Of Group Iv (i.e., Ti, Zr, Hf, Ge, Sn Or Pb) Patents (Class 502/349)
  • Patent number: 8853120
    Abstract: An exhaust gas purification catalyst has a substrate, a lower catalyst layer that is formed on the substrate and contains at least one of Pd and Pt, and an upper catalyst layer that is formed on the lower catalyst layer and contains Rh. A region that does not contain the upper catalyst layer is disposed on the exhaust gas upstream side of this exhaust gas purification catalyst. The lower catalyst layer includes a front-stage lower catalyst layer on the exhaust gas upstream side and a rear-stage lower catalyst layer on the exhaust gas downstream side. The front-stage lower catalyst layer contains an oxygen storage material.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: October 7, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuki Aoki, Takeshi Nobukawa
  • Patent number: 8853121
    Abstract: The effect of aging temperature on oxygen storage materials (OSM) substantially free from platinum group (PGM) and rare earth (RE) metals is disclosed. Samples of ZPGM-ZRE metals OSM, hydrothermally aged at a plurality of high temperatures are found to have significantly high oxygen storage capacity (OSC) and phase stability than conventional PGM catalysts with Ce-based OSM. ZPGM-ZRE metals OSM includes a formulation of Cu—Mn stoichiometric spinel structure deposited on Nb—Zr oxide support and may be converted into powder to be used as OSM application or coated onto catalyst substrate. ZPGM-ZRE metals OSM, after aging condition, presents enhanced level of thermal stability and OSC property which shows improved catalytic activity than conventional PGM catalysts including Ce-based OSM. ZPGM-ZRE metals OSM may be suitable for a vast number of applications, and more particularly in underfloor catalyst systems.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: October 7, 2014
    Assignee: Clean Diesel Technology Inc.
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20140274674
    Abstract: The influence of a plurality of support oxides on coating process for ZPGM catalysts is disclosed. ZPGM catalyst samples with washcoat on suitable ceramic substrate and overcoat including a plurality of support oxides are prepared including an impregnation layer of Cu—Mn spinel or overcoat may be prepared from powder of Cu—Mn spinel with support oxide. Testing of fresh and aged ZPGM catalyst samples is developed under isothermal steady state sweep test condition. Catalyst testing allows to determine effect of a plurality of support oxides on coating processes, TWC performance, and stability of ZPGM catalysts for a plurality of TWC applications. Stability of ZPGM-TWC systems may be improved by promotion of the activity of ZPGM materials incorporating support oxides. Improvements that may be provided by the combination of support oxides with ZPGM materials in the catalyst may lead to a most effective utilization of ZPGM materials in TWC converters.
    Type: Application
    Filed: February 18, 2014
    Publication date: September 18, 2014
    Applicant: CDTi
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20140274678
    Abstract: Variations of coating processes of ZPGM catalyst materials for TWC applications are disclosed. The disclosed coating processes for ZPGM materials are enabled in the preparation of ZPGM catalyst samples according to a plurality of catalyst configurations, which may include washcoat and an overcoat layer with or without an impregnation layer, including Cu—Mn spinel and doped Zirconia support oxide, prepared according to variations of disclosed coating processes. Activity measurements under isothermal steady state sweep test condition are considered under lean condition and rich condition close to stoichiometric condition to analyze the influence of disclosed coating processes on TWC performance of ZPGM catalysts. Different coating processes may substantially increase TWC activity, providing improved levels of NO, CO, and HC conversions and cost effective manufacturing solutions.
    Type: Application
    Filed: February 18, 2014
    Publication date: September 18, 2014
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Patent number: 8833064
    Abstract: Catalyst articles comprising substantially only a palladium precious metal component in a first catalytic layer and a rhodium component in a second catalytic layer and related methods of preparation and use are disclosed. Also disclosed is a catalyst article comprising a first layer formed on a carrier substrate, wherein the first layer comprises a refractory metal oxide and has a surface that is substantially uniform; a second layer formed on the first layer, wherein the second layer comprises i) an oxygen storage component that is about 50-90% by weight of the second layer and ii) a palladium component in an amount of about 2-5% by weight of the second layer, wherein the palladium component is substantially the only platinum group metal component, and a palladium-free third layer comprising a rhodium component supported on a thermostable oxygen storage component which is about 80-99% by weight of the second layer. One or more improved properties are exhibited by the catalyst article.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: September 16, 2014
    Assignee: BASF Corporation
    Inventors: Michael P. Galligan, Pascaline H. Tran, Keshavaraja Alive, Ye Liu
  • Patent number: 8835346
    Abstract: A catalyst material including a catalyst carrier including a porous alumina support and a hindrance layer on the alumina support, the hindrance layer comprising one or more barium sulfate, strontium sulfate, zirconium sulfate, and calcium sulfate is described. The catalyst carrier further includes a rare earth oxide. The catalyst material can further comprise a platinum group metal oxide. The hindrance layer may prevent the rare earth oxide from forming a complex with the support. The catalyst material is useful for methods and systems of abating pollutants from automotive exhaust gas.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: September 16, 2014
    Assignee: BASF Corporation
    Inventors: Gary A. Gramiccioni, Stephan Siemund, Shau-Lin F. Chen, Kenneth Brown
  • Patent number: 8834835
    Abstract: A catalytic water gas shift process at temperatures above about 450° C. up to about 900° C. or so wherein the catalyst includes rhenium deposited on a support, preferably without a precious metal, wherein the support is prepared from a high surface area material, such as a mixed metal oxide, particularly a mixture of zirconia and ceria, to which may be added one or more of a high surface area transitional alumina, an alkali or alkaline earth metal dopant and/or an additional dopant selected from Ga, Nd, Pr, W, Ge, Fe, oxides thereof and mixtures thereof.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: September 16, 2014
    Assignees: Clariant Corporation, L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Jon P. Wagner, Michael W. Balakos, Chandra Ratnasamy
  • Publication number: 20140256966
    Abstract: A method for stabilizing a metal or metal-containing particle supported on a surface is described, along with the resulting composition of matter. The method includes the steps of depositing upon the surface a protective thin film of a material of sufficient thickness to overcoat the metal or metal-containing particle and the surface, thereby yielding an armored surface; and then calcining the armored surface for a time and at a temperature sufficient to form channels in the protective thin film, wherein the channels so formed expose a portion of the metal- or metal-containing particle to the surrounding environment. Also described is a method of performing a heterogeneous catalytic reaction using the stabilized, supported catalyst.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: James A. Dumesic, Brandon J. O'Neill
  • Patent number: 8828900
    Abstract: The exhaust gas purification catalyst according to the present invention has a substrate 54, a lower layer 57 disposed on this substrate 54, and an upper layer 58 disposed on this lower layer 57. The upper layer 58 is provided with a first catalyst and a second catalyst, and the lower layer 57 is provided with a first catalyst. This first catalyst has Al2O3 as a carrier and Pt and Pd as noble metals supported on the Al2O3, while the second catalyst typically has an Al2O3—ZrO2—TiO2 complex oxide as a carrier and has Pd as a noble metal supported on the Al2O3—ZrO2—TiO2 complex oxide. Moreover, the upper layer 58 has a hydrocarbon adsorbent 68.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: September 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobuyuki Takagi, Yuichi Sobue, Hanae Ikeda, Masaya Kamada, Ryoichi Inde
  • Patent number: 8828544
    Abstract: A process for depositing nanostructured material onto a particulate substrate material comprising the steps of: a) preparing a precursor material; b) forming an atomized dispersion containing nanophased material when subjecting said precursor material to elevated temperature; and c) contacting the atomized dispersion with the substrate material to deposit the nanophased material on the substrate material. The substrate material is in mobile and particulate form for contacting step (c). An apparatus for carrying out the process is also disclosed.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: September 9, 2014
    Assignee: Commonwealth Scientific And Industrial Research Organisation
    Inventors: Kok Seng Lim, Jonian Ivanov Nikolav
  • Patent number: 8828343
    Abstract: Catalyst articles comprising palladium and related methods of preparation and use are disclosed. Disclosed is a catalyst article comprising a first catalytic layer formed on a substrate, wherein the first catalytic layer comprises palladium impregnated on a ceria-free oxygen storage component and platinum impregnated on a refractory metal oxide, and a second catalytic layer formed on the first catalytic layer comprising platinum and rhodium impregnated on a ceria-containing oxygen storage component. The palladium component of the catalyst article is present in a higher proportion relative to the other platinum group metal components. The catalyst articles provide improved conversion of carbon monoxide in exhaust gases, particularly under rich engine operating conditions.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: September 9, 2014
    Assignee: BASF Corporation
    Inventors: Xinsheng Liu, Ye Liu, Pascaline Harrison Tran, Keshavaraja Alive, Michael P. Galligan
  • Publication number: 20140249331
    Abstract: A process for preparing a ketone by conversion of a compound E which contains an epoxy group to the ketone in the presence of a mixture comprising at least one noble metal and at least one metal oxide as a catalyst system, wherein the metal oxide in the catalyst system is at least one of titanium dioxide and zirconium dioxide, and the process is conducted at 0 to 0.9 bar of hydrogen.
    Type: Application
    Filed: February 27, 2014
    Publication date: September 4, 2014
    Applicant: Evonik Industries AG
    Inventors: Kevin MICOINE, Martin Roos, Peter Hannen, Harald Haeger, Klaus Bartosch
  • Patent number: 8822371
    Abstract: A process for producing geometric shaped catalyst bodies K whose active material is a multielement oxide of stoichiometry [Bi1WbOx]a[Mo12Z1cZ2dFeeZ3fZ4gZ5nOy]1, in which a finely divided oxide Bi1WbOx with the particle size d50A1 and, formed from element sources, a finely divided intimate mixture of stoichiometry Mo12Z1cZ2dFeeZ3fZ4gZ5h with the particle size d50A2 are mixed in a ratio of a:1, this mixture is used to form shaped bodies and these are treated thermally, where (d50A1)0.7·(d90A1)1.5·(a)?1?820.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: September 2, 2014
    Assignee: BASF SE
    Inventors: Andreas Raichle, Catharina Horstmann, Frank Rosowski, Klaus Joachim Müller-Engel, Holger Borchert, Gerhard Cox, Ulrich Cremer
  • Patent number: 8809223
    Abstract: A process for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. The process comprises providing at least a metal precursor in solution comprising at least two different metal cations in its molecular structure, with at least one of the metal cations is a Group VIB metal cation; sulfiding the metal precursor with a sulfiding agent in solution forming a catalyst precursor; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In one embodiment, the at least a metal precursor comprising at least two different metal cations is prepared by combining and reacting at least one Group VIB metal compound with at least a Promoter metal compound selected from Group VIII, Group IIB, Group IIA, Group IVA metals and combinations thereof.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Julie Chabot, Oleg Mironov
  • Patent number: 8808653
    Abstract: PROBLEM The present invention is directed to provide a catalyst for purifying exhaust gas capable of maintaining a superior catalytic performance even when the catalyst is exposed to an exhaust gas at a high temperature of 800° C. or higher. SOLUTION The catalyst for purifying exhaust gas of the present invention comprises a catalytically active component containing a noble metal and a promoter containing an oxygen storage material both being supported on a carrier. The oxygen storage material comprises cerium, zirconium, and iron, and content of iron in the oxygen storage material is 0.01% by mass or more and less than 0.70% by mass (Fe2O3 conversion) relative to the total mass of the oxygen storage material. And the oxygen storage material is (a) a complex oxide or a solid solution of iron and a metal comprising cerium and zirconium; or (b) an iron is supported on a complex oxide or a solid solution of a metal comprising cerium and zirconium.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: August 19, 2014
    Assignees: Umicore Shokubai Japan Co., Ltd., Umicore Shokubai USA Inc.
    Inventors: Kosuke Mikita, Takahiro Ikegami, Masanori Ikeda, Hideki Goto
  • Patent number: 8809222
    Abstract: An improved process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, high shear mixing is employed to generate an emulsion containing droplets of metal precursor in oil with droplet sizes ranging from 0.1 to 300 ?m. The emulsion is subsequently sulfided with a sulfiding agent, or in-situ in a heavy oil feedstock to form a slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Julie Chabot, Shuwu Yang, Joseph V. Nguyen, Ling Jiao, Bruce Edward Reynolds, Axel Brait, Kenneth Kwik, Modinat Kotun
  • Patent number: 8809226
    Abstract: A method of producing a carrier used for a catalyst for oxidative dehydrogenation of n-butane; a method of producing a magnesium orthovanadate catalyst supported by the carrier; and a method of producing n-butene and 1,3-butadiene using the catalyst are described.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: August 19, 2014
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: In Kyu Song, Ho Won Lee, Yeon Shick Yoo, Young Jin Cho, Jin Suk Lee, Ho Sik Jang
  • Patent number: 8802586
    Abstract: An improved hydroprocessing slurry catalyst is provided for the upgrade of heavy oil feedstock. The catalyst comprises dispersed particles in a hydrocarbon medium with the dispersed particles have an average particle size ranging from 1 to 300 ?m. The catalyst has a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter. The catalyst is prepared from sulfiding and dispersing a metal precursor solution in a hydrocarbon diluent, the metal precursor comprising at least a Primary metal precursor and optionally a Promoter metal precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 12, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Ling Jiao, Julie Chabot, Joseph V. Nguyen, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Patent number: 8802587
    Abstract: An improved process to make a slurry catalyst for the upgrade of heavy oil feedstock is provided. The sulfiding of the metal precursor/catalyst precursor is carried out at least twice (“enhanced sulfiding”) in the improved process to form a slurry catalyst with improved surface area and porosity value. The slurry catalyst under an enhanced sulfiding scheme is characterized as having increased catalytic activities over a slurry catalyst without an enhanced sulfidation step.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 12, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Julie Chabot, Ling Jiao, Christopher Paul Dunckley, Shuwu Yang
  • Patent number: 8802044
    Abstract: The invention relates to a filtration structure, for filtering a gas coming from a diesel engine, which is laden with gaseous pollutants of the nitrogen oxide NOx type and with solid particles, of the particulate filter type, said filtration structure being characterized in that it includes a catalytic system comprising at least one noble metal or transition metal suitable for reducing the NOx and a support material, in which said support material comprises or is made of a zirconium oxide partially substituted with a trivalent cation M3+ or with a divalent cation M?2+, said zirconium oxide being in a reduced, oxygen-sub-stoichiometric, state.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 12, 2014
    Assignees: Saint-Gobain Centre de Recherches et d'Etudes Europeen, Centre National de la Recherche Scientifique
    Inventors: Philippe Vernoux, Abdelkader Hadjar, Agnes Princivalle, Christian Guizard
  • Patent number: 8796172
    Abstract: An exhaust gas purification catalyst is provided with a catalyst coating layer (40) formed on the surface of a substrate (32). This catalyst coating layer (40) is formed of an upper catalyst coating layer (36) in which Rh particles are supported on a porous support, and a lower catalyst coating layer (34) in which Pd particles are supported on a support that contains an ACZ composite oxide made of alumina (Al2O3), ceria (CeO2), and zirconia (ZrO2).
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: August 5, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Isao Chinzei
  • Patent number: 8796169
    Abstract: The invention relates to the use of a catalytic composition for selective methanization of carbon monoxide in hydrogen- and carbon dioxide-containing streams, wherein the active component used is ruthenium and the support material is a lanthanum-cerium-zirconium oxide, where the total loading of the support material with the active component is 0.1 to 20% by weight, based on the total weight of the catalytically active composition, and the support material comprises a lanthanum oxide content of 0.1 to 15% by weight, a cerium oxide content of 0.1 to 15% by weight and a zirconium oxide content of 30 to 99.8% by weight, based on the weight of the overall support material.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: August 5, 2014
    Assignee: BASF SE
    Inventors: Jochen Steiner, Markus Hoelzle, Heiko Urtel
  • Patent number: 8795619
    Abstract: A catalyst for purification of exhaust gas, in which a noble metal is supported on a metal oxide support, has a basic site content of 1 mmol/L-cat or less, as determined on the basis of an amount of CO2 desorbed per liter of the catalyst as measured by a CO2 temperature-programmed desorption method.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: August 5, 2014
    Assignees: Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Tadashi Suzuki, Satoru Kato, Naoki Takahashi, Takaaki Kanazawa, Masanori Yamato, Kazuhiro Yoshimoto, Michihiko Takeuchi, Yuuji Matsuhisa
  • Patent number: 8796173
    Abstract: A method for producing phthalic anhydride by catalytic gas-phase oxidation of o-xylene and/or naphthalene, carried out by means of a catalyst arrangement which has a first catalyst layer at the gas inlet side and at least one second catalyst layer after the first catalyst layer in the gas flow direction with different catalytic activity, wherein when the gas-phase oxidation is being carried out a lower maximum temperature is formed in the first catalyst layer than in the second catalyst layer. Furthermore, a method for producing the catalyst arrangement, as well as the catalyst arrangement itself.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: August 5, 2014
    Assignee: Süd-Chemie IP GmbH & Co. KG
    Inventors: Hans-Jörg Wölk, Gerhard Mestl
  • Patent number: 8796171
    Abstract: A denitration catalyst composition to efficiently and reductively remove nitrogen oxides from exhaust gas of a boiler or an internal combustion engine operated in lean-combustion, such as a gasoline engine, a diesel engine, by carbon monoxide and hydrocarbons; and a denitration method using the catalyst composition. In the denitration catalyst composition, a precious metal element having Rh as an essential component is supported on a zirconium oxide-based carrier formed by condensing or mixing primary particles having a zirconium oxide as a main component, and further a cerium-containing oxide (B) is present at the surface of the zirconium oxide-based carrier and at the gap of the secondary particles; and a denitration method characterized in that exhaust gas containing NO, CO and O2 is contacted with the denitration catalyst composition, under oxidative atmosphere having an air/fuel ratio of 14.7 or higher, at a temperature of 400 to 800° C.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: August 5, 2014
    Assignee: N.E. Chemcat Corporation
    Inventors: Takehiro Fujimura, Yasuharu Kanno
  • Patent number: 8791307
    Abstract: A process of producing ?,?-unsaturated ethers includes pyrolyzing an acetal represented by Formula (2) below in a gas phase in the presence of a catalyst and a compound having at least one hydrogen atom capable of hydrogen bonding to produce an ?,?-unsaturated ether represented by Formula (3) below: R1R2CH—CR3(OR4)2??(2) R1R2C?C—R3(OR4)??(3) In Formulae (2) and (3), R1, R2 and R3 are each independently a hydrogen atom, an alkyl group, an alkenyl group or an aryl group; R4 is an alkyl group, an alkenyl group or an aryl group; the plurality of R4 in Formula (2) may be the same or different from each other.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: July 29, 2014
    Assignee: Showa Denko K.K.
    Inventors: Yoshikuni Okumura, Hiroto Kouka, Takanori Aoki
  • Patent number: 8785343
    Abstract: This invention relates to a mesoporous carbon supported copper based catalyst comprising mesoporous carbon, a copper component and an auxiliary element supported on said mesoporous carbon, production and use thereof. The catalyst is cheap in cost, friendly to the environment, and satisfactory in high temperature resistance to sintering, with a highly improved and a relatively stable catalytic activity.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: July 22, 2014
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Co., Ltd.
    Inventors: Jingwei Liu, Zezhuang Li, Shaohui Chen, Aiwu Yang, Jiye Bai, Lijuan Liu, Yingwu Wang
  • Patent number: 8784759
    Abstract: The present invention relates to a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer disposed on the substrate, the first washcoat layer comprising metal oxide support particles and a nitrogen oxide storage material comprising at least one metal compound selected from the group consisting of alkaline earth metal compounds, alkali metal compounds, rare earth metal compounds, and mixtures thereof, at least a portion of said at least one metal compound being supported on the metal oxide support particles; and a second washcoat layer disposed over the first washcoat layer, said second washcoat layer comprising Rh, wherein the first washcoat layer contains substantially no Rh, and wherein the second washcoat layer is disposed on 100-x % of the surface of the first washcoat layer, x ranging from 20 to 80.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: July 22, 2014
    Assignee: BASF SE
    Inventor: Marcus Hilgendorff
  • Patent number: 8778832
    Abstract: The present invention is directed to a catalyst suitable for catalyzing a Fischer-Tropsch reaction, said catalyst comprising cobalt metal supported on zinc-oxide and having the following particle size distribution by volume: <10% having a particle size below 1 micron, 70-99% having a particle size between 1 and 5 micron, and <20% having a particle size above 5 micron.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: July 15, 2014
    Assignee: BASF Corporation
    Inventors: Tjalling Rekker, Cornelis Roeland Baijense
  • Patent number: 8778831
    Abstract: There is described a base metal modified Cerium containing oxide materials and their application as catalysts for the oxidation of CO and HC emissions from a compression ignition/diesel engine. These materials provide effective promotion of CO and HC oxidation function in the presence or absence of PGM and are based upon OIC/OS materials having a stable cubic crystal structure, and most especially to promoted OIC/OS materials wherein the promotion is achieved by the post-synthetic introduction of non-precious metals via a basic (alkaline) exchange process.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: July 15, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Barry W. L. Southward, Curt Ellis
  • Patent number: 8778828
    Abstract: A process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. The process employs a pressure leach solution obtained from a metal recovery process as part of the metal precursor feed. In one embodiment, the process comprises: sulfiding a pressure leach solution having at least a Group VIB metal precursor compound in solution forming a catalyst precursor, and mixing the sulfided catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In another embodiment, the pressure leach solution is mixed with a hydrocarbon diluent under high shear mixing conditions to form an emulsion, which emulsion can be sulfided in-situ upon contact with a heavy oil feedstock in the heavy oil upgrade process.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 15, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Rahul Shankar Bhaduri, Julie Chabot, Shuwu Yang, Ling Jiao, Joseph V. Nguyen, Bruce Edward Reynolds
  • Patent number: 8778833
    Abstract: Catalysts and methods for their manufacture and use for the dehydrogenation of alcohols are disclosed. The catalysts and methods utilize a highly dispersible alumina, for example, boehmite or pseudoboehmite, to form catalysts that exhibit high dehydrogenation activities. Specifically, the catalysts include Cu that is highly dispersed by reaction of an alumina formed by peptizing of boehmite or pseudoboehmite and precursors of ZrO2, ZnO and CuO.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: July 15, 2014
    Assignee: BASF Corporation
    Inventors: Rostam Jal Madon, Peter Nagel, Deepak S. Thakur
  • Patent number: 8771624
    Abstract: An Object of the patent is to remove highly reducing hydrocarbon exhausted during acceleration period, and to remove efficiently hydrocarbon even after contacting with highly reducing hydrocarbon. By using a catalyst having a higher proportion of palladium having surface charge of 2-valence or 4-valence supported than that of 0-valence by supporting palladium together with magnesium oxide, hydrocarbon exhausted from an internal combustion engine especially during acceleration period can be efficiently removed.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 8, 2014
    Assignees: Umicore Shokubai Japan Co., Ltd, Umicore Shokubai USA Inc.
    Inventors: Masanori Ikeda, Hideki Goto, Kosuke Mikita
  • Patent number: 8765631
    Abstract: The present invention provides a cerium oxide-zirconium oxide based composite oxide that has a large OSC at a low temperature and that has a suitable OSC, and a method for readily producing the composite oxide. Specifically, the present invention provides a cerium oxide-zirconium oxide based composite oxide comprising a mixture of (1) a cerium-zirconium composite oxide from a melting process and (2) cerium dioxide from a wet process, and a method for producing a cerium oxide-zirconium oxide based composite oxide, the method comprising dispersing a cerium-zirconium composite oxide from a melting process in a cerium-containing solution, neutralizing the resulting dispersion; and then performing a heat treatment.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: July 1, 2014
    Assignee: Daiichi Kigenso Kagaku Kogyo Co., Ltd.
    Inventors: Sadahiro Yagishita, Noriyuki Omura, Akiko Tatsumi
  • Patent number: 8748335
    Abstract: A photodegradation catalyst or a photodegradation catalyst precursor comprises a plurality of domains of an oxide of a first metal distributed in a substrate of a halide or oxyhalide of a second metal, wherein the mole percentage of the halide or oxyhalide of the second metal is above 50%. Additionally, a method of preparing a photodegradation catalyst or a photodegradation catalyst precursor, a photodegradation catalyst or a photodegradation catalyst precursor obtained from the method and a method of treating organic pollutants or substances in air or water by using the photodegradation catalyst or the photodegradation catalyst precursor are illustrated.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: June 10, 2014
    Assignee: Microvast, Inc.
    Inventors: Xiao Ping Zhou, Fei Chen, Jeff Qiang Xu
  • Patent number: 8741800
    Abstract: A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: June 3, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Christopher L. Marshall, Joseph A. Libera, James A. Dumesic, Yomaira J. Pagan-Torres
  • Patent number: 8741242
    Abstract: A NOx storage component comprises caesium silicate (Cs2SiO3) and at least one platinum group metal. The invention also includes a NOx absorber catalyst comprising a NOx storage component according to the invention disposed on a substrate monolith; a method of treating exhaust gas containing NOx from a lean burn internal combustion engine comprising the steps of contacting a NOx storage component comprising caesium silicate (Cs2SiO3) and at least one platinum group metal with lean exhaust gas containing NOx to adsorb NOx thereon; and periodically desorbing adsorbed NOx by contacting the NOx storage component with stoichiometric or rich exhaust gas; and a method of making a NOx storage component according to the invention comprising the steps of combining and reacting an aqueous salt of at least one platinum group metal, an aqueous caesium salt and a source of silica.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: June 3, 2014
    Assignee: Johnson Matthey PLC
    Inventors: Jonathan Ashley Cooper, Michael Anthony Howard
  • Patent number: 8741240
    Abstract: The selective reduction-type catalyst effectively purifies nitrogen oxides contained in exhaust gas from a lean-burn engine such as a boiler, a gas turbine or a lean-burn engine, a diesel engine, even under high SV, as well as having small pressure loss, by supplying by spraying urea water or ammonia water, as a reducing component, to the selective reduction-type catalyst; and an exhaust gas purification apparatus along with an exhaust gas purification method using the same. The selective reduction-type catalyst for selectively reducing a nitrogen oxide by adding urea or ammonia as a reducing agent of the nitrogen oxide to exhaust gas discharged from a lean-burn engine, characterized by coating a catalyst layer including zeolite containing at least an iron element, and a composite oxide of silica, tungsten oxide, ceria and zirconia, as denitration components, at the surface of a monolithic structure-type substrate.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: June 3, 2014
    Assignee: N.E. Chemcat Corporation
    Inventors: Takashi Hihara, Tomoaki Ito, Yasushi Tanaka, Makoto Nagata
  • Publication number: 20140148331
    Abstract: A metal catalyst is formed by vaporizing a quantity of metal and a quantity of carrier forming a vapor cloud. The vapor cloud is quenched forming precipitate nanoparticles comprising a portion of metal and a portion of carrier. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal catalysts comprises means for vaporizing a quantity of metals and a quantity of carrier, quenching the resulting vapor cloud and forming precipitate nanoparticles comprising a portion of metals and a portion of carrier. The system further comprises means for impregnating supports with the nanoparticles.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 29, 2014
    Applicant: SDCmaterials, Inc.
    Inventor: SDCmaterials, Inc.
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Patent number: 8735317
    Abstract: The present invention relates to petrochemistry, gas chemistry, coal chemistry, particularly the invention relates to a catalyst for synthesis of hydrocarbons from CO and H2 and a preparation method thereof. The catalyst is pelletized and comprises at least Raney cobalt as active component in an amount of 1-40% by weight based on the total weight of the catalyst, metallic aluminium in an amount of 25-94% by weight based on the total weight of the catalyst and a binder in an amount of 5-30% by weight based on the total weight of the catalyst. The present invention provides the catalyst stability to overheating and high productivity of hydrocarbons C5-C100 for synthesis of hydrocarbons from CO and H2.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: May 27, 2014
    Assignee: Infra XTL Technology Limited
    Inventors: Vladimir Zalmanovich Mordkovich, Lilia Vadimova Sineva, Igor Grigorievich Solomonik, Vadim Sergeevich Ermolaev, Eduard Borisovich Mitberg
  • Publication number: 20140140904
    Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.
    Type: Application
    Filed: July 23, 2013
    Publication date: May 22, 2014
    Applicant: National Applied Research Laboratories
    Inventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
  • Publication number: 20140140909
    Abstract: The present disclosure relates to a substrate comprising nanomaterials for treatment of gases, washcoats for use in preparing such a substrate, and methods of preparation of the nanomaterials and the substrate comprising the nanomaterials. More specifically, the present disclosure relates to a substrate comprising nanomaterial for three-way catalytic converters for treatment of exhaust gases.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 22, 2014
    Applicant: SDCMATERIALS, INC.
    Inventor: SDCmaterials, Inc.
  • Publication number: 20140135208
    Abstract: The present invention a catalyst that includes a metallic or ceramic foam catalyst support having surfaces within the foam for the placement of a catalytic material, and an active catalyst material which is applied by washcoating or dipping.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: L'Air Liquide Societe Anonyme Pour I'Etude et I'Expoitation des Procedes Georges Claude
    Inventors: Daniel Gary, Pavol Pranda, Tony Mathew Thampan
  • Patent number: 8716165
    Abstract: A method for providing a catalyst on a substrate is disclosed comprising providing a first washcoat comprising a soluble washcoat salt species, a polar organic solvent, and an insoluble particulate material, contacting the first washcoat with a substrate to form a coated substrate, and then contacting the coated substrate with a second washcoat comprising an oxide or an oxide-supported catalyst to physisorb, chemisorb, bond, or otherwise adhere the oxide or the oxide-supported catalyst to the coated substrate. Also disclosed is a catalyst on a substrate comprising: a substrate; an anchor layer comprising a soluble washcoat salt species, a polar organic solvent, and an insoluble particulate material; and a second layer comprises an oxide or an oxide-supported catalyst. The catalyst on a substrate can be in either green or fired form.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 6, 2014
    Assignee: Corning Incorporated
    Inventor: William Peter Addiego
  • Patent number: 8709365
    Abstract: The invention relates to a catalytically active particulate filter which, in addition to the properties typical of particulate filters, has hydrogen sulphide block function, and to a process for removing nitrogen oxides and particulates from the exhaust gas of internal combustion engines operated predominantly under lean conditions (so-called “lean-burn engines”) using the inventive catalytically active particulate filter. This particulate filter comprises a filter body, a copper compound and an oxidation-catalytic active coating which comprises at least one catalytically active platinum group metal. The copper compound is in a second coating applied to the filter body. The two functional coatings may be applied to the filter body consecutive in the direction of flow, i.e. zoned, or layered one on top of the other.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 29, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Franz Dornhaus, Stephanie Frantz, Ina Grisstede
  • Patent number: 8709262
    Abstract: Toxic organic materials contaminate water resources and one need to find an easy and energy efficient way to decontaminate water resources. The current invention discloses a photocatalyst Fe doped ZnO nano-particle photocatalyst that enables the decontamination process by degrading toxic organic material such as brilliant cresyl blue, indigo carmine and gentian blue by using solar light. In the current disclosure many examples of characterization of the photocatalyst, optimal working conditions and efficient use of solar light has been described. The process described to use the photocatalyst to degrade toxic organic material using the solar light to activate the photocatalyst is cost efficient and cheap to clean our water resources.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: April 29, 2014
    Assignee: King Abdulaziz University
    Inventors: Abdullah Mohamed Asiri, Sher Bahadar Khan, Khalid Ahmad Alamry, Mohammed M Rahman, Mohamed Saeed Alamoodi
  • Patent number: 8703636
    Abstract: A method of manufacturing a catalyst body which includes: combining one or more inorganic components with an inorganic binder, and optionally with an organic binder, to form a mixture, the one or more inorganic components comprising a primary phase material being zeolite, or CeO2—ZrO2, or a combination; forming the mixture into a shaped body; firing the shaped body to allow the inorganic binder to bind the one or more inorganic components; impregnating the shaped body with a source of a reducing or oxidizing element; and heating the impregnated shaped body to form a redox oxide from the source, the redox oxide being supported by the shaped body.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: April 22, 2014
    Assignee: Corning Incorporated
    Inventors: Steven Bolaji Ogunwumi, Mallanagouda Dyamanagouda Patil
  • Publication number: 20140106962
    Abstract: The present invention relates to methods for producing metal-supported thin layer skeletal catalyst structures, to methods for producing catalyst support structures without separately applying an intermediate washcoat layer, and to novel catalyst compositions produced by these methods. Catalyst precursors may be interdiffused with the underlying metal support then activated to create catalytically active skeletal alloy surfaces. The resulting metal-anchored skeletal layers provide increased conversion per geometric area compared to conversions from other types of supported alloy catalysts of similar bulk compositions, and provide resistance to activity loss when used under severe on-stream conditions. Particular compositions of the metal-supported skeletal catalyst alloy structures can be used for conventional steam methane reforming to produce syngas from natural gas and steam, for hydrodeoxygenation of pyrolysis bio-oils, and for other metal-catalyzed reactions inter alia.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Applicant: Alloys Surfaces Company, Inc.
    Inventors: Vincent A. Durante, Rajinder Gill, Andrew Davis, Elaine C. Soltani
  • Patent number: RE45083
    Abstract: The present invention relates to metal oxide particles having cores comprising larger molar amounts of zirconia than of ceria, and surface layers comprising larger molar amounts of ceria than of zirconia. Further, the present invention relates to a method for preparing the particles. The method comprises preparing a solution comprising zirconia sol and ceria sol, adjusting the pH of the solution within ±0.5 on the basis of the isoelectric point of zirconia, and aggregating zirconia and then aggregating ceria around the aggregated zirconia from the solution to make aggregates. Furthermore, the present invention relates to an exhaust gas purifying catalyst comprising the metal oxide particles, and a noble metal carried by the metal oxide particles.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: August 19, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Oji Kuno