decomposing using the reactive agent.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: October 7, 2003
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Hitoshi Atobe, Toraichi Kaneko, Yuji Hayasaka, Shinichi Yano
  • Publication number: 20030176278
    Abstract: The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).
    Type: Application
    Filed: March 5, 2003
    Publication date: September 18, 2003
    Inventors: David Wickham, Ronald Cook
  • Publication number: 20030166465
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline and diesel fuels are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promotors are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline and diesel fuels whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product.
    Type: Application
    Filed: January 21, 2003
    Publication date: September 4, 2003
    Inventor: Gyanesh P. Khare
  • Patent number: 6607704
    Abstract: An integrated lean NOx trap. The integrated lean NOx trap includes a lean NOx trap containing a composite metal oxide mixture consisting essentially of about 80-100 wt % stoichiometric spinel MgAl2O4 and between about 0-20 wt % of CeO2 or CeO2—ZrO2. A method for removing NOx and SOx impurities from exhaust gases using the integrated lean NOx trap is also described.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: August 19, 2003
    Assignee: Ford Global Technologies, LLC
    Inventors: Diane L. Guttridge, Jun (John) Li, Mohinder Singh Chattha, Robert J. Kudla, William Lewis Henderson Watkins
  • Patent number: 6602820
    Abstract: A method for producing a nitrogen oxide storage material that contains at least one storage component in the form of particles of an oxide, carbonate or hydroxide of the elements magnesium, strontium, barium, lanthanum and cerium on a carrier material from the group consisting of doped cerium oxide, cerium/zirconium mixed oxide and aluminum oxide or mixtures of these. The method is carried out by suspending the support material in an aqueous solution of precursors of the storage components, this suspension is then introduced into a hot gas stream, the temperature of which is calculated so that, during a residence time of the suspension in the hot gas stream of less than one minute, the solvent of the suspension is evaporated out and the precursors of the storage components are thermally broken down and converted to the storage components before the storage material that forms in this way is separated from the stream of hot gases.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: August 5, 2003
    Assignee: Degussa-Huls Aktiengesellschaft
    Inventors: Ulrich Göbel, Lutz Marc Ruwisch, Ralph Kiessling, Martin Foerster
  • Publication number: 20030134743
    Abstract: An exhaust gas purifying system and a catalyst used for the system prevents NOx absorbent from being poisoned by a sulfur compound to keep NOx absorption performance. The catalyst has at least an inner and an outer layer on a support material, the inner layer having NOx absorbent capable of absorbing NOx and a sulfur compound in the exhaust gas produced from combustion of a lean fuel mixture, releasing the NOx into the exhaust gas and substantially stopping absorbing the sulfur compound when a rich mixture is burnt, and the outer layer having a sulfur compound absorbent capable of absorbing the sulfur compound in the exhaust gas produced from combustion of a lean fuel mixture and capable of discharging the sulfur compound into the exhaust gas when a rich fuel mixture is burnt while the engine operates in a lean-burn zone. NOx is absorbed by the NOx absorbent in the inner layer and the sulfur compound is adsorbed in the sulfur compound absorbent in the outer layer.
    Type: Application
    Filed: September 14, 2001
    Publication date: July 17, 2003
    Inventors: Hirosuke Sumida, Yuki Koda, Makoto Kyogoku, Hideharu Iwakuni, Hiroshi Yamada, Kenji Okamoto, Akihide Takami
  • Patent number: 6576587
    Abstract: A catalyst for adsorbing oxides of nitrogen from the exhaust gases of an internal combustion engine, comprising an alkaline earth active catalyst site, and a transition metal oxide having a surface area of at least about 75 m2 /g.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: June 10, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: William J. Labarge, Mark David Hemingway, Joachim Kupe, Galen Bruce Fisher
  • Patent number: 6555498
    Abstract: A photocatalyst and a manufacturing method therefore, in which the adhesion to a support is increased and a baking step is simplified. The photocatalyst comprises the support and a metallic oxide layer provided on the support by applying and baking a colloidal solution including at least a metallic oxide precursor on the support, wherein the metallic oxide layer includes a high density metallic oxide layer of a less porous structure and a low density metallic oxide layer of a more porous structure.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: April 29, 2003
    Assignee: Yamaha Corporation
    Inventor: Keiichi Muramatsu
  • Patent number: 6555496
    Abstract: A microcrystalline boehmite containing additive in a homogeneously dispersed state. Suitable additives are compounds containing elements selected from the group consisting of alkaline earth metals, alkaline metals, rare earth metals, transition metals, actinides, silicon, gallium, boron, titanium, and phosphorus. The microcrystalline boehmite according to the invention may be prepared in several ways. In general, a microcrystalline boehmite precursor and an additive are converted to a microcrystalline boehmite containing the additive in a homogeneously dispersed state. The additive does not contain zirconia or magnesia.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: April 29, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, Paul O'Connor, Gregory Pearson, William Jones
  • Patent number: 6524995
    Abstract: Catalyst systems of the Ziegler-Natta type comprise as active constituents a) a solid component comprising a compound of titanium or vanadium, a compound of magnesium, a particulate inorganic oxide as support and an internal electron donor compound, and as cocatalyst b) an aluminum compound and c) if desired, a further, external electron donor compound, wherein the particulate, inorganic oxide used has a specific surface area of from 350 to 1000 m2/g and a mean particle diameter {overscore (D)} in the range from 5 to 60 &mgr;m and comprises particles which are composed of primary particles having a mean particle diameter {overscore (d)} in the range from 1 to 10 &mgr;m and contain voids or channels between the primary particles, where the macroscopic proportion of voids or channels having a diameter of greater than 1 &mgr;m in the particles of the inorganic oxides is in the range from 5 to 30% by volume and the molar ratio of the compound of magnesium to the particulate, inorganic oxide is from 0.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: February 25, 2003
    Assignee: Basell Polypropylene GmbH
    Inventors: Wolf Spaether, Stephan Hüffer, John Lynch, Wolfgang Bidell, Joachim Rösch, Günther Schweier, Roland Hingmann, Alexandre Segul, Rainer Hemmerich, Ingo Treffkorn
  • Patent number: 6518218
    Abstract: A catalyst system and method for making carbon fibrils is provided which comprises a catalytic amount of an inorganic catalyst comprising nickel and one of the following substances selected from the group consisting of chromium; chromium and iron; chromium and molybdenum; chromium, molybdenum, and iron; aluminum; yttrium and iron; yttrium, iron and aluminum; zinc; copper; yttrium; yttrium and chromium; and yttrium, chromium and zinc. In a further aspect of the invention, a catalyst system and method is provided for making carbon fibrils which comprises a catalytic amount of an inorganic catalyst comprising cobalt and one of the following substances selected from the group consisting of chromium; aluminum; zinc; copper; copper and zinc; copper, zinc, and chromium; copper and iron; copper, iron, and aluminum; copper and nickel; and yttrium, nickel and copper.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: February 11, 2003
    Assignee: General Electric Company
    Inventors: Xiao-Dong Sun, Navjot Singh, Lionel Monty Levinson
  • Patent number: 6514904
    Abstract: A catalyst and a process for using the catalyst are disclosed generally for the conversion of hydrocarbons. By the use of at least one high temperature calcination under dry conditions, a catalyst with a beneficial combination of lowered surface area and excellent piece crush is created. X-ray diffraction pattern information is used to distinguish the resulting product.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: February 4, 2003
    Assignee: UOP LLC
    Inventors: Mark D. Moser, Robin E. Shepherd, Andrzej Z. Ringwelski, John Y. G. Park
  • Patent number: 6503867
    Abstract: The present invention pertains to a quasi-crystalline boehmite containing additive in a homogeneously dispersed state. Suitable additives are compounds containing elements selected from the group of alkaline earth metals, alkaline metals, transition metals, actinides, silicon, gallium, boron, titanium, and phosphorus. Said QCBs according to the invention may be prepared in several ways. In general, a quasi-crystalline boehmite precursor and an additive are converted to a quasi-crystalline boehmite containing the additive in a homogeneously dispersed state.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: January 7, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, Paul O'Connor, Gregory Pearson, William Jones
  • Patent number: 6497811
    Abstract: The present invention comprises a composition for reducing the sulphur content in a hydrocarbon composition, wherein the composition comprises a hydrotalcite material, which has been impregnated with a Lewis acid, and optionally a FCC-catalyst. The hydrotalcite material impregnated with the Lewis acid has been added as a separate component, or incorporated in the matrix of the FCC-catalyst. The Lewis acid is selected from the group comprising elements and compounds of the transition metals, and preferably Zn, Cu, Ni, Co, Fe and Mn, most preferably Zn. Further, the Lewis acid may also be selected from the group comprising elements and compounds of the lanthanides and actinides. The present invention also comprises a method for reducing the sulphur content in a hydrocarbon composition. A method for reducing the sulphur content in a hydrocarbon composition, which is to be cracked, is also described.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: December 24, 2002
    Assignee: Den Norske Stat Oljeselskap A.S.
    Inventors: Trond Myrstad, Bente Boe, Erling Rytter, Hege Engan, Avelino Corma, Fernando Rey
  • Patent number: 6489264
    Abstract: A catalyst for oxidation of ammonia is of the general formula (AxByO3z)k (MEmOn)f, wherein: A is a cation of Ca, Sr, Ba, Mg, Be, La or mixtures thereof, B is cations of Mn, Fe, Ni, Co, Cr, Cu, V or mixtures thereof, x=0-2, y=1-2, z=0.8-1.7; MemOn is an aluminum oxide and/or oxide of silicon zirconium, chromium, aluminosilicates, oxides of rare earth elements (REE) or mixtures thereof, m=1-3, n=1-2, k and f are % by weight, with the ratio f/k=0.01-1. The catalyst may be granules of different configuration, including blocks of honeycomb structure. The catalyst is thermally stable, resistant to thermal shocks. There is no water runoff.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: December 3, 2002
    Assignee: Institut Kataliza Imeni G.K.
    Inventors: Lubov Alexandrovna Isupova, Vladislav Alexandrovich Sadykov, Olga Ivanovna Snegurenko, Evgeny Abramovich Brushtein, Tatyana Viktorovna Telyatnikova, Valery Vasilievich Lunin
  • Patent number: 6479429
    Abstract: A process to produce a sorbent composition is provided. This process comprises: (a) contacting a zinc component, an alumina component, and a dispersant component, to form a mixture; and then (b) spray drying said mixture to form particles; and then (c) contacting said particles with a zinc compound, wherein said zinc compound is zinc oxide, or it is a compound convertible to zinc oxide, to form a sorbent composition. A process to produce a particulate composition that comprises zinc aluminate is provided. This comprises: (a) contacting a zinc component, an alumina component, and a dispersant component, to form a mixture; and then (b) spray drying said mixture to form said particulate composition.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: November 12, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Patent number: 6464946
    Abstract: A catalytic converter for cleaning exhaust gas includes a heat-resistant support which is coated with particles of a zirconium complex oxide of the following formula, Zr1−(x+y)CexRyO2−z where “R” represents at least one element selected from a group consisting of Al and rare earth elements other than Ce, “z” represents the degree of oxygen deficiency determined by the valence and content of the contained Al and/or rare earth element, 0.1≦x+y≦0.5, 0.1≦x≦0.5, and 0≦y≦0.2. A combination of Pt and Rh coexistently carried on the zirconium complex oxide particles. Further, particles of an oxygen-storing complex oxide of a rare earth element are also coated on the support together with the zirconium complex oxide particles.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: October 15, 2002
    Assignee: Daihatsu Motor Co., Ltd.
    Inventors: Koji Yamada, Hirohisa Tanaka
  • Patent number: 6455463
    Abstract: A catalyst for treating an exhaust gas stream comprising an alkaline earth/transition metal oxide component in combination with an alkaline earth/support component.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: September 24, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: William J. Labarge, Mark Hemingway, Joachim Kupe, Galen B. Fisher
  • Publication number: 20020132727
    Abstract: A catalyst for treating an exhaust gas stream comprising an alkali metal oxide component in combination with an alkaline earth/support component.
    Type: Application
    Filed: March 13, 2001
    Publication date: September 19, 2002
    Inventors: William J. Labarge, Mark Hemingway, Joachim Kupe, Galen B. Fisher
  • Patent number: 6444178
    Abstract: An exhaust gas purification device includes a porous body of catalytic material of the general formula AaBbO4 disposed in an exhaust gas stream of an engine. The porous body of catalytic material has a characteristic response temperature above which it is catalytically active to reduce pollutants in the presence of a reducing agent. The porous body stores at least 20% by volume hydrocarbons at temperatures below the response temperature. A represent at least one element selected from Mg, Ca, Mn, Fe, Ni, Co, Cu, Zn, Sn, Ti and A+B is less than 3, A is greater than 0 and B greater than 0.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: September 3, 2002
    Assignees: DaimlerChrysler AG, BASF Aktiengesellschaft
    Inventors: Martin Hartweg, Rolf-Dirc Roitzheim, Andrea Seibold, Leonhard Walz, Thomas Fetzer, Bernd Morsbach
  • Patent number: 6432859
    Abstract: An exhaust gas purifying catalyst contains a NOx absorbing component which comprises at least one kind of element selected from a group of alkaline earth metals, a group of alkaline metals and a group of rare earth elements and a component, other than the NOx absorbing component, selected between K and Na. The catalyst has a such a structure that the component other than the NOx absorbing component is brought into contact with an exhaust gas before the NOx absorbing component is brought into contact with the exhaust gas.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: August 13, 2002
    Assignee: Mazda Motor Corporation
    Inventors: Hideharu Iwakuni, Makoto Kyogoku, Hiroshi Yamada, Akihide Takami
  • Publication number: 20020098976
    Abstract: The present invention relates to a new catalyst support material comprising a mixed oxide consisting essentially of a divalent metal and a trivalent metal in a substantially homogeneous phase, the mixed oxide being a calcination product of a hydrotalcite-like phase calcinated at a temperature of about 700-1200° C., wherein the divalent metal/trivalent metal molar ratio is greater than or equal to 2. The invention also relates to a process of preparing the support. The invention further provides a catalyst for dehydrogenation which includes a transition metal selected from the first row of transition metals of the periodic table and/or a Group VIII metal impregnated on the new catalyst support material. The invention also provides a process for dehydrogenation of light alkanes using the catalyst.
    Type: Application
    Filed: November 6, 2001
    Publication date: July 25, 2002
    Inventors: Erling Rytter, Duncan Akporiaye, Unni Olsbye
  • Publication number: 20020092796
    Abstract: Compositions comprising a component containing (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) palladium promote CO combustion in FCC processes while minimizing the formation of NOx. The acidic oxide support preferably contains silica alumina. Ceria is the preferred oxygen storage oxide.
    Type: Application
    Filed: December 18, 2001
    Publication date: July 18, 2002
    Inventors: Alan W. Peters, Edward F. Rakiewicz, Gordon Dean Weatherbee, Xinjin Zhao
  • Patent number: 6417136
    Abstract: A catalyst composition is provided which can be used for hydrogenating a highly unsaturated hydrocarbon such as an alkyne or a diolefin. The catalyst composition contains palladium, a catalyst component of either silver or an alkali metal compound, or both silver and an alkali metal compound, and a metal aluminate catalyst support. Such metal aluminate catalyst support is prepared by a process of incorporating alumina with a metal component, preferably impregnating alumina with a melted metal component, to thereby provide a metal-incorporated alumina followed by drying and high temperature calcining to thereby provide a metal aluminate catalyst support. The catalyst composition disclosed can be used for hydrogenating a highly unsaturated hydrocarbon to a less unsaturated hydrocarbon. The process involves contacting a highly unsaturated hydrocarbon with a catalyst composition in the presence of hydrogen under a hydrogenation condition sufficient to effect a hydrogenation of the highly unsaturated hydrocarbon.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: July 9, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack Peter Cheung, Darin B. Tiedtke, Marvin M. Johnson, Gary A. Delzer
  • Patent number: 6383973
    Abstract: Complex oxide catalysts represented by the formula, MoaWbBicFedAeBfCgDhEiOx (in which A is Ni or Co; B is Na, K, Rb, Cs or Tl; C is an alkaline earth metal; D is P, Te, Sb, Sn, Ce, Pb, Nb, Mn, As, B or Zn; E is Si, Al, Ti or Zr; and where a is 12, 0≦b≦10, 0<c≦10, 0<d≦10, 2≦e≦15, 0<f≦10, 0≦g≦10, 0≦h≦4 and 0≦i≦30) are provided. The catalysts are characterized in that the molar ratio of the total nitrate anions to the molybdenum at the time of catalyst preparation is more than 1 but not more than 1.8. When used in the reaction for producing (meth)acrolein and (meth)acrylic acid by vapor-phase oxidation of at least a compound selected from propylene, isobutylene, t-butanol and methyl-t-butyl ether, the catalysts exhibit excellent activity and selectivity and maintain stable performance over prolonged period.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: May 7, 2002
    Assignee: Nippon Shokusai Co. Ltd.
    Inventors: Naomasa Kimura, Michio Tanimoto, Hideo Onodera
  • Patent number: 6383980
    Abstract: A photocatalytic titanium dioxide powder comprised of finely divided titanium dioxide particles each having supported on the surface thereof a first supported layer of a calcium compound and further having on the surface of the first supported layer-formed particles a porous second supported layer of a photocatalytically inactive and substantially water-insoluble substance. The photocatalytic titanium dioxide powder is produced by allowing a calcium compound to be supported on the surface of finely divided titanium dioxide particles to form the first supported layer; and then, allowing a precursor material capable of forming the photocatalytically inactive and substantially water-insoluble substance to be supported on the surface of the first supported layer-formed particles, followed by converting the precursor a material to said water-insoluble substance to thereby form the porous second supported layer.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: May 7, 2002
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Hiroyuki Hagihara, Katsura Ito
  • Patent number: 6383273
    Abstract: The invention relates to a process for producing compositions containing a biocidal compound or adsorbent and/or catalyst compound and the compositions thereof. The invention also relates to a method for reducing or eliminating the amount of a bioactive agent or contaminant from an environment by contacting the environment with the composition of for a sufficient time to reduce or eliminate the amount of the bioactive agent or contaminant in the environment.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: May 7, 2002
    Assignee: Apyron Technologies, Incorporated
    Inventors: Bryan E. Kepner, Eric A. Mintz
  • Patent number: 6379536
    Abstract: Compositions comprising a component containing (i) an acidic oxide support, (ii) an alkali metal and/or alkaline earth metal or mixtures thereof, (iii) a transition metal oxide having oxygen storage capability, and (iv) a transition metal selected from Groups Ib and/or IIb of the Periodic Table provide NOx control performance in FCC processes. The acidic oxide support preferably contains silica alumina. Ceria is the preferred oxygen storage oxide. Cu and Ag are preferred Group I/IIb transition metals. The compositions are especially useful in the cracking of hydrocarbon feedstocks having above average nitrogen content.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: April 30, 2002
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Alan W. Peters, John A. Rudesill, Gordon Dean Weatherbee, Edward F. Rakiewicz, Mary Jane A. Barbato-Grauso
  • Publication number: 20020049137
    Abstract: A composite oxide includes agglomerated particles which have an average particle diameter of 20 &mgr;m or less, which are composed of a plurality of metallic element oxides being in form of fine particles having an average diameter of 50 nm or less, and which have a surface and an inner portion whose metallic element distributions differ with each other. The characteristics of the respective metallic elements are exhibited maximally. Hence, it is extremely useful as a support for an exhaust gas purifying catalyst. The catalyst exhibits the activities which degrade less even after it is subjected to a sever durability, is good in terms of the heat and sulfur-poisoning resistance, and can efficiently purify the harmful components in exhaust gases. Moreover, it is possible to produce such a composite oxide and catalyst easily and stably by production processes disclosed herein.
    Type: Application
    Filed: July 25, 2001
    Publication date: April 25, 2002
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Akira Morikawa, Miho Hatanaka, Haruo Imagawa, Akihiko Suda, Naoki Takahashi
  • Publication number: 20020045543
    Abstract: Disclosed are alumina particles with a dispersed noble metal. The alumina particles are hollow-structured alumina particles which comprise alumina as a major component of the matrix, and in which at least one noble metal is dispersed in the alumina matrix and/or on the surface of the alumina particles with a dispersion degree of 10% or more when being measured by the CO adsorption method. The noble metal dispersion degree is so high that the alumina particles are suitable for making a catalyst. The resulting catalyst exhibits the purifying performance, which hardly differs before and after a high temperature durability test, and is extremely good in terms of the durability.
    Type: Application
    Filed: August 24, 2001
    Publication date: April 18, 2002
    Applicant: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Kazumasa Takatori, Takao Tani, Nobuo Kamiya, Oji Kuno, Shinji Tsuji, Masahiko Sugiyama