Of Zinc Patents (Class 502/342)
  • Publication number: 20020169075
    Abstract: Catalysts containing passivated copper and zinc oxide and/or alumina are prepared by
    Type: Application
    Filed: March 6, 2002
    Publication date: November 14, 2002
    Inventors: Markus Holzle, Michael Jolyon Sprague, Klaus Harth, Wolfgang Jurgen Popel
  • Patent number: 6479429
    Abstract: A process to produce a sorbent composition is provided. This process comprises: (a) contacting a zinc component, an alumina component, and a dispersant component, to form a mixture; and then (b) spray drying said mixture to form particles; and then (c) contacting said particles with a zinc compound, wherein said zinc compound is zinc oxide, or it is a compound convertible to zinc oxide, to form a sorbent composition. A process to produce a particulate composition that comprises zinc aluminate is provided. This comprises: (a) contacting a zinc component, an alumina component, and a dispersant component, to form a mixture; and then (b) spray drying said mixture to form said particulate composition.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: November 12, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Patent number: 6444178
    Abstract: An exhaust gas purification device includes a porous body of catalytic material of the general formula AaBbO4 disposed in an exhaust gas stream of an engine. The porous body of catalytic material has a characteristic response temperature above which it is catalytically active to reduce pollutants in the presence of a reducing agent. The porous body stores at least 20% by volume hydrocarbons at temperatures below the response temperature. A represent at least one element selected from Mg, Ca, Mn, Fe, Ni, Co, Cu, Zn, Sn, Ti and A+B is less than 3, A is greater than 0 and B greater than 0.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: September 3, 2002
    Assignees: DaimlerChrysler AG, BASF Aktiengesellschaft
    Inventors: Martin Hartweg, Rolf-Dirc Roitzheim, Andrea Seibold, Leonhard Walz, Thomas Fetzer, Bernd Morsbach
  • Patent number: 6395244
    Abstract: A storage catalyst includes (1) a component that has a catalytic reducing action for nitrogen oxides at least in the presence of hydrocarbons, and (2) a component that stores NOx at least at temperatures of below 100° C. The catalytically active component is of the general chemical formula AaBbO4, where A is one or more divalent metals and B is one or more trivalent metals, and where a+b≦3 and a, b>0. The reaction enthalpy or the chemical activity between the catalytically active component and the NOx-storing component is low at least up to temperatures of 600° C.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: May 28, 2002
    Assignees: DaimlerChrysler AG, BASF Aktiengesellschaft
    Inventors: Martin Hartweg, Thomas Fetzer, Bernd Morsbach, Otto Kumberger
  • Patent number: 6383273
    Abstract: The invention relates to a process for producing compositions containing a biocidal compound or adsorbent and/or catalyst compound and the compositions thereof. The invention also relates to a method for reducing or eliminating the amount of a bioactive agent or contaminant from an environment by contacting the environment with the composition of for a sufficient time to reduce or eliminate the amount of the bioactive agent or contaminant in the environment.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: May 7, 2002
    Assignee: Apyron Technologies, Incorporated
    Inventors: Bryan E. Kepner, Eric A. Mintz
  • Patent number: 6383980
    Abstract: A photocatalytic titanium dioxide powder comprised of finely divided titanium dioxide particles each having supported on the surface thereof a first supported layer of a calcium compound and further having on the surface of the first supported layer-formed particles a porous second supported layer of a photocatalytically inactive and substantially water-insoluble substance. The photocatalytic titanium dioxide powder is produced by allowing a calcium compound to be supported on the surface of finely divided titanium dioxide particles to form the first supported layer; and then, allowing a precursor material capable of forming the photocatalytically inactive and substantially water-insoluble substance to be supported on the surface of the first supported layer-formed particles, followed by converting the precursor a material to said water-insoluble substance to thereby form the porous second supported layer.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: May 7, 2002
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Hiroyuki Hagihara, Katsura Ito
  • Publication number: 20020051747
    Abstract: The present invention provides a method of producing a CuZnAlZr oxide catalyst consisting of reacting an aqueous NaOH solution and aqueous NACO3 solution with a mixture of aqueous solutions of each nitrate of Cu, Zn, Al, and Zr, producing a precipitate by coprecipitation, aging, filtering, washing and drying this precipitate to prepare a catalyst precursor consisting of a CuZnAlZr layered double hydroxide, and then obtaining a CuZnAlZr oxide by calcining this precursor in an air ambient atmosphere, a CuZnAlZr oxide catalyst, a CuZnZrCe oxide catalyst, a CoCuZnAl oxide catalyst for producing hydrogen by oxidative steam reforming of methanol, and methods of producing hydrogen gas consisting of converting methanol to hydrogen gas by oxidative steam reforming in the presence of air and steam using these oxide catalysts.
    Type: Application
    Filed: December 5, 2000
    Publication date: May 2, 2002
    Applicant: Japan as represented by Secretary of Agency of Industrial Science and Techonlogy
    Inventors: Kenzi Suzuki, Velu Subramani, Toshihiko Osaki
  • Patent number: 6342191
    Abstract: This invention relates to a process for producing an enhanced adsorbent particle comprising contacting a non-amorphous, non-ceramic, crystalline, porous, calcined, aluminum oxide particle that was produced by calcining at a particle temperature of from 300° C. to 700° C., with an acid for a sufficient time to increase the adsorbent properties of the particle. A process for producing an enhanced adsorbent particle comprising contacting a non-ceramic, porous, oxide adsorbent particle with an acid for a sufficient time to increase the adsorbent properties of the particle is also disclosed. Particles made by the process of the instant invention and particle uses, such as remediation of waste streams, are also provided. The invention also relates to a method for producing an adsorbent and/or catalyst and binder system. The invention also relates to particles made by the process, binders, and methods for remediating contaminants in a stream.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: January 29, 2002
    Assignee: Apyron Technologies, Inc.
    Inventors: Bryan E. Kepner, Eric A. Mintz
  • Patent number: 6338830
    Abstract: The invention relates to a method for producing an adsorbent and/or catalyst and binder system comprising I) mixing components comprising (a) a binder comprising a colloidal metal oxide or colloidal metalloid oxide, (b) an oxide adsorbent and/or catalyst particle, and (c) an acid, (ii) removing a sufficient amount of water from the mixture to cross-link components a and b to form an adsorbent and/or catalyst and binder system. The invention also relates to particles made by the process, binders, and methods for remediating contaminants in a stream.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: January 15, 2002
    Assignee: Apyron Technologies, Inc.
    Inventors: Mark L. Moskovitz, Bryan E. Kepner
  • Publication number: 20010036897
    Abstract: In a formulation comprising titanium dioxide as a photocatalyst and an amphoteric metal oxide (alumina or the like) or a basic metal oxide (barium oxide, strontium oxide or the like) as a material having a base point, when a nitrogen oxide (nitrogen monoxide) comes into contact with or approaches titanium dioxide, upon exposed to light, the carbon monoxide is oxidized to nitrogen dioxide (gas) by hydroxy radicals as an active oxygen species produced by titanium dioxide. As is apparent from the molecular structure, nitrogen dioxide is an acidic gas, alumina is an amphoteric metal oxide, and barium oxide and strontium oxide are a basic metal oxide. The oxygen atom thereof serves as a base point to an acid gas. Therefore, nitrogen dioxide is attracted and chemically bonded to the oxygen atom, held on the metal oxide, and kept close to titanium dioxide as the photocatalyst.
    Type: Application
    Filed: January 29, 2001
    Publication date: November 1, 2001
    Inventors: Kazuya Tsujimichi, Hiroto Hasuo, Hideki Kobayashi
  • Patent number: 6284704
    Abstract: A catalyst comprising at least one alkali metal and at least one metallic or semimetallic promoter selected from the group consisting of Ca, Sr, Ba, Ag, Au, Zn, Cd, Hg, In, Tl, Sn, As, Sb and Bi, on a support which may be doped with one or more compounds of an alkali metal and/or alkaline earth metal, where the alkali metal/support ratio by weight is from 0.01 to 5, the promoter/alkali metal ratio by weight is from 0.0001 to 5 and, when a dopant is present, the dopant/support ratio by weight is from 0.01 to 5.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: September 4, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Ulrich Steinbrenner, Eugen Gehrer
  • Patent number: 6248795
    Abstract: This invention relates to the process of preparing from carbon dioxide a mixture of dimethyl ether and methanol which are useful as clean fuel or raw materials in the chemical industry. More particularly, this invention relates to the process of preparing dimethyl ether and methanol in high yield without by-products such as hydrocarbons by means of chemical conversion of carbon dioxide, which is a major pollutant of the global environment, in the presence of a mixture of catalysts comprising Cu/ZnO-based catalyst and Y-type zeolite catalyst having a strong acidity with the pKa value of −6.0-−3.0.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: June 19, 2001
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Ki Won Jun, Kyu Wan Lee
  • Patent number: 6235678
    Abstract: A catalyst composition for oxidative dehydrogenation of paraffinic hydrocarbons and other compounds having at least two adjacent carbon atoms each having at least one hydrogen atom. The catalyst composition is represented by the formula AaBbSbcVdAleOx wherein A is an alkali or alkaline earth metal; B is one or more optional elements selected from zinc, cadmium, lead, nickel, cobalt, iron, chromium, bismuth, gallium, niobium, tin and neodymium; a is 0 to 0.3, b is 0 to 5, c is 0.5 to 10, d is 1, e is 3 to 10, 7≦a+b+c+d+e≦25, and x is determined by the valence requirements of the elements present. A process for the oxidative dehydrogenation of paraffins using the catalyst composition.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: May 22, 2001
    Assignee: Saudi Basic Industries Corporation
    Inventors: Edouard A. Mamedov, Shahid N. Shaikh
  • Patent number: 6200680
    Abstract: A process for producing zinc oxide fine particles comprising heating a mixture comprising a zinc source, a carboxyl-containing compound, and an alcohol; a process for producing zinc oxide-polymer composite particles, which comprises heating a mixture comprising a zinc source, a carboxyl-containing compound, a polymer, and an alcohol at a temperature of 100° C. or higher; a process for producing inorganic compound particles having on their surface a cluster of thin plate like zinc oxide crystals with their tip projecting outward, which comprises heating a mixture comprising a zinc source, a carboxyl-containing compound, lactic acid or a compound thereof, and an alcohol at a temperature of 100° C.
    Type: Grant
    Filed: April 3, 1997
    Date of Patent: March 13, 2001
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Mitsuo Takeda, Tatsuhito Matsuda
  • Patent number: 6153161
    Abstract: NO.sub.x, where x is 1 and 2, in exhaust gases is reduced over heterogeneous catalysts with hydrocarbons, carbon monoxide, hydrogen or mixtures thereof in the presence of oxygen from 100 to 650.degree. C. and an absolute pressure of from 0.5 to 50 bar by a process in which the heterogeneous catalysts used are bimodal or polymodal compounds of the general formula IA.sub.1-x M.sub.2 O.sub.4 (I),which, if required, are doped with rare earth metals, noble metal, titanium, vanadium, molybdenum, tungsten or mixtures thereof, and whereA is magnesium, calcium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, tin or mixtures thereof,M is aluminum, gallium, indium, tin, chromium, manganese, iron, cobalt, nickel, copper, zinc or mixtures thereof andx is from 0 to 0.
    Type: Grant
    Filed: June 2, 1998
    Date of Patent: November 28, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Fetzer, Bernd Morsbach, Martin Hartweg, Ralf-Dirc Roitzheim, Andrea Seibold, Leonhard Walz
  • Patent number: 6153162
    Abstract: A process for the catalytic reduction of NO.sub.x, the reduction taking place in the presence of a catalyst which comprises(a) from 20 to 97 wt % of A.sub.2 O.sub.3,(b) from 1 to 40 wt % of CuO,(c) from 1 to 50 wt % of ZnO,(d) from 1 to 40 wt % of Ag,(e) from 0 to 2 wt % of Pt,(f) from 0 to 20 wt % of oxides of rare earth metals, elements of the 3rd subgroup of the Periodic Table of the Elements or mixtures thereof,based on the total weight of the components (a) to (e), which adds up to 100 wt %, wherein, in each case, up to half the weight of the component (a) may be replaced by Fe.sub.2 O.sub.3, Cr.sub.2 O.sub.3, Ga.sub.2 O.sub.3 or mixtures thereof, of the component (b) by CoO, of the component (c) by MgO, of the component (d) by Au and of the component (e) by Pd, Ru, Os, Ir, Rh, Re or mixtures thereof, is used for reducing NO.sub.x, especially in combustion off-gases, the components (a), (b) and (c) forming a spinel which is doped with the components (d), (e) and (f).
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: November 28, 2000
    Assignees: BASF Aktiengesellschaft, Daimler Benz Aktiengesellschaft
    Inventors: Thomas Fetzer, Bernd Morsbach, Otto Kumberger, Martin Hartweg, Rolf-Dirc Roitzheim, Andrea Seibold, Leonhard Walz
  • Patent number: 6146606
    Abstract: A process for decomposing nitrogen fluoride, comprising contacting gaseous nitrogen fluoride with a solid reactive agent for decomposition at 200.degree. C. or more to fix the fluorine component in the nitrogen fluoride to the reactive agent and at the same time control generation of nitrogen oxides, fluorocarbon and carbon monoxide as by-products, the reactive agent containing elemental carbon; aluminum compound, iron compound, manganese compound and/or alkaline earth metal; alkali metal compound; and nickel compound, tin compound and/or copper compound.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: November 14, 2000
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Hitoshi Atobe, Toraichi Kaneko
  • Patent number: 6114279
    Abstract: A catalyst for methanol synthesis and reforming which is constituted of copper, zinc, and aluminum oxides and has a structure comprising copper or copper oxide particles covered with a film of aluminum oxide and zinc oxide. The copper or copper oxide particles preferably have a particle size of 1 to 100 nm. The film of aluminum oxide and zinc oxide preferably has a thickness of 0.1 to 100 nm. The proportions of the copper, zinc, and aluminum elements are 68.0 to 86.0% by weight, 4.5 to 21.0% by weight, and 2.0 to 20.0% by weight, respectively. The foregoing highly active catalyst comprising copper, zinc, and aluminum oxides can be obtained not by a costly special technique but by the coprecipitation method, which is the most common process for catalyst production, without using any additive element.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: September 5, 2000
    Assignees: Director-General of Agency of Industrial Science and Technology, YKK Corporation
    Inventors: Hideo Fukui, Masayuki Kobayashi, Tadashi Yamaguchi, Hironori Arakawa, Kiyomi Okabe, Kazuhiro Sayama, Hitoshi Kusama
  • Patent number: 6057261
    Abstract: The present invention provides a methanol reforming catalyst having the following general formula on a dry basis:X.sub.a Y.sub.b Z.sub.c O.sub.d, whereinX is a metal selected from the group consisting of zinc, cadmium, mercury, rubidium, cesium, silver, and combinations thereof, Y is a metal selected from the group consisting of beryllium, magnesium, calcium, strontium, barium, and combinations thereof, Z is a material selected from the group consisting of boron, silicon, aluminum, silicoaluminate, zirconium, titanium, hafnium, gallium, lanthanum, scandium, and yttrium, and combinations thereof, and O is the element of oxygen. The claimed methanol reforming catalyst contains neither copper oxide nor chromium oxide.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: May 2, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Hsiang-ning Sun
  • Patent number: 6051163
    Abstract: In a process for steam-reforming methanol, in which methanol and water are reacted at a catalyst with formation of hydrogen, the catalyst used can be prepared by(a) precipitating a solution of zinc salts and aluminum salts, the atomic ratio of Zn:Al being from 3:1 to 1:3, with an alkali metal carbonate solution or alkali metal hydroxide solution at a pH in the range from 5 to 12 and at from 20 to 100.degree. C.,(b) separating off and washing the precipitate to remove alkali metal ions,(c) drying the precipitate,(d) calcining the precipitate at from 250 to 800.degree. C. to give a mixed oxide,(e) dispersing the mixed oxide in an acidic solution of copper salts and zinc salts, the atomic ratio of Cu:Zn being from 1:5 to 20:1 in the solution,(f) precipitating the dispersion with an alkali metal carbonate solution or alkali metal hydroxide solution at a pH in the range from 6 to 9 and at from 20 to 100.degree. C.
    Type: Grant
    Filed: September 9, 1998
    Date of Patent: April 18, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Otto Kumberger, Michael Jolyon Sprague, Otto Hofstadt
  • Patent number: 6048820
    Abstract: The invention relates to a copper-based catalyst with high activity and a long catalyst life and to a method of producing the catalyst. This catalyst essentially comprises copper oxide, zinc oxide, aluminum oxide, and silicon oxide and optionally containing zirconium oxide, gallium oxide, and palladium oxide, wherein with the total weight of the catalyst being taken as 100%, the above oxides account for, in the order mentioned, 20-60 weight %, 10-50 weight %, 2-10 weight %, 0.3-0.9 weight %, 0-40 weight %, 0-10 weight %, and 0-10 weight %, respectively, and the silicon oxide mentioned above has been derived from colloidal silica or dissolved silica in water, which catalyst has been subjected to calcination at 480-690.degree. C.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: April 11, 2000
    Assignees: Agency of Industrial of Sciences and Technology, The Reseach Institute of Innovative Technology for the Earth
    Inventors: Masami Takeuchi, Hirotaka Mabuse, Taiki Watanabe, Michiaki Umeno, Takashi Matsuda, Kozo Mori, Kenji Ushikoshi, Jamil Toyir, Shengcheng Luo, Jingang Wu, Masahiro Saito
  • Patent number: 5990040
    Abstract: A catalyst for the conversion of carbon oxide comprising 30 to 70% CuO, 20 to 90% ZnO, 0.1 to 20% of an element of Group IV-B in the form of an oxide, preferably titanium and/or zirconium, most preferably titanium, about 5 to about 40 percent Al.sub.2 O.sub.3 and preferably 50 to 1000 ppm of a Group 1-A element in the form of an oxide.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: November 23, 1999
    Assignee: United Catalysts Inc.
    Inventors: X. D. Hu, Jon P. Wagner
  • Patent number: 5948726
    Abstract: The invention relates to a method for producing an adsorbent and/or catalyst and binder system comprising I) mixing components comprising (a) a binder comprising a colloidal metal oxide or colloidal metalloid oxide, (b) an oxide adsorbent and/or catalyst particle, and (c) an acid, (ii) removing a sufficient amount of water from the mixture to cross-link components a and b to form an adsorbent and/or catalyst and binder system. The invention also relates to particles made by the process, binders, and methods for remediating contaminants in a stream.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: September 7, 1999
    Assignee: Project Earth Industries, Inc.
    Inventors: Mark L. Moskovitz, Bryan E. Kepner
  • Patent number: 5928985
    Abstract: Stabilization of a reduced copper catalyst by a) passivating the catalyst by passing a gas stream that is free of reducing gases and which contains 0.05 to 0.5% by volume of oxygen and an amount of carbon dioxide at least twice the amount of oxygen through a bed of the catalyst until the catalyst is passivated, the proportion of oxygen in said gas stream and the temperature at which it is fed to the bed being such that the temperature of the catalyst does not rise to above 100.degree. C. during said passivation step, and then b) increasing the oxygen content of the gas passing through the bed until the oxygen partial pressure corresponds to that of air at atmospheric pressure. The process may be applied to the stabilization of fresh reduced catalysts or to the stabilization of used, e.g. spent catalysts, before discharge thereof from a reactor.
    Type: Grant
    Filed: September 3, 1996
    Date of Patent: July 27, 1999
    Assignee: Imperial Chemical Industries PLC
    Inventor: Brian Peter Williams
  • Patent number: 5898015
    Abstract: A nitrogen oxide absorbing material, comprising a hollandite-type complex oxide having main metal elements comprising minimally of aluminum and tin, or zinc and tin, and a method of using that nitrogen oxide absorbing material comprising the steps of contacting the nitrogen oxide absorbing material with a gas containing nitrogen oxides. The method of reducing the adsorbed nitrogen oxides on the nitrogen oxide absorbing material includes the steps of releasing the nitrogen oxides from the nitrogen oxide absorbing material, and of reducing the released nitrogen oxides with a three way catalyst or other nitrogen oxide reducing catalysts.
    Type: Grant
    Filed: September 19, 1996
    Date of Patent: April 27, 1999
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hitoshi Yokoi, Yasuyuki Okimura, Tadashi Hattori
  • Patent number: 5885917
    Abstract: A porous lithium aluminate carrier for catalyst has a spinel structure which has a mean pore diameter in the range of 40 to 1,000 angstroms and a total pore volume in the range of 0.2 to 1.5 mL/g. The porous lithium aluminate carrier can be used for supporting a catalyst compound containing a platinum group metal. The catalyst on the carrier can be favorably employed for promoting catalytic reaction of a nitrite ester and carbon monoxide to prepare a carbonate diester such as dimethyl carbonate.
    Type: Grant
    Filed: June 23, 1997
    Date of Patent: March 23, 1999
    Assignee: Ube Industries, Ltd.
    Inventors: Kyoji Ohdan, Tokuo Matsuzaki, Mikio Hidaka
  • Patent number: 5830822
    Abstract: A non-selective high temperature resistant oxidation catalyst and a process for the preparation of this catalyst is described. The catalyst mainly has the formula A.sub.1-x B.sub.y C.sub.z Al.sub.12-y-z O.sub.19-.delta., where A represents at least one element selected from the group formed by barium, strontium and the rare earths; B represents at least one element with valency Y selected from the group formed by Mn, Co and Fe; C represents at least one element selected from the group formed by Mg and Zn; x has a value of 0 to 0.25, y has a value of 0.5 to 3 and z has a value of 0.01 to 3; the sum y+z has a maximum value of 4 and .delta. has a value which is determined as a function of the respective valencies X and Y of elements A and B and the value of x, y and z and is equal to 1-1/2{(1-x)X+yY-3y-z}. The catalysts of the invention are particularly for use in processes for the catalytic combustion of hydrocarbons, carbon monoxide, hydrogen or mixtures thereof.
    Type: Grant
    Filed: June 30, 1995
    Date of Patent: November 3, 1998
    Assignee: Institut Francais du Petrole
    Inventor: Patrick Euzen
  • Patent number: 5811365
    Abstract: The surface area of a zinc oxide composition is increased, and stabilized to heating, by incorporation of a tri or tetravalent metal especially aluminium or gallium, e.g. in the form of a spinel with the zinc oxide. The composition is preferably made by coprecipitation of zinc and a compound of said metal and then calcination. The zinc oxide composition may also incorporate a Group VIII metal and be used as a catalyst for a Fischer Tropsch process.
    Type: Grant
    Filed: April 2, 1997
    Date of Patent: September 22, 1998
    Assignee: The British Petroleum Company, p.l.c.
    Inventor: Nay Barry
  • Patent number: 5808143
    Abstract: Catalysts of the formula I?A.sub.a B.sub.b O.sub.x !.sub.p ?C.sub.c D.sub.d Fe.sub.e Co.sub.f E.sub.i F.sub.j O.sub.y !.sub.q I,whereA is bismuth, tellurium, antimony, tin and/or copper,B is molybdenum and/or tungsten,C is an alkali metal, thallium and/or samarium,D is an alkaline earth metal, nickel, copper, cobalt, manganese, zinc, tin, cerium, chromium, cadmium, molybdenum, bismuth and/or mercury,E is phosphorus, arsenic, boron and/or antimony,F is a rare-earth metal, vanadium and/or uranium,a is from 0.01 to 8,b is from 0.1 to 30,c is from 0 to 4,d is from 0 to 20,e is from 0 to 20,f is from 0 to 20,i is from 0 to 6,j is from 0 to 15,x and y are numbers determined by the valency and frequency of the elements other than oxygen in I, and p and q are numbers whose ratio p/q is in the range from 0.001 to 0.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: September 15, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Karrer, Hans-Peter Neumann, Hans-Dieter Eichhorn, Robin Stuart Jarret
  • Patent number: 5801115
    Abstract: A catalyst composition for a catalyst that reduces the emissions of sulfur compounds from industrial processes is disclosed. This catalyst is a spheroidal particle comprised of a mixture of inorganic oxides with an inorganic binder, an organic binder, or a mixture of these binders. The preferred embodiment is a particle containing zinc titanate. Also disclosed is the catalysts application in both fluid bed and ebullating bed processes such as petroleum refinery fluid catalytic cracking units and utility company coal gasification units. Additionally there is disclosed processes for preparing this catalyst using spray drying techniques and beading and tumbling techniques.
    Type: Grant
    Filed: September 5, 1995
    Date of Patent: September 1, 1998
    Assignee: Kataleuna GmbH
    Inventors: Edwin W. Albers, Harry W. Burkhead, Jr., J. Gary McDaniel
  • Patent number: 5767039
    Abstract: A process for manufacturing methanol is herein disclosed which comprises the step of reacting hydrogen with carbon monoxide and/or carbon dioxide in the presence of a synthetic catalyst obtainable by mixing, in a slurry state, (a) a beforehand prepared precipitation slurry of copper and zinc, with (b) an alumina precursor separately prepared from a water-soluble aluminum salt and a basic precipitant, to obtain a composition containing copper, zinc and aluminum, and washing, drying and then calcining the composition. A process for manufacturing the above-mentioned catalyst is also disclosed. According to the present invention, methanol can extremely efficiently be manufactured, and the catalyst having a high activity and an excellent heat resistance can also be manufactured.
    Type: Grant
    Filed: April 18, 1996
    Date of Patent: June 16, 1998
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Ken Yamagishi, Yoriko Obata, Yuichi Sugano
  • Patent number: 5750460
    Abstract: A catalyst and a process for producing the catalyst are provided. For the catalytic reduction of NO.sub.x and for the oxidation of hydrocarbons, the catalyst contains a spinel containing the metals copper, zinc and aluminum.
    Type: Grant
    Filed: June 16, 1995
    Date of Patent: May 12, 1998
    Assignees: Daimler-Benz AG, BASF Aktiengesellschaft
    Inventors: Martin Hartweg, Martina Heinau, Andrea Seibold, Leonhard Walz, Thomas Fetzer, Bernd Morsbach, Wolfgang Buechele
  • Patent number: 5710091
    Abstract: A process to produce a sorbent composition is provided. This process comprises: (a) contacting a zinc component, an alumina component, and a dispersant component, to form a mixture; and then (b) spray drying said mixture to form particles; and then (c) contacting said particles with a zinc compound, wherein said zinc compound is zinc oxide, or it is a compound convertible to zinc oxide, to form a sorbent composition.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 20, 1998
    Assignee: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Patent number: 5691268
    Abstract: The invention provides for a method of making isoalcohols using syngas-to-alcohol catalyst and method of making it. The catalyst is a highly dispersed, alkali promoted, La stabilized, microcrystalline Cu.sub.2 O having a particle size of .ltoreq.6 nm in the presence of an alumina structural promoter, wherein on a mole % alkali free metals-only basis Cu is present in from 45 to 55%, Zn from 10 to 20%, Al from 10 to 25%, La from 5 to 15%, and wherein the alkali is from 0.01 to 0.91% K and from 3 to 6.5% Cs. The method of making it involves coprecipitation at a constant pH from a solution of soluble metal salts of copper, zinc, lanthanum and aluminum with an alkali hydroxide, washing the coprecipitate in the essential absence of CO.sub.2, drying and calcining it, then contacting it with K and Cs to form the promoted catalyst. The promoted catalyst is dried and recalcining to produce a catalyst precursor with highly dispersed CuO crystallites. The catalyst is activated in flowing hydrogen.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: November 25, 1997
    Assignee: Exxon Research and Engineering Company
    Inventors: Russell John Koveal, Thomas Henry Vanderspurt
  • Patent number: 5686374
    Abstract: A catalyst for hydroprocessing is described, which comprises a carrier having supported thereon a group VI metal and/or a group VIII metal of the periodic table, in which the carrier comprises an inorganic refractory substance selected from the group consisting of alumina alone and alumina containing at least one of silica, magnesia, and calcium oxide, Y type zeolite having a unit lattice constant of 2.425 to 2.445 nm, zinc oxide, and, if desired, a boron compound, which catalyst exhibits improved cracking and desulfurization activities and has a long life.
    Type: Grant
    Filed: August 30, 1995
    Date of Patent: November 11, 1997
    Assignee: Japan Energy Corporation
    Inventor: Chikanori Nakaoka
  • Patent number: 5622907
    Abstract: A method is provided for improving the catalytic activity of an alcohol synthesis catalyst. In this method, the catalyst, after activation by exposure to a reducing atmosphere, is improved by contacting with a carbon dioxide-containing gas to convert the zinc oxide in the catalyst to zinc carbonate. This improvement step occurs in situ preferably in the same reactor as used for the synthesizing of the alcohol.
    Type: Grant
    Filed: February 23, 1990
    Date of Patent: April 22, 1997
    Assignee: Electric Power Research Institute, Inc.
    Inventors: Sunggyu Lee, Vetkav R. Parameswaran, Byung G. Lee, Conrad J. Kulik
  • Patent number: 5604173
    Abstract: Particular mixed vanadium/other metal catalysts, well suited for the desulfurization of gaseous effluents containing contaminating amounts of objectionable sulfur compounds, typically via the Claus reaction and notably in the presence of oxygen, comprise a support substrate, e.g., titanium dioxide, having an active catalytic phase deposited thereon, such active catalytic phase being constituted of an electroneutral solid solution having the average composition:A.sub.4.+-.y V.sub.2.+-.x O.sub.9in which A is a metal other than vanadium, e.g., magnesium, calcium or zinc, 0.ltoreq.x.ltoreq.0.2 and 0.ltoreq.y.ltoreq.0.5.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: February 18, 1997
    Assignees: Institut De Catalyse Du Department Siberien De L'Academie Des Sciences De Russie, Vniigaz
    Inventors: Roman A. Bouyanov, Albert M. Tsyboulesky, Boris P. Zolotovsky, Dimitri P. Klevtsov, Vladimir L. Mourine
  • Patent number: 5580534
    Abstract: The invention provides a catalyst, and a process for preparing the same, for the catalytic reduction of NO.sub.x and for the oxidation of hydrocarbons. The catalyst contains a copper oxide-zinc oxide-aluminum oxide spinel and a zeolitic support material.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: December 3, 1996
    Assignee: Daimler-Benz AG
    Inventors: Martin Hartweg, Martina Heinau, Andrea Seibold, Leonhard Walz
  • Patent number: 5488024
    Abstract: A catalyst composition comprising palladium, silver and a support material (preferably alumina) is contacted at a relatively low temperature (of up to about 60.degree. C.) with a liquid composition comprising an effective reducing agent (preferably an alkali metal borohydride, hydrazine, formaldehyde, formic acid, ascorbic acid, dextrose, aluminum powder). Preferably, at least one alkali metal compound (more preferably KOH, RbOH, CsOH, KF) is also present in the liquid composition. An improved process for selectively hydrogenating acetylene (to ethylene) employs this wet-reduced catalyst composition.
    Type: Grant
    Filed: July 1, 1994
    Date of Patent: January 30, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack P. Cheung, Marvin M. Johnson, Scott H. Brown, Stan A. Zisman, James B. Kimble
  • Patent number: 5478789
    Abstract: A hydrogenation reaction catalyst precursor of the present invention comprises a catalyst carrier (A) and a metal oxide composition (B) carried on or mixed with the catalyst carrier (A) at a weight ratio of (B)/(A)=15/85 to 65/35; the catalyst carrier (A) comprising a carrier base material of silica, etc. and a coating of titanium oxide and/or titanium hydroxide, the metal oxide composition (B) comprising copper oxide, zinc oxide, and at least one oxide of a metal selected from the group consisting of an element of group IIa of the periodic table, an element of group IIIb of the table, a lanthanide element, and an actinide element at a weight ratio of 100/(0 to 25)/(0 to 25). A hydrogenation reaction catalyst with a high catalytic activity and a high reaction selectivity is obtained by reduction of the hydrogenation reaction catalyst precursor.
    Type: Grant
    Filed: October 4, 1994
    Date of Patent: December 26, 1995
    Assignee: Kao Corporation
    Inventors: Yasuyuki Hattori, Kiyoshi Tsukada
  • Patent number: 5453412
    Abstract: A copper oxide/zinc oxide/aluminium oxide catalyst which contains, per 100 parts of copper oxide, 40 to 130 parts zinc oxide, 2 to 50 parts aluminium oxide, and 1 to 4 parts soium oxide. It has a total BET surface area of 50 to 100 m.sup.2 /g, and 75% to 95% of the total surface area is made up by pores having radii of 9 to 1000 nm, and 5% to 25% of the total surface area is made up by pores having radii of less than 9 nm. The catalyst is useful for hydrogenation of various organic compounds.
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: September 26, 1995
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Gregor Deckers, Gerhardt Horn
  • Patent number: 5430220
    Abstract: In a process for preparing a dehydrogenation catalyst of the type in which a support comprising zinc aluminate is impregnated with at least one of platinum and tin from an impregnation solution, the improvement comprises simultaneously impregnating the support with the platinum and the tin by contacting the support with an impregnation solution which comprises, in solution, a tin compound, a platinum compound, and carboxylic acid. The thus prepared catalyst can be employed in the dehydrogenation of at least one alkane containing 2-8 carbon atoms per molecule in the presence of steam.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: July 4, 1995
    Assignee: Phillips Petroleum Company
    Inventors: Gyanesh P. Khare, Randall A. Porter
  • Patent number: 5380692
    Abstract: A catalyst for catalytic reduction of nitrogen oxide using at least one reducing agent selected from the group consisting of a hydrocarbon and an oxygen-containing organic compound is described, which includes an oxide represented by formula (V):A.sup.5.sub.x B.sup.3.sub.3-x C.sup.4.sub.3 O.sub.7 (V)wherein A.sup.5 represents at least one element selected from the group consisting of La, Y, Ce, Pr, Nd, Sm, Eu, and Gd; B.sup.3 represents at least one element selected from the group consisting of Ba, Sr, Ca, Mg, Pb, Zn, and Ag; C.sup.4 represents at least one element selected from the group consisting of Mn, Co, Fe, Ni, Cr, Cu, V, Mo, W, Ti, Zr, Nb, Pd, Rh, Ru, and Pt; and x is a number of from 0 to 1, supported on a solid acid carrier.
    Type: Grant
    Filed: September 11, 1992
    Date of Patent: January 10, 1995
    Assignees: Sakai Chemical Industry Co., Ltd., Agency of Industrial Science and Technology, Petroleum Energy Center, Cosmo Oil Co., Ltd.
    Inventors: Tadao Nakatsuji, Hiromitsu Shimizu, Ritsu Yasukawa, Fujio Suganuma, Akihiro Kitazume, Hiroshi Tsuchida, Takehiko Ito, Hideaki Hamada, Katsumi Miyamoto, Masaaki Kawatsuki, Yoshiaki Kintaichi, Motoi Sasaki, Mitsunori Tabata
  • Patent number: 5369076
    Abstract: Particular mixed vanadium/other metal catalysts, well suited for the desulfurization of gaseous effluents containing contaminating amounts of objectionable sulfur compounds, typically via the Claus reaction and notably in the presence of oxygen, comprise a support substrate, e.g., titanium dioxide, having an active catalytic phase deposited thereon, such active catalytic phase being constituted of an electroneutral solid solution having the average composition:A.sub.4.+-.y V.sub.2.+-.x O.sub.9in which A is a metal other than vanadium, e.g., magnesium, calcium or zinc, 0.ltoreq.x.ltoreq.0.2 and 0.ltoreq.y.ltoreq.0.5.
    Type: Grant
    Filed: June 17, 1992
    Date of Patent: November 29, 1994
    Assignee: Institut de Catalyse du Department Siberien de l'Academie des Sciences de Russie and Vniigaz (Institut de recherches de gas naturels)
    Inventors: Roman A. Bouyanov, Albert M. Tsyboulesky, Boris P. Zolotovsky, Dimitri P. Klevtsov, Vladimir I. Mourine
  • Patent number: 5344805
    Abstract: In a process for preparing a dehydrogenation catalyst of the type in which a support comprising zinc aluminate is impregnated with at least one of platinum and tin from an impregnation solution, the improvement comprises simultaneously impregnating the support with the platinum and the tin by contacting the support with an impregnation solution which comprises, in solution, a tin compound, a platinum compound, and a carboxylic acid. The thus prepared catalyst can be employed in the dehydrogenation of at least one alkane containing 2-8 carbon atoms per molecule in the presence of steam.
    Type: Grant
    Filed: May 3, 1993
    Date of Patent: September 6, 1994
    Assignee: Phillips Petroleum Company
    Inventors: Gyanesh P. Khare, Randall A. Porter
  • Patent number: 5336656
    Abstract: Reticulated ceramic or metal substrate coated with cobalt compounds, noble metals or mixtures thereof, are superior catalysts for the oxidation of ammonia to produce nitric oxide.
    Type: Grant
    Filed: September 10, 1993
    Date of Patent: August 9, 1994
    Assignee: Scientific Design Company, Inc.
    Inventor: Larry E. Campbell
  • Patent number: 5302569
    Abstract: An unreduced catalyst which contains, per 100 parts by weight of CuO, 40 to 130 parts by weight of ZnO, 2 to 50 parts by weight of Al.sub.2 O.sub.3 and, optionally, 0.5 to 8 parts by weight of an oxide of Mn, Mo, V, Zr and/or an alkaline earth metal, and, also optionally, 2 to 80 parts by weight of a support. The catalyst has a total BET surface area of 80 to 175 m.sup.2 /g, 75% to 95% of the total BET surface area is formed by pores having a radius r.sub.p .ltoreq.15 nm. The invention further relates to a process for the production of the catalyst and its use for the hydrogenation of aldehydes.
    Type: Grant
    Filed: August 17, 1992
    Date of Patent: April 12, 1994
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Gerhard Horn, Carl D. Frohning
  • Patent number: 5256616
    Abstract: A bead having an exterior surface which is at least partially coated with a material that under illumination and in the presence of air is capable of accelerating the oxidation of organic compounds floating on water. The coated bead is water floatable and has an equivalent diameter of less than about 2 mm, preferably on the order of 10-30 microns. These coated beads can be used to accelerate under illumination oxidation of a floating oil film (e.g. from an oil spill) by dispersing the coated beads in the film and allowing them to be exposed to solar illumination and oxygen.
    Type: Grant
    Filed: December 14, 1990
    Date of Patent: October 26, 1993
    Assignee: Board of Regents, The University of Texas System
    Inventors: Adam Heller, James R. Brock
  • Patent number: 5246903
    Abstract: An unsaturated halohydrocarbon such as vinylidene chloride is produced by the dehydrohalogenation of haloalkanes such as 1,1,1-trichloroethane or 1,1,2-trichloroethane, by contacting the haloalkane with a Group IA metal halide and a Group IIA or IIB metal oxide or metal hydroxide, together supported on a porous carrier material, under reaction conditions sufficient to form the corresponding unsaturated hydrocarbon and a Group IIA or IIB metal halide. The Group IIA or IIB metal oxide or metal hydroxide may be regenerated by contacting the Group IIA or IIB metal halide with an alkanol or water.
    Type: Grant
    Filed: July 23, 1992
    Date of Patent: September 21, 1993
    Assignee: The Dow Chemical Company
    Inventor: A. Dale Harley
  • Patent number: 5229346
    Abstract: A process for producing a hydrogenation reaction catalyst precursor is disclosed, including the steps of:(i) coating the outer surface of at least one of a first titanium oxide and a first titanium hydroxide having an outer surface area of at least 15 m.sup.2 /g with at least one of a second titanium oxide and a second titanium hydroxide formed by hydrolyzing at least one of a titanium alkoxide represented by Formula (I) and a titanium alkoxo acid represented by Formula (II) to prepare a catalyst carrier (A);Ti(OR).sub.4 (I)wherein R represents an alkyl group having from 1 to 18 carbon atoms or an aryl group,H.sub.2 [Ti(OR).sub.6 ] (II)wherein R has the same meaning as above;(ii) applying a metal oxide composition (B) onto the catalyst carrier (A) obtained in step (i), or mixing the metal oxide composition (B) with the catalyst carrier (A) to obtain a hydrogenation reaction catalyst precursor.
    Type: Grant
    Filed: May 21, 1992
    Date of Patent: July 20, 1993
    Assignee: Kao Corporation
    Inventors: Atsuhito Mori, Yasuyuki Hattori, Kiyoshi Tsukada, Noriaki Fukuoka