Zeolite Patents (Class 502/64)
  • Patent number: 7442365
    Abstract: A process for preparing beads of various compositions has been developed. The process involves preparing a reaction mixture of sources of framework elements of a molecular sieve. The reaction mixture can optionally contain molecular sieve seeds. Additional sources of the framework elements are added to give a concentration above the critical supersaturation limit thereby forming beads. Depending on the composition of the reaction mixture and the reaction conditions one can obtain beads which are substantially amorphous, to beads that are substantially crystalline molecular sieve. These beads in turn can be further processed to deposit a molecular sieve layer onto the beads.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: October 28, 2008
    Assignee: UOP LLC
    Inventors: Lance L. Jacobsen, Brian S. Konrad, David A. Lesch, Beckay J. Mezza, James G. Vassilakis, Cynthia R. Berinti-Vondrasek
  • Patent number: 7442367
    Abstract: The present invention discloses a production method for a zeolite shaped body in which a tetrapropylammonium hydroxide (TPAOH) solution and tetrapropylammonium bromide (TPABr) are added to a silica sol, an obtained prepared solution is heated under a condition that crystallization and/or precipitation does not occur in the prepared solution in a sealed vessel, the heated prepared solution is dried, an obtained dry gel is shaped, and the shaped dry gel is subjected to crystallization treatment in steam, and it is possible to efficiently produce a zeolite shaped body on which a zeolite membrane can be formed and maintained without generating any crack, and which satisfies both reduction of pressure loss and maintenance or improvement of mechanical strength, when used as a gas separation membrane such as a molecular sieve membrane or a pervaporation membrane.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: October 28, 2008
    Assignee: NGK Insulators, Ltd.
    Inventors: Miyuki Yabuki, Kenji Suzuki, Shinji Nakamura, Toshihiro Tomita
  • Patent number: 7435699
    Abstract: A non-homogeneous adsorbent is described, formed of a core and at least one continuous outer layer in which the core of said adsorbent has a volume adsorptive capacity representing at least 35% of the volume of the adsorbent and the outer layer has a diffusional selectivity greater than 5. The adsorbent is used in gas-separation processes or liquid-separation processes.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: October 14, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Elsa Jolimaitre, Loïc Rouleau, Olivier Ducreux
  • Patent number: 7431913
    Abstract: A new EUO-structural-type zeolite that comprises at least one tetravalent element X that is selected from among silicon, tin, titanium and germanium and optionally at least one trivalent element T that is selected from among aluminum, iron, boron, indium and gallium is described. This new zeolite is characterized in that it contains, in its crude synthesis form, the nitrogen-containing organic cation of formula N,N-dimethyl-N,N-di(3,3-dimethylbutyl)ammonium. A method for the preparation of this zeolite is also described.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: October 7, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Philippe Caullet, Sylvie Lacombe, Jean-Louis Paillaud, Nicolas Bats, Loic Rouleau
  • Publication number: 20080233039
    Abstract: The present invention is directed to carbon monoxide oxidation reactions in the presence of an O2 containing gas, nitrogen oxide conversion reactions, volatile organic compound conversion reactions in the presence of an O2 containing gas, and combinations thereof, and catalysts for use in those reactions. The catalyst comprises cobalt, its oxides or mixtures thereof and ruthenium, its oxides or mixtures thereof.
    Type: Application
    Filed: June 1, 2006
    Publication date: September 25, 2008
    Applicant: SYMYX TECHNOLOGIES, INC.
    Inventors: Alfred Hagemeyer, Anthony F. Volpe, Valery Sokolovskii, Andreas Lesik, Guido Streukens
  • Publication number: 20080227628
    Abstract: Disclosed herein are mesoporous material derived from a parent zeolite. In an embodiment of the invention, the mesoporous material derived from a parent zeolite, has an internal volume greater than about 0.35 cc/g and a surface area greater than about 250 m2/g, the mesoporous material comprises micropores having a surface area and mesopores, wherein the surface area of the micropores in the mesoporous material is less than about 25% of that in the parent zeolite, wherein less than about 3% of the internal volume of the mesoporous material is provided by micropores and wherein the mesopores are essentially homogeneously distributed and form an essentially interconnected network. In another embodiment of the invention, the mesoporous material derived from an alumina-rich parent zeolite has an internal volume greater than about 0.
    Type: Application
    Filed: October 12, 2006
    Publication date: September 18, 2008
    Inventor: Raymond Le Van Mao
  • Publication number: 20080221326
    Abstract: Process for producing a shaped body comprising a microporous material and at least one silicon-containing binder, which comprises the steps (I) preparing a mixture comprising the microporous material, the binder, a make-up aid and a solvent, (II) mixing and densifying the mixture, (III) shaping the densified mixture to give a shaped body, (IV) drying the shaped body and (V) calcining the dried shaped body, wherein the binder used is an organosilicon compound, shaped bodies which can be produced by this process, their use as catalyst, in particular in organic synthesis and very particularly preferably in a process for preparing triethylenediamine (TEDA).
    Type: Application
    Filed: June 10, 2005
    Publication date: September 11, 2008
    Inventors: Marco Bosch, Matthias Frauenkron, Milan Kostur, Otto Hofstadt
  • Patent number: 7422732
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-74 prepared using a hexamethylene-1,6-bis-(N-methyl-N-pyrrolidinium)dication as a structure-directing agent, and its use in catalysts for synthesizing amines.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: September 9, 2008
    Assignee: Chevron U.S.A. Inc
    Inventors: Stacey I. Zones, Allen W. Burton, Jr.
  • Publication number: 20080210599
    Abstract: “FCC equilibrium catalysts, even when highly contaminated with vanadium, can be upgraded to make them suitable again for use in catalytic processes, for instance, as catalyst additives in FCC, by employing a process comprising the steps of (a) treating an FCC equilibrium catalyst that contains alumina and zeolite with an acidic solution to obtain an acid-treated equilibrium catalyst, and (b) contacting the acid-treated equilibrium catalyst with an aqueous solution or suspension of a divalent metal compound.
    Type: Application
    Filed: January 6, 2006
    Publication date: September 4, 2008
    Inventors: Paul O'Connor, Erik Jeroen Laheij, Dennis Stamires, Oscar Rene Chamberlain Pravia, Rodolfo Eugenio Roncolatto, Yiu Lau Lam
  • Patent number: 7419930
    Abstract: The present invention regards a catalytic composition comprising gallium, at least one element chosen in the group of the lanthanides, and a zeolite belonging to the MFI, MEL or MFI/MEL families, the crystal lattice of which is made up of silicon oxide and at least one metal oxide chosen from among aluminum oxide, boron oxide and gallium oxide. Preferably, in the catalytic compositions of the present invention a zeolite is used belonging to the MFI family characterized by crystallites which for at least 90% have diameters smaller than 500 ? and which can form agglomerates of submicron dimensions characterized by possessing at least 30% of the extrazeolitic porosity in the region of the mesopores. The catalytic compositions of the present invention can, in addition, contain rhenium. These catalytic compositions are useful in processes of aromatization of hydrocarbons containing from 3 to 6 carbon atoms, preferably, hydrocarbon mixtures containing olefins.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: September 2, 2008
    Assignees: Eni S.p.A., Enichem S.p.A., Enitecnologie S.p.A.
    Inventors: Angela Carati, Marco Tagliabue, Carlo Perego, Roberto Millini, Stefano Amarilli, Giuseppe Terzoni
  • Patent number: 7419931
    Abstract: A catalyst is described which comprises at least one zeolite with channels with openings defined by a ring having 10 oxygen atoms (10 MI), at least one zeolite with at least channels or side pockets with openings defined by a ring having 12 oxygen atoms (12 MR), at least one metal selected from the group constituted by group IIIA and VIIB metals and at least one porous mineral matrix. Said catalyst optionally also contains at least one metal selected from the group constituted by group IVA and VIB metals. The catalyst of the invention is used in a process for the transalkylation of alkylaromatic hydrocarbons such as toluene or benzene and alkylaromatics containing at least 9 carbon atoms.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: September 2, 2008
    Assignee: Institute Francais du Petrole
    Inventors: José Manuel Serra, Avelino Corma, Emmanuelle Guillon
  • Patent number: 7417003
    Abstract: The present invention provides a catalyst particle of an inner core, an outer layer surrounding and bonded to the inner core, the outer layer of a zeolite beta catalyst, and the outer layer having a volumetric fraction from about 0.17 to about 0.62 of the entire catalyst particle.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: August 26, 2008
    Assignee: UOP LLC
    Inventors: Robert J. Schmidt, Deng-Yang Jan, Raelynn M. Miller, James A. Johnson
  • Patent number: 7416809
    Abstract: An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Improvements in interfacing of the catalyst layer and the membrane and activating catalyst materials are disclosed.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: August 26, 2008
    Assignee: California Institute of Technology
    Inventors: Sekharipuram R. Narayanan, Subbarao Surampudi
  • Patent number: 7417004
    Abstract: This invention relates to a catalyst for synthesis of dimethyl ether and its preparation methods. More specifically, this invention relates to a catalyst with improved formulation for a highly efficient synthesis of dimethyl ether via dehydration of methanol. These catalysts are composed of hydrophobic zeolites, cations selected from alkali metal, alkaline earth metal, or ammonium along with alumina, silica, or silica-alumina.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: August 26, 2008
    Assignee: SK Energy Co., Ltd.
    Inventors: Ki-Won Jun, Hyun-Seog Roh, Jae-Woo Kim, Jeon Keun Oh, Jin Hwan Bang
  • Patent number: 7410924
    Abstract: The invention relates to a hydrocracking catalyst containing: a hydrogenative component which is selected from at least one group VIB metal, at least one group VIII metal and combinations of same; at least one matrix comprising at least one oxide which is selected from an amorphous oxide, an oxide with low crystallinity and a mixture of both; and at least one microporous crystalline solid material which, in the calcined and anhydrous state, has molar composition X2O3:nYO2:mZO2, wherein X is a trivalent element, Y is at least one tetravalent element that is different from Ge and Z is Ge, and which, im the calcined and anhydrous state, has an X-ray diffractogram containing at least diffraction lines with d values=13.64, 7.87, 4.82, 4.55, 4.11 and 3.41 ?. The invention also relates to the method of preparing the inventive catalyst and to the use of same in hydrocarbon hydrocracking processses.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: August 12, 2008
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: Avelino Corma Canós, Agustin Martinez Feliu, Fernando Rey García, María José Díaz Cabañas, Carlos López Cruz
  • Patent number: 7407907
    Abstract: A catalyst for selectively opening cyclic paraffins has been developed. The catalyst comprises a Group VIII metal, such as platinum, a modifier component, such as niobium or ytterbium, a molecular sieve, such as UZM-16 and a refractory inorganic oxide such as alumina. The Group VIII metal and modifier component are preferably deposited on the refractory inorganic oxide. A process for using the catalyst is also disclosed.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: August 5, 2008
    Assignee: UOP LLC
    Inventors: Leonid B. Galperin, Irina Galperin, legal representative, Michael J. McCall, Joseph A. Kocal
  • Patent number: 7405177
    Abstract: A catalyst and process for opening aliphatic cyclic hydrocarbons have been developed. The catalyst comprises a catalytic metal component, a molecular sieve and refractory inorganic oxide component. The molecular sieve is selected from the group consisting of MAPSOs, SAPOs, UZM-8, UZM-8HS, UZM-15, UZM-15HS, UZM-16, UZM-16HS and mixtures thereof. Preferred catalytic metals include platinum, palladium and rhodium. The catalyst may also contain a modifier such as niobium, titanium, or rare earth metals.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: July 29, 2008
    Assignee: UOP LLC
    Inventors: Irina Galperin, legal representative, Deng-Yang Jan, Michael J. McCall, Joseph A. Kocal, Leonid B. Galperin
  • Patent number: 7405175
    Abstract: A proton type ? zeolite is used as catalyst. Nitrogen oxides in the exhaust gas containing excessive oxygen is reduced/removed by making the exhaust gas contact with the catalyst under the existence of methanol and/or dimethyl ether as reducing agent. It is desirable that a SiO2/Al2O3 molar ratio of the proton type ? zeolite is within 20-70. Thereby, the present catalyst has an excellent denitration performance and durability even against the exhaust gas containing sulfur oxides, and the denitration performance does not deteriorate even when the exhaust gas is at comparatively low temperature of 300-400° C.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: July 29, 2008
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Masashi Sugiyama, Kengo Soda
  • Publication number: 20080176736
    Abstract: A zeolite catalyst is prepared by treating a zeolite with a phosphorus compound to form a phosphorus-treated zeolite. The phosphorus-treated zeolite is heated to a temperature of about 300° C. or higher and combined with an inorganic oxide binder material to form a zeolite-binder mixture. The zeolite-binder mixture is heated to a temperature of about 400° C. or higher to form a bound zeolite catalyst. The bound zeolite may exhibit at least two 31P MAS NMR peaks with maxima at from about 0 to about ?55 ppm, with at least one peak having a maximum at from about ?40 to about ?50 ppm. Zeolites containing 10-oxygen ring pores that have been prepared in such a way may be used in aromatic alkylation by contacting the bound zeolite catalyst with an aromatic alkylation feed of an aromatic compound and an alkylating agent under reaction conditions suitable for aromatic alkylation.
    Type: Application
    Filed: March 25, 2008
    Publication date: July 24, 2008
    Applicant: Saudi Basic Industries Corporation
    Inventors: Ashim Kumar Ghosh, Neeta Kulkarni, Pamela Harvey
  • Publication number: 20080171649
    Abstract: Catalysts for converting polyalkylaiomatics to monoalkylaromatics, particularly cumene and ethyl benzene are disclosed which comprise modified Y-85 or LZ-210 zeolites. For cumene and ethylbenzene production, a disclosed catalyst, made of 80 wt % zeolite and 20 wt % alumina binder on a volatile-flee basis, has one or more of the following physical characteristics: (1) an absolute intensity of the modified Y zeolite as measured by X-ray diffraction (XRD) of preferably at least 50 and (2) a framework aluminum of the modified Y zeolite of preferably at least 50% of the aluminum of the modified Y zeolite.
    Type: Application
    Filed: January 12, 2007
    Publication date: July 17, 2008
    Inventors: Deng-Yang Jan, Robert J. Schmidt, Mathias P. Koljack, Thomas M. Reynolds, Christopher J. Garrett
  • Patent number: 7399726
    Abstract: Large crystals of titanium silicalite or intergrowths of intergrown smaller crystals, having a mean particle size greater than 2 ?m, have been found catalytically effective at commercially reasonable rates for the epoxidation of olefins in the presence of hydrogen peroxide. Crystals synthesized with a silica source having a low sodium content exhibit high levels of production and selectivity. The crystals have a low attrition rate and are easily filterable from a product stream.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: July 15, 2008
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Bernard Cooker, Wilson H. Onimus, Jennifer D. Jewson, Ralph M. Dessau
  • Patent number: 7396793
    Abstract: An exhaust gas purifying catalyst contains copper oxide, ZSM-5 and/or zeolite ?, and an oxide of magnesium and/or calcium is further added thereto. A process for purifying an exhaust gas using such a catalyst is also included. By using the catalyst, NOx in an exhaust gas containing much oxygen such as exhaust gas of diesel engines can be efficiently removed and oxidation of SO2 under high-temperature conditions can be suppressed.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: July 8, 2008
    Assignees: ICT Co., Ltd., International Catalyst Technology Inc.
    Inventors: Takeshi Matsumoto, Takao Kobayashi, Takuji Nakane, Takahiro Uno, Makoto Horiuchi
  • Publication number: 20080161180
    Abstract: A catalyst composition suitable for reacting hydrocarbons such as in fluidized catalytic cracking (FCC) comprises an attrition-resistant particulate having at least 30% of an intermediate pore zeolite, kaolin, a phosphorous compound, and a high density unreactive component. An example of an unreactive component is alpha-alumina. The catalyst can also contain a reactive alumina of high surface area.
    Type: Application
    Filed: March 5, 2008
    Publication date: July 3, 2008
    Inventors: Gary M. Smith, Barry K. Speronello
  • Publication number: 20080156194
    Abstract: An environmental control for use in air handling systems that are required to provide highly effective filtration of noxious gases is provided. In one embodiment, a filtration system utilizes a novel combination of at least one metal-doped silica-based gel and zeolite materials to trap and/or modify, and remove such undesirable gases (such as ammonia, ethylene oxide, formaldehyde, and nitrous oxide, as examples) from an enclosed environment. The gel component exhibits specific porosity requirements and density measurements; the zeolite component is generally acidic and is preferably not reacted with any salts or like substances. The novel combination of such gels and zeolites permits highly effective noxious gas filtration over a wide range of known toxic industrial chemicals such that excellent breakthrough results are attained, particularly in comparison with prior media filtration products.
    Type: Application
    Filed: December 27, 2006
    Publication date: July 3, 2008
    Inventors: Michael C. Withiam, Fitzgerald A. Sinclair, David Friday, Terry Nassivera
  • Patent number: 7393804
    Abstract: An exhaust gas purifying catalyst has a catalytic component including copper, ZSM-5, and ? zeolite. This exhaust gas purifying catalyst reduces nitrogen oxides even from low temperature range and exhibits durability even under a thermal load of high temperature.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: July 1, 2008
    Assignees: ICT Co., Ltd., International Catalyst Technology Inc.
    Inventors: Takeshi Matsumoto, Takao Kobayashi, Takuji Nakane, Takahiro Uno, Makoto Horiuchi
  • Patent number: 7393805
    Abstract: A process for preparing a transalkylation catalyst, the catalyst itself, and a transalkylation process for using the catalyst are herein disclosed. The catalyst comprises rhenium metal on a solid-acid support such as mordenite, which has been treated with a sulfur-based agent. Such treatment reduces the amount of methane produced by metal hydrogenolysis in a transalkylation process wherein heavy aromatics like A9+ are reacted with toluene to produce xylenes. Reduced methane production relative to total light ends gas production results in lower hydrogen consumption and lower reactor exotherms.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: July 1, 2008
    Assignee: UOP LLC
    Inventors: Edwin P. Boldingh, Antoine Negiz, Gregory F. Maher, Paula L. Bogdan, Dean E. Rende
  • Publication number: 20080154081
    Abstract: A catalyst composition comprises (a) a MCM-22 family molecular sieve; and (b) a binder, wherein the MCM-22 family molecular sieve is characterized by an average crystal agglomerate size of less than or equal to 16 microns. The catalyst composition may further have a second molecular sieve having a Constraint Index of less than 12, e.g., less than 2. Examples of molecular sieve useful for this disclosure are a MCM-22 family molecular sieve, zeolite Y, and zeolite Beta. The catalyst composition may be used for the process of alkylation or transalkylation of an alkylatable aromatic compound with an alkylating agent.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Inventors: Christine N. Elia, Frederick Y. Lo, Michael C. Clark, Morris C. Smith, Michael Hryniszak, Mohan Kalyanaraman
  • Patent number: 7390347
    Abstract: Methods and apparatus are taught for selectively oxidizing carbon monoxide in a source of gas containing carbon monoxide and hydrogen. A gas containing carbon monoxide and hydrogen is fed into a membrane reactor (10, 50, 60) capable of selectively absorbing the carbon monoxide. Preferably, the reactor comprises a substantially defect-free zeolite membrane (4) having at one metal that acts as an oxidation catalyst. The zeolite membrane (4) may be supported on a porous ceramic support (2, 52, 61) and the average pore diameter is preferably between about 0.3 nm and about 1.0 nm. Moreover, the substantially defect-free zeolite membrane (4) preferably has a thickness between about 0.1 micron and about 50.0 microns. The at least one metal is preferably capable of selectively oxidizing the carbon monoxide and is preferably platinum. Preferably, the temperature of reactor housing is maintained at about 200-300° C.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: June 24, 2008
    Assignee: Noritake Co., Ltd.
    Inventors: Katsuki Kusakabe, Yasuhisa Hasegawa, Shigeharu Morooka, Yasunori Ando
  • Patent number: 7390762
    Abstract: A method for synthesizing high-content NaY molecular sieves with kaolin sprayed microspheres includes adding functional components and deionized water into kaolin so as to be pulped into a mixed slurry. The slurry is sprayed into microspheres. The microspheres are calcined at a temperature between 700 and 1,000° C. and mixed with a directing agent for crystallization. The resultant solid is filtrated and washed with water and then dried to obtain a final in-situ crystallized product with high content of molecular sieves.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: June 24, 2008
    Assignee: PetroChina Company Limited
    Inventors: Xionghou Gao, Honghai Liu, Baojie Wang, Changyan Duan, Xinmei Pang, Li Zhang, Lianhong Zhao, Jiangang Ma, Yunheng Liu
  • Patent number: 7390763
    Abstract: The invention is directed to a method of making a small crystal SSZ-32 zeolite, known as SSZ-32X. The catalyst is suitable for use in a process whereby a feed including straight chain and slightly branched paraffins having 10 or more carbon atoms is dewaxed to produce an isomerized product, with increased yield of isomerized material and decreased production of light ends.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: June 24, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Guang Zhang, Kamala R. Krishna, Joseph A. Biscardi, Paul Marcantonio, Euthimios Vittoratos
  • Patent number: 7387978
    Abstract: We disclose a method for converting toluene to xylenes, comprising contacting toluene with methanol in the presence of a silica-bound HZSM-5 catalyst. As an example, in one embodiment the method can include: (i) first silylating HZSM-5, to form silylated HZSM-5; (ii) first calcining the silylated HZSM-5, to form calcined silylated HZSM-5; (iii) binding the calcined silylated HZSM-5 to silica, to form silica-bound calcined silylated HZSM-5; (iv) extruding the silica-bound calcined silylated HZSM-5, to form extruded silica-bound calcined silylated HZSM-5; (v) second calcining the extruded silica-bound calcined silylated HZSM-5, to form extruded silica-bound twice-calcined silylated HZSM-5; (vi) second silylating the extruded silica-bound twice-calcined silylated HZSM-5, to form extruded silica-bound twice-calcined twice-silylated HZSM-5; and (vii) third calcining the extruded silica-bound twice-calcined twice-silylated HZSM-5, to form the silica-bound HZSM-5 catalyst.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: June 17, 2008
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 7384887
    Abstract: This invention is directed to a hardened molecular sieve catalyst composition, a method of making the composition and a method of using the composition. The catalyst composition is made by mixing together molecular sieve, liquid, and an effective hardening amount of a dried molecular sieve catalyst to form a slurry. The slurry is dried, and then calcined to form the hardened molecular sieve catalyst composition. The hardened molecular sieve catalyst is highly attrition resistant.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: June 10, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Luc R. M. Martens, Kenneth R. Clem
  • Patent number: 7381676
    Abstract: This disclosure relates to a catalyst composition comprising (a) a crystalline MCM-49 molecular sieve; and (b) a binder comprising at least 1 wt. % of a titanium compound. In one aspect of this disclosure, the titanium compound comprises at least one of titanium oxide, titanium hydroxide, titanium sulfate, titanium phosphate, or any combination thereof. In another aspect of this disclosure, the catalyst composition further comprises a crystalline MCM-22 family molecular sieve comprising at least one of MCM-22, MCM-36, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-30, PSH-3, ERB-1, SSZ-25, or any combination thereof. In other embodiments, this disclosure relates to a process for preparing the catalyst composition of this disclosure, the process comprises (a) providing the crystalline MCM-49 molecular sieve and the binder comprising at least 1 wt. % of a titanium compound to form a mixture; and (b) forming the mixture into the catalyst composition. In a preferred embodiment, the forming step comprises extruding.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: June 3, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Patent number: 7381675
    Abstract: A catalyst comprising a noble metal supported on a diatomaceous earth and a transition metal zeolite is disclosed. The catalyst is used in an epoxidation process comprising reacting an olefin, hydrogen, and oxygen. The diatomaceous earth is readily available and may be used in a slurry process without further particle size enlargement.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: June 3, 2008
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Jude T. Ruszkay, Roger A. Grey
  • Patent number: 7381677
    Abstract: Catalysts comprise a combination of molecular sieve having a pore diameter of from about 4 to 8 angstroms and a catalytically-effective amount of molybdenum hydrogenation component and a sufficient amount of at least one platinum group metal hydrogenation component to enhance the isomerization activity of the catalyst.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: June 3, 2008
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, Patrick C. Whitchurch, Robert B. Larson, James E. Rekoske
  • Patent number: 7378364
    Abstract: Transalkylation catalysts comprising acidic molecular sieve, palladium and germanium have good activities and attenuate aromatic ring saturation and lights co-production provided that sufficient palladium is contained in the catalyst.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: May 27, 2008
    Assignee: UOP LLC
    Inventors: Maureen L. Bricker, Frank S. Modica
  • Patent number: 7375047
    Abstract: Catalysts comprising a combination of molecular sieve having a pore diameter of from about 4 to 8 angstroms and a catalytically-effective amount of molybdenum hydrogenation component in an amorphous aluminum phosphate binder provide processes for isomerizing xylene and dealkylating ethylbenzene in feed streams that exhibit stability, selectivity and low ring loss.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: May 20, 2008
    Assignee: UOP LLC
    Inventors: Robert B. Larson, James E. Rekoske, Patrick C. Whitchurch, Paula L. Bogdan
  • Patent number: 7375048
    Abstract: A catalyst composition suitable for reacting hydrocarbons such as in fluidized catalytic cracking (FCC) comprises an attrition-resistant particulate having at least 30% of an intermediate pore zeolite, kaolin, a phosphorous compound, and a high density unreactive component. An example of an unreactive component is alpha-alumina. The catalyst can also contain a reactive alumina of high surface area.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: May 20, 2008
    Assignee: BASF Catalysts LLC
    Inventors: Gary M. Smith, Barry K. Speronello
  • Patent number: 7368410
    Abstract: A zeolite catalyst is prepared by treating a zeolite with a phosphorus compound to form a phosphorus-treated zeolite. The phosphorus-treated zeolite is heated to a temperature of about 300° C. or higher and combined with an inorganic oxide binder material to form a zeolite-binder mixture. The zeolite-binder mixture is heated to a temperature of about 400° C. or higher to form a bound zeolite catalyst. The bound zeolite may exhibit at least two 31P MAS NMR peaks with maxima at from about 0 to about ?55 ppm, with at least one peak having a maximum at from about ?40 to about ?50 ppm. Zeolites containing 10-oxygen ring pores that have been prepared in such a way may be used in aromatic alkylation by contacting the bound zeolite catalyst with an aromatic alkylation feed of an aromatic compound and an alkylating agent under reaction conditions suitable for aromatic alkylation.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: May 6, 2008
    Assignee: Saudi Basic Industries Corporation
    Inventors: Ashim Kumar Ghosh, Neeta Kulkarni, Pamela Harvey
  • Patent number: 7357904
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-74 prepared using a hexamethylene-1,6-bis-(N-methyl-N-pyrrolidinium)dication as a structure-directing agent, and its use in the reduction of oxides of nitrogen in a gas stream such as the exhaust from an internal combustion engine.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: April 15, 2008
    Assignee: Chevron Corporation
    Inventors: Stacey I. Zones, Allen W. Burton, Jr.
  • Publication number: 20080076660
    Abstract: Supported nickel catalyst having high nickel loading and dispersion are manufactured using a dispersing agent. The dispersing agent molecules include at least one functional group that bonds with the nickel atoms and influences nanoparticle formation. The support material is loaded with at least about 5% nickel, more preferably at least about 8%, and most preferably at least about 12% by weight of the total catalyst. Catalysts manufactured using the organic dispersing agents and loaded with the foregoing amounts of nickel have metal dispersions greater than about 5% as measured by hydrogen adsorption, more preferably greater than about 10%, and most preferably greater than about 15%.
    Type: Application
    Filed: September 22, 2006
    Publication date: March 27, 2008
    Inventors: Clementine Reyes, Martin Fransson, Horacio Trevifio, Bing Zhou
  • Patent number: 7344631
    Abstract: Fischer-Tropsch hydrocarbon synthesis using a noncobalt catalyst is used to produce waxy fuel and lubricant oil hydrocarbons from synthesis gas derived from natural gas. The waxy hydrocarbons are hydrodewaxed, with reduced conversion to lower boiling hydrocarbons, by contacting the waxy hydrocarbons, in the presence of hydrogen, with an unsulfided hydrodewaxing catalyst that has been reduced and then treated by contacting it with a stream containing one or more oxygenates.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: March 18, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Adeana Richelle Bishop, William Berlin Genetti, Jack Wayne Johnson, Loren Leon Ansell, Nancy Marie Page
  • Patent number: 7344696
    Abstract: The invention relates to a porous crystalline material (ITQ-24), the preparation method thereof and the use of same in the catalytic conversion of organic compounds. More specifically, the invention relates to a synthetic porous crystalline material which is characterised in that it is formed by tetrahedrally coordinated atoms which are interconnected by means of oxygens. Said material, which comprises a unit cell containing 56 tetrahedrally coordinated atoms, is known as ITQ-24. Moreover, in the calcined anhydrous state, the material has chemical formula nM1/pXO2: YO2, wherein: X is at least one trivalent element, Y is at least one tetravalent element, n is between 0 and 0.2 and M is at least one charge compensation cation in oxidation state p.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: March 18, 2008
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: Avelino Corma Canós, Rafael Castañeda Sánchez, Vicente Fornés Seguí, Fernando Rey García
  • Patent number: 7326332
    Abstract: A multi component catalyst and catalytic cracking process for selectively producing C3 olefins. The catalyst comprises a first molecular sieve having an intermediate pore size, a second molecular sieve and, optionally a third molecular sieve having a large pore size. At least one of the channels of the second molecular sieve has a pore size index that is less than the pore size index of at least one channel of the first molecular sieve. The process is carried out by contacting a feedstock containing hydrocarbons having at least 5 carbon atoms is contacted, under catalytic cracking conditions, with the multi component catalyst. The catalyst finds application in the cracking of naphtha and heavy hydrocarbon feedstocks.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: February 5, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, John Scott Buchanan, Brian Erik Henry, Paul F. Keusenkothen, Philip A. Ruziska, David L. Stern
  • Patent number: 7323430
    Abstract: We disclose a method for preparing a catalyst for converting toluene to xylenes.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: January 29, 2008
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 7320782
    Abstract: A process for preparing a layered composition has been developed. The composition comprises an inner core and an outer layer comprising a molecular sieve. The process involves providing a slurry comprising inner core particles and sources of the framework elements of the molecular sieve. To this slurry there are added nutrient(s), i.e. framework element sources thereby forming crystals of the molecular sieve which agglomerate onto the inner core. The process is carried out for a time sufficient to form a layer of desired thickness.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: January 22, 2008
    Assignee: UOP LLC
    Inventors: Lance L. Jacobsen, Brian S. Konrad, David A. Lesch, Julio C. Marte, Beckay J. Mezza
  • Patent number: 7307034
    Abstract: A transalkylation process for reacting carbon number nine aromatics with toluene to form carbon number eight aromatics such as para-xylene is herein disclosed. The process is based on the discovery that deactivating contaminants present in typical hydrocarbon feeds, such as chlorides, can be removed with an alumina guard bed prior to contacting with a transalkylation catalyst. Effective transalkylation catalysts have a solid-acid component such as mordenite, and a metal component such as rhenium. The invention is embodied in a process, a catalyst system, and an apparatus. The invention provides for longer catalyst cycle life when processing aromatics under commercial transalkylation conditions.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: December 11, 2007
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Edwin P. Boldingh, Sergio A. Pischek
  • Patent number: 7300899
    Abstract: A lithium exchanged zeolite X adsorbent blend with improved performance characteristics produced by preparing a zeolite X, preparing a binder which includes highly dispersed attapulgite fibers wherein the tapped bulk density of the highly dispersed attapulgite fibers measured according to DIN/ISO 787 is more than about 550 g/ml, mixing the zeolite X with the binder to form a mixture, forming the mixture into a shaped material, ion exchanging the zeolite X at least 75% with lithium ions, and calcining the shaped material.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: November 27, 2007
    Assignee: Zeochem, LLC
    Inventors: Kerry Weston, Dave Jaussaud, Robert L. Chiang
  • Patent number: 7285512
    Abstract: This invention relates to a catalyst and process for selectively hydrodesulfurizing naphtha feedstreams using a catalyst comprising at least one hydrodesulfurizing metal supported on a low acidity, ordered mesoporous support material.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: October 23, 2007
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: Chuansheng Bai, Gary B. McVicker, Stuart S. Shih, Michael C. Kerby, Edward A. Lemon, Jr., Jean W. Beeckman
  • Patent number: 7285511
    Abstract: A method of modifying a zeolite catalyst to increase para-xylene selectivity of the zeolite catalyst in toluene methylation reactions is provided. The method includes forming a slurry of a ZSM-5-type zeolite and an aqueous solution of a phosphorus compound. Water is removed from the slurry to provide a non-steamed, phosphorus treated ZSM-5 zeolite catalyst without deposition of phosphorus onto the catalyst by organophosphorus vapor deposition. The resulting non-steamed, phosphorus treated ZSM-5 zeolite catalyst has a pore volume of from 0.2 ml/g or less and provides greater than 80% para-xylene selectivity of mixed xylenes when used in toluene methylation.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: October 23, 2007
    Assignee: Saudi Basic Industries Corporation
    Inventors: Ashim Kumar Ghosh, Gopalakrishnan Juttu, Pamela Harvey, Neeta Kulkarni