Zeolite Patents (Class 502/64)
  • Publication number: 20100197480
    Abstract: A crystallized solid, referred to by the name IM-14, which has an X-ray diffraction diagram as provided below, is described. Said solid has a chemical composition that is expressed according to the formula GeO2:nY2O3:pR:qF:wH2O, where R represents one or more organic radical(s), Y represents at least one trivalent element, and F is fluorine.
    Type: Application
    Filed: October 1, 2007
    Publication date: August 5, 2010
    Applicant: IFP
    Inventors: Yannick Lorgouilloux, Jean Louis Paillaud, Philippe Caullet, Joel Patarin, Nicolas Bats
  • Patent number: 7767610
    Abstract: A metal nanocluster composite material for use as a conductive catalyst. The metal nanocluster composite material has metal nanoclusters on a carbon substrate formed within a porous zeolitic material, forming stable metal nanoclusters with a size distribution between 0.6-10 nm and, more particularly, nanoclusters with a size distribution in a range as low as 0.6-0.9 nm.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: August 3, 2010
    Assignee: Sandia Corporation
    Inventor: Eric N. Coker
  • Patent number: 7767871
    Abstract: A method for recovering molecular sieve crystals from a synthesis mixture that comprises adding at least one flocculant having a certain molecular weight and a certain charge density that contribute to the acceleration of the settling rate of the molecular sieve crystals and compositions made from the method.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: August 3, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Daria N. Lissy
  • Patent number: 7763164
    Abstract: This invention focuses on the specialized catalyst and/or additive for lower FCCU gasoline and diesel blendstock component sulfur content. This invention utilizes a specified ratio of the transition metal oxides of cobalt and molybdenum to accomplish gasoline and diesel blendstock sulfur reduction. This is accomplished by minimizing sulfur compound formation in the FCCU riser. The cobalt and molybdenum oxides in the presence of H2S from cracked organic sulfur compounds are converted to metal sulfides. A portion of the overall sulfur reduction in the gasoline and diesel blendstock occurs emitted NOx also is reduced.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: July 27, 2010
    Assignee: Marathon Petroleum Company LLC
    Inventors: William Jay Turner, Ronald Lee Cordle, David J. Zalewski, Jeffrey A. Sexton
  • Patent number: 7763560
    Abstract: A catalyst which purges a diesel engine exhaust gas of HC, CO, and SOF and reduces the emission of particulates as well and a method for the production thereof are provided. The catalyst for purifying a diesel engine exhaust gas has deposited on a refractory three-dimensional structure a catalyst component comprising silica-alumina supporting at least one noble metal selected from the group consisting of platinum, palladium, and rhodium and zeolite. This catalyst is produced by adding a noble metal component into a slurry of silica-alumina thereby inducing chemical adsorption, then adding zeolite to the resultant mixture thereby obtaining a mixed slurry of a noble metal-supporting silica-alumina and zeolite, dipping a refractory three-dimensional structure in the slurry thereby inducing deposition of the catalyst component, and subsequently calcining the resultant composite.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: July 27, 2010
    Assignees: ICT Co., Ltd, International Catalyst Technology, Inc.
    Inventors: Makoto Horiuchi, Masao Hori, Tatsuya Yoshikawa, Atsushi Fukumoto, Takuji Nakane
  • Publication number: 20100180771
    Abstract: A system includes an adsorber having a fluidized bed of a plurality of adsorption materials. The adsorber is configured to receive the gaseous fuel stream including the plurality of pollutants and adsorb the said plurality of pollutants in a single unit from the gaseous fuel stream to generate a clean gas stream substantially free of the pollutants. Different adsorption materials are designed to remove different pollutants over a similar temperature range. The pollutants include at least one of sulfur compounds, chlorine, ammonia, mercury, arsenic, selenium, cadmium, or combinations thereof.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 22, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ke Liu, Vladimir Zamansky
  • Publication number: 20100179361
    Abstract: The invention describes a porous composite material that comprises a porous substrate based on a refractory inorganic oxide in which said substrate has a zeolite crystal content that is less than 25% by mass, whereby said crystals are dispersed homogeneously in the pores of said substrate, and the distribution coefficient that is measured by Castaing microprobe is between 0.75 and 1.25, and in which the total pore volume of said substrate represents at least 40% of the initial total pore volume of the substrate, and the mean diameter of the pores represents at least 50% of the mean diameter of the pores of the initial substrate, its process for preparation and its use as catalyst in the hydrocarbon feedstock conversion reactions.
    Type: Application
    Filed: August 14, 2009
    Publication date: July 15, 2010
    Applicant: IFP
    Inventors: Simone GOERGEN, Loic ROULEAU, Emmanuelle GUILLON, Florent GUILLOU, Laurent SIMON, Christophe BOUCHY, Joël PATARIN
  • Publication number: 20100179359
    Abstract: A catalyst useful for the alkylation or transalkylation of aromatic compounds is disclosed. The catalyst is an acid-treated zeolitic catalyst produced by a process including contacting an acidic zeolitic catalyst comprising surface non-framework aluminum and framework aluminum with an organic dibasic acid at a catalyst to acid weight ratio in the range from about 2:1 to about 20:1 and at a temperature in the range from about 50° C. to about 100° C. to selectively remove at least a portion of the surface non-framework aluminum. The resulting catalyst may have a measured first-order rate constant, kcum, for the alkylation of benzene with propylene to form cumene, of at least 2.0 cm3/s g.
    Type: Application
    Filed: January 14, 2009
    Publication date: July 15, 2010
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Chuen Yuan Yeh, Ruozhi Song, Anne Mae Gaffney, Tadeusz Langner, Marshall J. Margolis
  • Patent number: 7754637
    Abstract: The present invention relates to a catalytic composition which comprises a beta zeolite, a metal of group VIII, a metal of group VI B and optionally one or more oxides as carrier. The catalytic system of the present invention can be used for the hydrotreating of hydrocarbon mixtures and more specifically in the upgrading of hydrocarbon mixtures having boiling ranges within the range of 35° to 250° C., containing sulfur impurities, i.e. in hydrodesulfuration with contemporaneous skeleton isomerization and a reduced hydrogenation degree of olefins contained in said hydrocarbon mixtures, the whole process being carried out in a single step.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: July 13, 2010
    Assignees: AGIP Petroli S.p.A., Enitecnologie S.p.A.
    Inventors: Laura Zanibelli, Marco Ferrari, Virginio Arrigoni
  • Patent number: 7754638
    Abstract: Zeolite-based honeycomb bodies and methods of manufacturing same. Zeolite-based honeycomb bodies especially suited for engine exhaust treatment applications include a primary phase comprising a zeolite having a SiO2 to Al2O3 molar ratio in the range from 5 to 300. The zeolite-based composites are porous with an open porosity of at least 25% and a median pore diameter of at least 1 micron. The zeolite-based honeycomb bodies can be manufactured by an extrusion method.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: July 13, 2010
    Assignee: Corning Incorporated
    Inventors: Steven Bolaji Ogunwumi, Patrick David Tepesch, Raja Rao Wusirika
  • Patent number: 7754934
    Abstract: A process for efficiently and stably producing ethylene and propylene which comprises bringing a hydrocarbon feedstock comprising at least one C4-12 olefin into contact with a zeolite-containing catalyst to obtain a reaction mixture containing ethylene and propylene, separating the reaction mixture into a fraction comprising ingredients ranging from hydrogen to C3 hydrocarbons and a fraction comprising C4 and higher hydrocarbons, and recycling the C4 and higher hydrocarbons as they are to a reactor.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: July 13, 2010
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takashi Tsunoda, Mitsuhiro Sekiguchi
  • Publication number: 20100167913
    Abstract: A solid catalyst, such as a molecular sieve catalyst or solid acid catalyst, is supported by a binder, such as amorphous silica or alumina, wherein the binder is charged with metal ions to form an ion-modified binder. The ion-modified binder is capable of attachment to polar contaminants and inhibit their contact with the catalyst. The catalyst can be a zeolite and can be the catalyst for an alkylation reaction, such as the alkylation of benzene with ethylene.
    Type: Application
    Filed: December 29, 2008
    Publication date: July 1, 2010
    Applicant: Fina Technology, Inc.
    Inventors: Joseph E. Pelati, Taylor Rives
  • Publication number: 20100168449
    Abstract: An attrition-resistant catalyst is prepared contacting a spray dried zeolite with a modifying agent. The modifying agent is (i) a halogen-free compound hydrolyzable to an oxide selected from the group consisting of silica, alumina, titania, zirconia, niobia, and mixtures thereof; or (ii) a sol selected from the group consisting of silica, alumina, titania, zirconia, niobia, and mixtures thereof.
    Type: Application
    Filed: December 29, 2008
    Publication date: July 1, 2010
    Inventors: Roger A. Grey, Bernard Cooker, Edrick Morales
  • Publication number: 20100168492
    Abstract: An alkaline-earth metal compound-containing zeolite catalyst composed of a composite material comprising at least a first component, a second component, and a third component, wherein the first component is composed of at least one of zeolites selected from a group consisting of proton-type zeolites and ammonium type zeolites, the second component is composed of at least one of alkaline-earth metal compounds, and the third component is composed of at least one selected from a group consisting of aluminum oxides, aluminum hydroxides, silicon oxides, silicon hydroxides, and clay minerals. The first component has a molar ratio of Si/Al of 10 or more and 300 or less. Content of the second component relative to the first component defined is 0.3 mass % or more and less than 10 mass % as alkaline-earth metal. Content of the third component relative to the first component is 15 mass % or more and 200 mass % or less.
    Type: Application
    Filed: August 29, 2007
    Publication date: July 1, 2010
    Applicant: JCC CORPORATION
    Inventors: Chizu Inaki, Hirofumi Ito, Kazunori Honda, Koji Oyama, Atsushi Okita
  • Patent number: 7745367
    Abstract: An emission control catalyst that exhibits improved CO and HC reduction performance includes a supported platinum-based catalyst, and a supported palladium-gold catalyst. The two catalysts are coated onto different layers, zones, or monoliths of the substrate for the emission control catalyst such that the platinum-based catalyst encounters the exhaust stream before the palladium-gold catalyst. Zeolite may be added to the emission control catalyst as a hydrocarbon absorbing component to boost the oxidation activity of the palladium-gold catalyst.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: June 29, 2010
    Assignee: Nanostellar, Inc.
    Inventors: Kyle L. Fujdala, Timothy J. Truex, Jifei Jia
  • Patent number: 7745373
    Abstract: The present invention is a method to activate a noble metal complex dispersed on a catalyst support comprising calcining in hydrogen in order to decompose and reduce the noble metal complex in a single step. In a preferred embodiment, the noble metal catalyst is a combination of platinum and palladium and the noble metal complexes are the hydroxides.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: June 29, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, William G. Borghard
  • Publication number: 20100152024
    Abstract: Process for the preparation of a catalyst comprising the steps of (a) preparing a slurry comprising clay, zeolite, a sodium-free silica source, quasi-crystalline boehmite, and micro-crystalline boehmite, provided that the slurry does not comprise peptised quasi-crystalline boehmite, (b) adding a monovalent acid to the slurry, (c) adjusting the pH of the slurry to a value above 3, and (d) shaping the slurry to form particles. This process results in attrition resistant catalysts with a good accessibility.
    Type: Application
    Filed: December 20, 2005
    Publication date: June 17, 2010
    Inventors: Dennis Stamires, Paul O'connor, Erik jeroen Laheij, Charles Vadovic
  • Publication number: 20100143227
    Abstract: Disclosed herein is a catalyst comprising a binder; and a catalytic composition, the catalytic composition comprising a first catalyst composition that comprises a zeolite; and a second catalyst composition that comprises a catalytic metal disposed upon a porous inorganic material, wherein the porous inorganic material is a metal oxide, an inorganic oxide, an inorganic carbide, an inorganic nitride, an inorganic hydroxide, an inorganic oxide having a hydroxide coating, an inorganic carbonitride, an inorganic oxynitride, an inorganic boride, an inorganic borocarbide, or a combination comprising at least one of the foregoing inorganic materials; wherein the catalyst is in the form of an extrudate or foam.
    Type: Application
    Filed: December 5, 2008
    Publication date: June 10, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hrishikesh Keshavan, Benjamin Hale Winkler, Dan Hancu
  • Publication number: 20100144513
    Abstract: A catalyst, and the process for producing the catalyst, for use in the oligomerization of olefins is presented. The catalyst comprises a zeolite that is treated with a phosphorous containing reagent to generate a treated catalyst having phosphorous content between 0.5 and 15 wt % and a micropore volume of less than 50% of the untreated catalyst.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 10, 2010
    Inventors: Christopher P. Nicholas, Laszlo T. Nemeth, Deng-Yang Jan
  • Publication number: 20100140138
    Abstract: The invention describes a catalyst comprising at least one material with a hierarchical porosity comprising silicon and at least one hydrodehydrogenating element from group VIB and/or group VIII of the periodic table of the elements. Said material with a hierarchical porosity comprising silicon is constituted by at least two elementary spherical particles, each of said spherical particles comprising zeolitic nanocrystals having a pore size in the range 0.2 to 2 nm and a matrix based on silicon oxide, which is mesostructured, having a pore size in the range 1.5 to 30 nm and having amorphous walls with a thickness in the range 1 to 30 nm, said elementary spherical particles having a maximum diameter of 100 ?m. The matrix based on silicon oxide may contain aluminium.
    Type: Application
    Filed: October 29, 2007
    Publication date: June 10, 2010
    Inventors: Alexandra Chaumonnot, Patrick Bourges
  • Publication number: 20100144514
    Abstract: A catalyst, and the process for producing the catalyst, for use in the oligomerization of olefins is presented. The catalyst comprises a zeolite that is treated with a phosphorous containing reagent to generate a treated catalyst having phosphorous content between 0.5 and 15 wt %, and having a micropore volume of less than 50% of the untreated catalyst.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 10, 2010
    Inventors: Christopher P. Nicholas, Laszlo T Nemeth, Deng-Yang Jan
  • Patent number: 7732537
    Abstract: One aspect of the invention relates to a method for formulating a molecular sieve catalyst composition, the method comprising the steps of: (a) providing a synthesized molecular sieve having been recovered in the presence of a flocculant; (b) thermally treating the synthesized molecular sieve at a temperature from about 50° C. to about 250° C. and under other conditions sufficient to form a thermally treated synthesized molecular sieve having a first LOI less than 26% and a first micropore surface area; (c) aging the thermally treated synthesized molecular sieve for at least one year; (d) analyzing the aged, thermally treated molecular sieve to determine a second micropore surface area, wherein the second micropore surface area is 3% or less lower than the first micropore surface area; and (e) combining the aged, thermally treated synthesized molecular sieve, a binder, and optionally a matrix material to produce an aged, formulated molecular sieve catalyst composition.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: June 8, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Luc R. M. Martens, Machteld Maria Mertens, Stephen N. Vaughn
  • Patent number: 7727923
    Abstract: The challenge for the present invention is to provide a catalyst composition restrained from declining in performance over time in purifying an exhaust gas containing an organic compound a silicon compound, a catalyst containing the catalyst composition, and a method for producing the catalyst. This challenge is solved by using a catalyst composition containing zeolite added to precious metal-carried alumina, and the silicon resistance of the catalyst is improved greatly. The amount of acid of the zeolite added is preferably in the range of 0.4 mmol·NH3/g to 1.5 mmol·NH3/g.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: June 1, 2010
    Assignee: Nikki-Universal Co., Ltd.
    Inventors: Yoshiki Nakano, Takanobu Sakurai
  • Patent number: 7727924
    Abstract: A method for preparing cracking catalyst. The method comprises making catalyst slurry having a homogeneous distribution of molecular sieve slurry, pseudoboehmite, clay, inorganic acid and aluminum-containing binder; and subsequent spray drying. Inorganic acid is added prior to the addition of pseudoboehmite; addition of molecular sieve is added after the addition of inorganic acid; and a phosphatic dispersant is added during preparation. Compared to conventional methods of preparing FCC catalyst slurry, the inventive catalyst slurry viscosity is decreased and the fluidity thereof is improved, while catalyst anti-friction is maintained. The solid content of the FCC catalyst slurry can be increased to about 40% or more. The gel forming time is significantly reduced with increased productivity and decreased catalyst production cost. Meanwhile, the catalyst has high pore volume and improved micro-reactivity. Overall reactivity performance of the catalyst is also improved.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: June 1, 2010
    Assignee: Petrochina Company Limited
    Inventors: Conghua Liu, Zhengguo Tan, Wei Ding, Shuqin Zheng, Xinmei Pang, Shuhong Sun, Dong Wang, Qiuxia Teng, Tong Lu
  • Patent number: 7713904
    Abstract: This invention relates to a composition with desulfurization property, in which the desulfurization component is a kind of molecular sieves with incorporation of vanadium into the skeleton. The composition has high hydrothermal stability and the vanadium is hard to lose.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: May 11, 2010
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Baoning Zong, Jinyu Zheng, Wenhua Xie, Yong Xu, Xuhong Mu, Yibin Luo, Minggang Li, Xingtian Shu
  • Publication number: 20100113854
    Abstract: The present invention relates to agglomerated zeolitic adsorbents based on zeolite X with an Si/Al ratio such that 1.15<Si/AL<1.5, consisting of crystals with a mean diameter of 1.7 mm or less and of an inert binder, at least 90% of the exchangeable cationic sites of the zeolite X being occupied by barium ions. They may be obtained by agglomerating a zeolite X powder having a mean diameter of 1.7 mm or less with a binder, followed by zeolitization of the binder, exchange of the zeolite ions with barium (and potassium) ions and activation of the adsorbents thus exchanged.
    Type: Application
    Filed: July 13, 2007
    Publication date: May 6, 2010
    Inventors: Ludivine Bouvier, Stephane Kieger, Catherine Laroche, Philibert Leflaive, Dominique Plee
  • Publication number: 20100113850
    Abstract: A catalyst and method of forming a catalyst for use in aromatic alkylation involves treating a zeolite, which may be a ZSM-5 zeolite, with a phosphorus-containing compound. The phosphorus-treated zeolite is combined with a binder material. The bound phosphorus-treated zeolite is treated with an aqueous solution of a hydrogenating metal compound by contacting the bound phosphorus-treated zeolite with the aqueous solution and separating the aqueous solution from the bound phosphorus-treated zeolite to form a hydrogenating-metal-containing zeolite catalyst. The catalyst may be used in preparing an alkyl aromatic product by contacting a hydrogenating-metal-containing zeolite catalyst with an aromatic alkylation feed of an aromatic compound and an alkylating agent under reaction conditions suitable for aromatic alkylation.
    Type: Application
    Filed: November 3, 2008
    Publication date: May 6, 2010
    Inventors: Ashim Kumar Ghosh, Neeta Kulkarni
  • Patent number: 7709408
    Abstract: The invention relates to a catalyst consisting of at least: one matrix comprising at least one oxide which is selected from an amorphous oxide, an oxide with low crystallinity and a mixture of both; at least one solid microporous crystalline material which, in the calcined and anhydrous state, has the molar compositions X2O3:nYO2:mZO2, in which X is a trivalent element such as, for example, Al, B, Fe, In, Ga, Cr, Y is at least one trivalent element that is different from Ge and Z is Ge, the value (n+m) is at least equal to 5 and can be between 5 and ?, and the value of n/m is at least equal to 1; and at least one hydrogenating compound, preferably Pt, Pd, It, Ru, Rh, and Re or a combination of same. The invention also relates to the use of said catalyst in a process in order to improve the quality of diesel fractions.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: May 4, 2010
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: Avelino Corma Canos, Agustin Martinez Feliu, Fernando Rey García, María José Díaz Cabañas, Maria de los Desamparados Arribas Viana
  • Patent number: 7700512
    Abstract: A carbon monoxide selective oxidizing catalyst includes a carrier of ferrierite or ZSM-5 that supports a metal component of platinum (Pt) alone or platinum and at least one type of transition metal. Alternatively, a carbon monoxide selective oxidizing catalyst includes a carrier whose maximum pore diameter ranges from 0.55 to 0.65 nanometers (nm) that supports a metal component of platinum (Pt) alone or platinum and at least one type of transition metal.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: April 20, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Saeko Kurachi
  • Patent number: 7700511
    Abstract: A process for converting polyalkylaromatics to monoalkylaromatics, particularly cumene, in the presence of a modified LZ-210 zeolite catalyst is disclosed. The process attains greater selectivity, reduced formation of undesired byproducts, and increased activity.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: April 20, 2010
    Assignee: UOP LLC
    Inventors: Thomas M. Reynolds, Christopher J. Garrett, Deng-Yang Jan, Robert J. Schmidt, Mathias P. Koljack
  • Publication number: 20100093519
    Abstract: Process for the preparation of a catalyst comprising the steps of (a) preparing a slurry comprising clay, zeolite, and quasi-crystalline boehmite, provided that the slurry does not comprise peptised quasi-crystalline boehmite, (b) adding a monovalent acid to the slurry, (c) adding a silicon source to the slurry, and (d) shaping the slurry to form particles. This process leads to a catalyst with high accessibility and high attrition resistance.
    Type: Application
    Filed: December 11, 2009
    Publication date: April 15, 2010
    Inventor: SCOTT MICHAEL BABITZ
  • Patent number: 7695703
    Abstract: A process for producing a stable high-temperature catalyst for reduction of nitrogen oxides in combustion exhaust gases at operating temperatures from 300° C. to over 700° C. without the need for exhaust dilution. A zeolite material is steam-treated at a temperature and duration sufficient to partially de-aluminize the zeolite to approximately a steady state, but not sufficient to fully collapse its chemical structure. Iron is added to the zeolite material. The zeolite material is calcined at a temperature, humidity, and duration sufficient to stabilize the zeolite material. Examples and specifications for ranges, order, and durations of steaming, calcining, and other steps are provided.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: April 13, 2010
    Assignee: Siemens Energy, Inc.
    Inventors: Anatoly Sobolevskiy, Joseph A. Rossin, Michael J. Knapke
  • Publication number: 20100081564
    Abstract: The invention provides a method to avoid catalyst damage and achieve longer catalyst life by selecting appropriate materials for reactor spacers, liners, catalyst binders, and supports, in particular, by not using crystalline silica-containing and high phosphorus-containing materials, if the presence of even small amount of steam is anticipated. In addition, alkali metals and alkaline earth metals are avoided due to potential damage to the catalyst.
    Type: Application
    Filed: December 7, 2009
    Publication date: April 1, 2010
    Applicant: UOP LLC
    Inventors: Timur V. Voskoboynikov, Paul T. Barger, John Q. Chen
  • Publication number: 20100081565
    Abstract: An extruded catalyst comprising at least one molecular sieve material and an amorphous aluminum phosphate binder wherein the aluminum phosphate binder remains substantially amorphous after calcining.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Michael H. Quick, Karl Z. Steigleder
  • Patent number: 7687423
    Abstract: The subject invention comprises a novel UZM-14 catalytic material comprising globular aggregates of crystallites having a MOR framework type with a mean crystallite length parallel to the direction of 12-ring channels of about 60 nm or less and a mesopore volume of at least about 0.10 cc/gram. Catalysts formed from the novel material are particularly effective for the transalkylation of aromatics.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: March 30, 2010
    Assignee: UOP LLC
    Inventors: Jaime G. Moscoso, Edwin P. Boldingh, Michael G. Gatter, Susan C. Koster
  • Patent number: 7686949
    Abstract: An improved hydrotreating process for use with lube oil boiling range feedstreams utilizing a catalyst comprising a hydrogenation-dehydrogenation component selected from the Group VIII noble metals and mixtures thereof, a mesoporous support, and a binder.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Jean W. Beeckman, Sylvain S. Hantzer, Geoffrey L. Woolery, Glenn R. Sweeten
  • Patent number: 7678954
    Abstract: In a process for producing a hydrocarbon composition, a feed comprising at least one C3 to C8 olefin and an olefinic recycle stream rich in C9? hydrocarbons is contacted with a crystalline molecular sieve catalyst having an average crystal size no greater than 0.05 micron and an alpha value between about 100 and about 600 in at least one reaction zone under olefin oligomerization conditions including an inlet temperature between about 150° C. and about 350° C., a pressure of at least 2,860 kPa and a recycle to feed weight ratio of about 0.1 to about 3.0. The contacting produces an oligomerization effluent stream, which is separated into at least a hydrocarbon product stream rich in C9+ hydrocarbons and the olefinic recycle stream.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: March 16, 2010
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Keith H. Kuechler, Stephen Harold Brown, Helge Jaensch, Georges M. Mathys, Shifang Luo, Jane C. Cheng
  • Patent number: 7662273
    Abstract: A process for producing lube oil basestocks wherein a wax containing lube oil boiling range feedstream is converted into a basestock suitable for use in motor oil applications by contacting it with a hydrodewaxing catalyst containing a medium pore molecular sieve having deposited thereon an active metal oxide and at least one hydrogenation metal selected from the Group VIII and Group VIB metals.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: February 16, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William J. Murphy, Stuart L. Soled, Ian A. Cody, David W. Larkin, Terry E. Helton, Gary B. McVicker
  • Patent number: 7662737
    Abstract: Disclosed is a bound phosphorus-modified zeolite catalyst. Zeolite is treated with a phosphorus compound to form the phosphorus-treated zeolite. Binder material is treated with a mineral acid prior to being bound with the phosphorus-modified zeolite. The binder material includes inorganic oxide materials, such as alumina, clay, aluminum phosphate and silica-alumina, in particular, a binder of alumina or clay or their combinations. The mineral acid includes hydrochloric acid, nitric acid, phosphoric acid or sulfuric acid. The phosphorus-treated zeolite is combined with the acid-treated inorganic oxide binder material to form a zeolite-binder mixture. Water is added to form an extrudable paste which maybe shaped and is heated to a temperature of about 400° C. or higher to form a bound phosphorus-modified zeolite catalyst.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: February 16, 2010
    Assignee: Saudi Basic Industries Corporation
    Inventors: Ashim Kumar Ghosh, Pamela Harvey, Neeta Kulkarni
  • Publication number: 20100036184
    Abstract: This disclosure relates to a catalyst composition comprising (a) a crystalline MCM-49 molecular sieve; and (b) a binder comprising at least 1 wt. % of a titanium compound. In one aspect of this disclosure, the titanium compound comprises at least one of titanium oxide, titanium hydroxide, titanium sulfate, titanium phosphate, or any combination thereof. In another aspect of this disclosure, the catalyst composition further comprises a crystalline MCM-22 family molecular sieve comprising at least one of MCM-22, MCM-36, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-30, PSH-3, ERB-1, SSZ-25, or any combination thereof. In other embodiments, this disclosure relates to a process for preparing the catalyst composition of this disclosure, the process comprises (a) providing the crystalline MCM-49 molecular sieve and the binder comprising at least 1 wt. % of a titanium compound to form a mixture; and (b) forming the mixture into the catalyst composition. In a preferred embodiment, the forming step comprises extruding.
    Type: Application
    Filed: December 20, 2007
    Publication date: February 11, 2010
    Inventors: Christine N. Elia, Frederick Y. Lo, Jeffrey T. Elks, Darryl D. Lacy, Mohan Kalyanaraman
  • Patent number: 7658909
    Abstract: A process for preparing a beta zeolite is described, comprising at least the following steps: i) mixing, in an aqueous medium, at least one source of at least one tetravalent element X, at least one source of fluoride anions and at least one quaternary ammonium salt with formula (H3C)2—N+—(CH2CH2C(CH3)3)2; ii) treating said mixture hydrothermally until said beta zeolite is formed.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: February 9, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Joël Patarin, Philippe Caullet, Jean-Louis Paillaud, Nicolas Bats
  • Patent number: 7655300
    Abstract: The invention is about the preparation of novel highly transparent zeolite-doped polymer and zeolites monolayers. External coating of the zeolite crystals by covalently linked functionalized alkoxysilane derivatives allows for an efficient dispersion of the nano zeolite particles into an organic liquid monomer; the following co-polymerisation process leads to a hard, insoluble and transparent material containing said zeolites. Optical properties such as colour, refractive index, Abbe number or photochromism can be fine tuned by simply changing zeolite loading, while transparency is maintained.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: February 2, 2010
    Assignees: Clariant International Ltd., Universitat Bern, Optical Additives GmbH
    Inventors: Hans Joachim Metz, Gion Calzaferri, André Devaux, Stephane Suarez, Andreas Kunzmann
  • Patent number: 7655827
    Abstract: A process for selectively making 2-alkenes from a NAO using a mesoporous catalyst that has been surface modified with a Brönsted acid compound. The Brönsted acid compound has a reactive silane connector, an organic linking group, and a Brönsted acid group. The mesoporous catalyst has an average pore diameter in a range of about 12 to about 100 Angstroms and a surface area of between about 400 to about 1400 m2/gram.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: February 2, 2010
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ta Yen Ching, Jeffery Gee, Ruthann M Hickox
  • Patent number: 7651968
    Abstract: A process for producing a shaped body comprising a microporous material and at least one silicon-comprising binder, which comprises the steps (I) preparation of a mixture comprising the microporous material, the binder and a lubricant, (II) mixing and densification of the mixture, (III) shaping of the densified mixture to give a shaped body and (IV) calcination of the shaped body, wherein a silicone resin having a softening point of ?30° C. is used as binder, shaped bodies which can be produced by this process, their use as catalyst, in particular in organic synthesis and very particularly preferably in a process for preparing methylamines.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: January 26, 2010
    Assignee: BASF SE
    Inventors: Marco Bosch, Jan Eberhardt, Roderich Röttger
  • Patent number: 7648939
    Abstract: The invention provides an unsupported catalyst composition which comprises one or more Group VIb metals, one or more Group VIII metals, one or more zeolites, and, optionally, a refractory oxide material. A (co)precipitation preparation process is described and also use of the composition in hydrocracking.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: January 19, 2010
    Assignee: Shell Oil Company
    Inventors: László Domokos, Hermanus Jongkind, Marcello Stefano Rigutto, Willem Hartman Jurriaan Stork, Beatrijs Anna Stork-Blaisse, legal representative, Esther Hillegarda Carola Van De Voort
  • Publication number: 20100010279
    Abstract: A catalyst composition comprising metal phosphate binder and zeolite can be used to enhance olefin yields during hydrocarbon cracking processes. The composition typically further comprises aluminum phosphate, and the metal of the metal phosphate is a metal other than aluminum. Depending on the metal chosen, enhanced propylene and isobutylene yields in fluid catalytic cracking processes can be obtained compared to catalysts that do not contain such metal phosphate binders. The catalyst can also comprise non-zeolitic molecular sieves, thereby making the composition suitable for use in areas outside of catalytic cracking, e.g., purification and adsorbent applications.
    Type: Application
    Filed: July 14, 2009
    Publication date: January 14, 2010
    Inventor: Ranjit Kumar
  • Publication number: 20090324454
    Abstract: A purification catalyst which prevents contamination within a reflow furnace, including flux components, while suppressing the generation of CO is provided. A purification catalyst for a reflow furnace gas, having one or two of zeolite and silica-alumina as an active ingredient.
    Type: Application
    Filed: October 10, 2007
    Publication date: December 31, 2009
    Applicant: NIKKI-UNIVERSAL CO., LTD.
    Inventors: Yoshiki Nakano, Takanobu Sakurai, Shimichi Ueno
  • Publication number: 20090325785
    Abstract: The subject invention comprises a novel UZM-14 catalytic material comprising globular aggregates of crystallites having a MOR framework type with a mean crystallite length parallel to the direction of 12-ring channels of about 60 nm or less and a mesopore volume of at least about 0.10 cc/gram. Catalysts formed from the novel material are particularly effective for the transalkylation of aromatics.
    Type: Application
    Filed: June 26, 2008
    Publication date: December 31, 2009
    Inventors: Jaime G. Moscoso, Edwin P. Boldingh, Michael G. Gatter, Susan C. Koster
  • Patent number: 7638453
    Abstract: A catalyst composition containing a medium pore molecular sieve having deposited thereon an active metal oxide and at least one hydrogenation metal selected from the Group VIII and Group VIB metals for use in hydrodewaxing lube oil boiling range feedstreams.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: December 29, 2009
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: William J. Murphy, Stuart L. Soled, Ian A. Cody, David W. Larkin, Terry E. Helton, Gary B. McVicker
  • Patent number: RE41314
    Abstract: A gas adsorbing element is formed into a honeycomb-shaped laminate having many small channels penetrating from one end surface to the other and in which hydrophobic high silica zeolite powder is exposed on the walls of the small channels. The hydrophobic high silica zeolite is, for example, a zeolite which is produced by removing most of the aluminum component from an ordinary zeolite. In forming the honeycomb-shaped laminate, it is favorable that non-flammable sheets are laminated and the laminate is impregnated with a dispersion of high silica zeolite powder and with an inorganic binder, and that the high silica zeolite powder is fixed in fiber gaps and on the surface of the non-flammable paper. It is desirable that the non-flammable sheet is a low density inorganic fiber paper and is baked either before or after forming the honeycomb-shaped laminate.
    Type: Grant
    Filed: April 30, 1991
    Date of Patent: May 4, 2010
    Assignee: Kabushiki Kaisha Seibu Giken
    Inventors: Toshimi Kuma, Chieko Kuma