Elemental Metal Or Metal Compound Other Than As Silicate Dnrm Patents (Class 523/457)
  • Patent number: 10280348
    Abstract: Low density aerospace compositions and sealants are disclosed. The low density compositions and sealants are characterized by a high volume percent loading of low density microcapsules.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: May 7, 2019
    Assignee: PRC-DeSoto International, Inc.
    Inventor: Bruce Virnelson
  • Patent number: 9913324
    Abstract: A resin composition for sealing an organic electroluminescent element, containing: at least one epoxy compound; at least one polyester resin; and at least one Lewis acid compound or at least one compound which generates a Lewis acid, in which the content of the epoxy compound is from 10 to 200 parts by mass with respect to 100 parts by mass of the polyester resin.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: March 6, 2018
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Naoaki Mihara, Kunihiko Ishiguro, Toshimitsu Nakamura, Tetsuya Mieda
  • Patent number: 9620257
    Abstract: Polymer compositions which are antistatic or have been made conductive and the production thereof.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: April 11, 2017
    Assignee: Evonik Degussa GmbH
    Inventors: Kathrin Lehmann, Stefan Stadtmueller, Peter Schwab
  • Patent number: 9376588
    Abstract: This invention relates to an epoxy resin composition and its application in marine maintenance and repair coating with improved overcoatability.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: June 28, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Amy Song, Hongyu Chen
  • Patent number: 9331151
    Abstract: The present disclosure regards a method for coupling a graphene layer to a substrate having at least one hydrophilic surface, the method comprising the steps of providing the substrate having at least one hydrophilic surface, depositing on the hydrophilic surface a layer of a solvent selected in the group constituted by acetone, ethyl lactate, isopropyl alcohol, methylethyl ketone and mixtures thereof and depositing on the solvent layer a graphene layer. It moreover regards an electronic device comprising the graphene/substrate structure obtained.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: May 3, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Sebastiano Ravesi, Corrado Accardi, Cristina Tringali, Noemi Graziana Sparta′, Stella Loverso, Filippo Giannazzo
  • Patent number: 9051062
    Abstract: A method for making a fuselage section comprises the steps of assembling a support system. The support system comprises fiber reinforced composite material and includes at least three frames and six stringers. The support system is partially cured via a fast cure process such that the support system attains about eighty percent of its fully cured strength. A skin comprising uncured fiber reinforced composite material is globally positioned such that an inner surface of the skin corresponds to an outer surface of the support system. The skin and the support system are fully cured together. The support system is assembled on a bonding tool having a bonding surface corresponding to an inner surface of the skin.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: June 9, 2015
    Assignee: Textron Innovations, Inc.
    Inventors: Richard Boone, Benjamin De Putter
  • Publication number: 20150137362
    Abstract: A curable composition including: an epoxy resin; and an amine curing component including: an aromatic amine curing agent; and a solubilizer including an aliphatic amine, a cycloaliphatic amine, a non-volatile primary alcohol, non-volatile solvent or a mixture thereof. An electronic assembly including: a substrate; an underfill including a cured product of the curable composition on the substrate; and a ball grid array on the underfill is also disclosed.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Inventors: Steven E. Lau, Steffanie S. Ung
  • Publication number: 20150140883
    Abstract: A resin composition comprises a polyimide resin, a thermosetting resin, and a filler, the polyimide resin containing a first repeat unit represented by formula (I) and a second repeat unit represented by formula (III), wherein the ratio of the second repeat unit to the polyimide resin is between 5 and 80 mol %.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 21, 2015
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Takabumi OOMORI, Keiichi HASEBE
  • Publication number: 20150140337
    Abstract: According to one or more embodiments, a polymeric article includes a polymeric composition, which in turn includes a polymeric material in a first weight percent, a non-metallic fibrous material in a second weight percent, and a metallic fiber material in a third weight percent and being intermixed with the non-metallic fibrous material. The polymeric material may include at least one of epoxy, vinyl ester, and/or polyester. The fibrous material may include at least one of glass fiber and carbon fiber. The metallic fiber material may include at least one of steel and aluminum.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Rick H. Wykoff, Mohammed Omar Faruque, Fubang Wu, Yijung Chen, Matthew John Zaluzec
  • Publication number: 20150141550
    Abstract: The present invention relates to a polyarylene sulfide resin composition having excellent impact resistance in which a polyarylene sulfide resin having a specific end group, an epoxy-containing olefin-based elastomer, and/or an organic or inorganic filler are included, and a preparation method thereof.
    Type: Application
    Filed: June 5, 2013
    Publication date: May 21, 2015
    Applicant: SK CHEMICALS CO.,LTD.
    Inventors: Byoung Gook Kang, Il-Hoon Cha, Sung-Gi Kim, Se-Ho Lee
  • Publication number: 20150111044
    Abstract: There is provided a resin composition for printed wiring boards that, while maintaining excellent flame retardance, has excellent heat resistance, reflow resistance, and drilling workability, and, at the same time, has low water absorption without use of halogen compounds and phosphorus compounds. The resin composition comprises (A) a non-halogen epoxy resin, (B) a biphenyl aralkyl phenolic resin, (C) a maleimide compound and (D) an inorganic filler.
    Type: Application
    Filed: December 23, 2014
    Publication date: April 23, 2015
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Takaaki OGASHIWA, Hiroshi TAKAHASHI, Tetsuro MIYAHIRA, Yoshihiro KATO
  • Patent number: 9005761
    Abstract: A halogen-free resin composition includes (A) 100 parts by weight of epoxy resin; (B) 1 to 100 parts by weight of benzoxazine resin per 100 parts by weight of (A); (C) 1 to 100 parts by weight of styrene-maleic anhydride per 100 parts by weight of (A); (D) 0.5 to 30 parts by weight of amine curing agent per 100 parts by weight of (A); and (E) 5 to 150 parts by weight of halogen-free flame retardant per 100 parts by weight of (A). The composition obtains properties of low dielectric constant, low dissipation factor, high heat resistance and flame retardancy by specific composition and ratio. Thus, a prepreg or a resin film, which can be applied to a copper clad laminate and a printed circuit board, is formed.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: April 14, 2015
    Assignee: Elite Material Co., Ltd.
    Inventor: Yu-Te Lin
  • Patent number: 9000071
    Abstract: An epoxy resin compound including an epoxy resin, a hardening agent, and an inorganic filler as a main component is provided. The epoxy resin includes an epoxy resin represented by a chemical formula. Therefore, the epoxy resin having a mesogen structure that increases crystallinity is used, and thus thermal conductivity can be increased. Further, the epoxy resin is used as an insulating material for a printed circuit board, and thus a high radiant heat substrate can be provided.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: April 7, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventors: Jae Man Park, Hae Yeon Kim, SungBae Moon, Jeungook Park, SungJin Yun, JongHeum Yoon, Hyuk Soo Lee, Jaehun Jeong, In Hee Cho
  • Publication number: 20150093499
    Abstract: An insulating material and its method of use of insulating material for rotating machines such as motors and generators. The insulating material includes a resin embedded with a filler that is not based only on a monomodal nanoparticle size particle distribution. Radiation erodes the material and is conductive to the formation of in situ protective layers on the body to be insulated.
    Type: Application
    Filed: March 22, 2013
    Publication date: April 2, 2015
    Inventors: Peter Gröppel, Christian Meichsner
  • Patent number: 8993654
    Abstract: The invention relates to a graft copolymer latex comprising the which comprises a graft copolymer ABC of at least one olefinically unsaturated monomer C and at least one modified alkyd resin A2B or modified oil A1B which modified alkyd resin A2B or modified oil A1B have chain-pendant olefinically unsaturated groups, to a process for its preparation, and the use thereof a binder in coating compositions.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 31, 2015
    Assignees: Allnex Belgium SA., Allnex Austria GmbH
    Inventors: Keltoum Ouzineb, José Pierre, Johann Billiani, Gerhard Reidlinger, Philippe Deligny
  • Patent number: 8987354
    Abstract: Biocompatible polymeric coating compositions having nanoscale surface roughness and methods of forming such coatings are described. A polymeric biocompatible coating may be produced using a powder coating method, where one or more thermosetting polymer resins and one or more biocompatible materials are mixed and extruded, ground into microscale particles, and mixed with nanoparticles to form a dry powder mixture that may be coated onto a substrate according to a powder coating method. Alternatively, the thermosetting polymeric resin can be first extruded and ground into microscale particles, and then mixed with the biocompatible materials in particular form of nanoscale to microscale in size, and then further mixed with nanoparticles to form a dry powder mixture for coating. Bioactive materials may also be selectively added into the polymeric coating in a similar way as the biocompatible materials, either before or after the extrusion, to form a bioactive polymeric coating.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: March 24, 2015
    Inventors: Jingxu Zhu, Hiran Perinpanayagam, Mohammad S. Mozumder, Hui Zhang, Wen Shi
  • Publication number: 20150065612
    Abstract: An electrical insulation body for a high-voltage rotary machine is provided. The electrical insulation body has a synthetic resin which is produced by reacting an epoxy with a hardener, and to which a filler component comprising particles is added, wherein the mass fraction of chlorine in the epoxy is less than 100 ppm.
    Type: Application
    Filed: February 1, 2013
    Publication date: March 5, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventors: Peter Groppel, Christian Meichsner, Friedhelm Pohlmann
  • Publication number: 20150064444
    Abstract: Disclosed is a powder paint composition of and a method for preparing the same. More particularly, the present invention relates to a powder paint composition including a powder paint prepared by physically attaching metallic particles to a powder resin, which exhibits no separation or aggregation of metallic particles when coated and significantly improves metallic texture owing to orientation of the metallic particles, and a method for preparing the same.
    Type: Application
    Filed: December 18, 2013
    Publication date: March 5, 2015
    Applicant: HYUNDAI MOTOR COMPANY
    Inventor: Hwan Oh Kim
  • Publication number: 20150056756
    Abstract: The present disclosure relates generally to encapsulant materials, a method of making thereof and the use thereof for maintaining the electrical and mechanical integrity of solder connections between electronic devices and substrates. More specifically, the present disclosure relates to reflow encapsulant materials with fluxing properties and a method of making thereof. The present disclosure further relates to a method of manufacturing flip-chip assemblies using the reflow encapsulant materials of the present disclosure wherein only one heating cycle is utilized.
    Type: Application
    Filed: April 5, 2013
    Publication date: February 26, 2015
    Inventors: Sathid Jitjongruck, Anongnat Somwangthanaroj
  • Patent number: 8962712
    Abstract: An alkali-developable photosensitive resin composition comprises a carboxyl group-containing urethane resin having a biphenyl novolak structure, a photopolymerization initiator, and aluminum hydroxide and/or a phosphorus-containing compound. The composition may be formulated as a photocurable and thermosetting resin composition by further incorporating therein a thermosetting component having a plurality of cyclic ether groups and/or cyclic thioether groups in the molecule, besides the components described above. The photosensitive resin composition may further contain a colorant.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: February 24, 2015
    Assignee: Taiyo Holdings Co., Ltd.
    Inventors: Nobuhito Ito, Kazuyoshi Yoneda, Masao Arima
  • Publication number: 20150044451
    Abstract: Provided is a black photosensitive resin composition being microfabricatable due to its photosensitivity, allowing a cured film obtainable therefrom to be excellent in flexibility, being small in post-curing warpage of a substrate, being excellent in flame retardancy and electric insulation reliability, allowing a reduction in process contamination due to less outgassing during a reflow process, and avoiding a reduction in film thickness.
    Type: Application
    Filed: November 20, 2012
    Publication date: February 12, 2015
    Inventors: Masayoshi Kido, Yoshihide Sekito
  • Patent number: 8952097
    Abstract: A composition including at least one curable structural adhesive, and at least one chemically cross-linked elastomer, wherein the chemically cross-linked elastomer is present in the structural adhesive as penetrating polymer network. Such a composition constitutes a so-called shape memory material and is suitable for reinforcing cavities in structural components, such as, for example, in automobile bodies.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: February 10, 2015
    Assignee: Sika Technology AG
    Inventors: Jürgen Finter, Matthias Gössi
  • Publication number: 20150034369
    Abstract: Provided is a resin composition which enables the formation of a roughened surface having a low roughness degree on the surface of an insulation layer in a printed wiring board material when used on the insulation layer regardless of the roughening conditions employed and also enables the formation of a conductive layer having excellent adhesion properties, heat resistance, heat resistance under absorption of moisture, thermal expansion properties and chemical resistance on the roughened surface. A resin composition comprising (A) an inorganic filler that is soluble in an acid, (B) a cyanic acid ester compound and (C) an epoxy resin.
    Type: Application
    Filed: July 3, 2012
    Publication date: February 5, 2015
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Naoki Kashima, Keiichi Hasebe, Seiji Shika, Yoshinori Mabuchi, Yoshihiro Kato
  • Patent number: 8946323
    Abstract: The present invention relates to an acidic aqueous particulate composition containing, in addition to iron(III) ions, fluoride ions and at least one water-insoluble, dispersed organic binder, a water-insoluble, dispersed oxide pigment with elevated resistance to agglomeration for the autophoretic deposition of organic-inorganic hybrid layers onto metal surfaces, the composition additionally containing at least one anionic wetting agent which comprises functional groups selected from sulfonates, phosphonates and/or carboxylates. The invention furthermore comprises the use of such a composition for the autodeposition of a film-forming organic-inorganic hybrid coating onto metal surfaces which are at least in part selected from surfaces, the main constituents of which are iron, zinc and/or aluminum.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: February 3, 2015
    Assignee: Henkel AG & Co. KGaA
    Inventors: Ulrike Schmidt-Freytag, Ute Herrmann
  • Publication number: 20150031798
    Abstract: A composite material is disclosed for use in a high-voltage device having a high-voltage electrical conductor, the material containing a polymeric matrix and at least one fiber embedded in the polymeric matrix, the fibers having an average diameter of less than about 500 nm.
    Type: Application
    Filed: August 18, 2014
    Publication date: January 29, 2015
    Inventors: Jens ROCKS, Walter Odermatt
  • Patent number: 8940827
    Abstract: The present invention relates to a lead-free, non-toxic and arc resistant composite material having a thermosetting polymer, at least one heavy particulate filler, at least one light particulate filler and, optionally, at least one arc resistant filler. The composite material may be utilized in manufacturing articles used in radiation shielding and other applications where arc resistant and dielectric strength are desired.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: January 27, 2015
    Assignee: Globe Composite Solutions, Ltd.
    Inventor: Xiujun Wang
  • Publication number: 20150014032
    Abstract: A resin composition forms a roughened surface with low roughness on an insulating layer regardless of roughening conditions when used as an insulating layer of a printed wiring board, and is excellent in adhesion between the insulating layer and a plated conductor layer, and also has low thermal expansion coefficient (linear expansion coefficient) and high glass transition temperature and is also excellent in moist heat resistance. The resin composition includes an epoxy compound, a cyanate ester compound and an inorganic filler, wherein the cyanate ester compound is at least selected from a naphthol aralkyl type cyanate ester compound, an aromatic hydrocarbon formaldehyde type cyanate ester compound, a biphenyl aralkyl type cyanate ester compound and a novolak type cyanate ester compound; and the content of the epoxy compound is 60 to 75% by weight based on the total amount of the epoxy compound and the cyanate ester compound.
    Type: Application
    Filed: January 24, 2013
    Publication date: January 15, 2015
    Inventors: Keiichi Hasebe, Seiji Shika, Naoki Kashima, Yoshinori Mabuchi
  • Publication number: 20150004309
    Abstract: Methods and systems for coating metal substrates are provided. The methods and systems include a powder coating composition comprising a polymeric binder and an application package. The application package includes at least one antistatic component and at least one post-blended component. Use of the application package reduces back ionization and faraday cage effects during electrostatic application. The described methods provide coatings with optimal surface smoothness and edge coverage.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 1, 2015
    Applicant: VALSPAR SOURCING, INC.
    Inventors: Thomas Reno, Robert Breitzman
  • Patent number: 8921461
    Abstract: An epoxy resin composition for encapsulating a semiconductor chip according to this invention comprises (A) a crystalline epoxy resin, (B) a phenol resin represented by general formula (1): wherein R1 and R2 are independently hydrogen or alkyl having 1 to 4 carbon atoms and two or more R1s or two or more R2s are the same or different; a is integer of 0 to 4; b is integer of 0 to 4; c is integer of 0 to 3; and n is average and is number of 0 to 10, (C) a (co)polymer containing butadiene-derived structural unit or its derivative, and (D) an inorganic filler in the amount of 80 wt % to 95 wt % both inclusive in the total epoxy resin composition.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: December 30, 2014
    Assignee: Sumitomo Bakelite Co., Ltd
    Inventors: Takahiro Kotani, Hidetoshi Seki, Masakatsu Maeda, Kazuya Shigeno, Yoshinori Nishitani
  • Publication number: 20140353004
    Abstract: Disclosed herein are an insulation resin composition for a printed circuit board including: an epoxy resin, a first inorganic filler having thermal conductivity of 20 W/mK or more, and a second inorganic filler having relative permittivity less than 10, and an insulating film, a prepreg, and a printed circuit board.
    Type: Application
    Filed: May 5, 2014
    Publication date: December 4, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Hyun Chul Jung, Joon Seok Kang, Jang Bae Son, Sang Hyun Shin, Kwang Jik Lee, Hye Sook Shin
  • Patent number: 8883883
    Abstract: Disclosed is a resin composition for encapsulating a semiconductor including a phenol resin (A) having one or more components containing a component (A1) composed of a polymer having a first structural unit and a second structural unit, an epoxy resin (B), and an inorganic filler (C). Also disclosed is a semiconductor device obtained by encapsulating a semiconductor element with a cured product of the resin composition for encapsulating a semiconductor.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: November 11, 2014
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventor: Masahiro Wada
  • Publication number: 20140318839
    Abstract: Disclosed are an epoxy resin compound and a radiant heat circuit board using the same. The epoxy resin compound mainly includes an epoxy resin, a curing agent, and an inorganic filler. The curing agent comprises epoxy adducts formed to add the curing agent to a crystalline epoxy resin. The epoxy resin is used on a printed circuit board as an insulating material, so that a substrate having a high heat radiation property is provided.
    Type: Application
    Filed: July 27, 2012
    Publication date: October 30, 2014
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Sung Bae Moon, Jae Man Park, Jong Heum Yoon, Hae Yeon Kim, In Hee Cho
  • Publication number: 20140314959
    Abstract: The present invention relates to a method for the establishment of a crack resistant epoxy paint coat and paint compositions suitable for said method. The method is developed for use in ballast tanks e.g. a ballast tank of a vessel. The method involves the steps: (i) applying a paint composition comprising an epoxy-based binder system onto the surface thereby forming a curable paint film on the surface, and (ii) allowing the curable paint film to cure thereby forming the epoxy paint coat. The paint composition has a viscosity of at the most 140 KU, when ready to be applied. The paint composition comprises 35-80% by solids volume of the paint of an epoxy-based binder system having a ratio between the hydrogen equivalents and the epoxy equivalents in the range of 20:100 to 120:100. The paint composition furthermore comprises 0.5-30% by solids volume of the paint of one or more fibres. The fibres have an average length, of at the most 250 ?m.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Applicant: HEMPEL A/S
    Inventors: Kim SCHEIBEL, Jørn KAHLE, Michael Stanley PEDERSEN, Lars Thorslund PEDERSEN
  • Patent number: 8846790
    Abstract: A resin composition is provided. The resin composition comprises an epoxy resin, a hardener, and a modifier, wherein the modifier is a polymer solution obtainable from the following steps: (a) dissolving an N,O-heterocyclic compound of Formula I or Formula II into a first solvent to form a first reaction solution: (b) heating the first reaction solution to a first temperature to carry out a ring-opening polymerization to provide a solution of ring-opening polymerized product; and (c) cooling the solution of ring-opening polymerized product to a second temperature to substantially terminate the ring-opening polymerization to obtain the polymer solution, wherein, the first solvent is unreactive to the N,O-heterocyclic compound; the first temperature is higher than the softening temperature of the N,O-heterocyclic compound and lower than the boiling point of the first solvent; and the second temperature is lower than the first temperature.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: September 30, 2014
    Assignee: Taiwan Union Technology Corporation
    Inventors: Cheng Ping Liu, Tsung Hsien Lin, Hsien Te Chen, Chih Wei Liao
  • Publication number: 20140272574
    Abstract: A binder composition for a rechargeable battery, including a binder polymer having a glass transition temperature (Tg) of 20° C. or less, and having a storage modulus (60° C.) of 50-150 MPa. The binder composition according to an embodiment can improve life characteristics of the rechargeable battery by efficiently controlling expansion of a negative electrode plate.
    Type: Application
    Filed: January 7, 2014
    Publication date: September 18, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Dongho Son, Kijun Kim, Junkyu Cha, Nari Seo
  • Publication number: 20140264302
    Abstract: An adhesive, and an encapsulated product and method of encapsulating an organic electronic device (OED) using the same are provided. The adhesive film serves to encapsulate the OED and includes a curable resin and a moisture absorbent, and the adhesive includes a first region coming in contact with the OED upon encapsulation of the OED and a second region not coming in contact with the OED. Also, the moisture absorbent is present at contents of 0 to 20% and 80 to 100% in the first and second regions, respectively, based on the total weight of the moisture absorbent in the adhesive.
    Type: Application
    Filed: May 28, 2014
    Publication date: September 18, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Hyun Jee YOO, Yoon Gyung CHO, Jung Sup SHIM, Suk Chin LEE, Kwang Jin JEONG, Suk Ky CHANG
  • Patent number: 8815401
    Abstract: A prepreg for a printed wiring board, comprising a cyanate ester resin having a specific structure, a non-halogen epoxy resin, a silicone rubber powder as a rubber elasticity powder, an inorganic filler and a base material, which prepreg retains heat resistance owing to a stiff resin skeleton structure, has high-degree flame retardancy without the use of a halogen compound or a phosphorus compound as a flame retardant, and has a small thermal expansion coefficient in plane direction without using a large amount of inorganic filler, and a laminate comprising the above prepreg.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: August 26, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Yoshihiro Kato, Takeshi Nobukuni, Masayoshi Ueno
  • Patent number: 8808855
    Abstract: The present invention relates to composites comprising inorganic micro pigments and/or fillers in the form of surface-phosphated microparticles, whose surface is at least partially coated with finely divided with alkaline earth carbonate nanoparticles by means of binders based on copolymers comprising as the monomers one or more dicarboxylic acids and one or more monomers from the group of diamines, triamines, dialkanolamines or trialkanolamines and epichlorohydrin, a method for producing such composites, aqueous slurries thereof and the use thereof in papermaking or in the field of production of paints and plastics as well as the use of the binders for the coating of microparticles with nano alkaline earth carbonate.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 19, 2014
    Assignee: Omya International AG
    Inventors: Patrick A. C. Gane, Matthias Buri, René Vinzenz Blum, Catherine Jean Ridgway
  • Patent number: 8808849
    Abstract: The present invention relates to composites comprising inorganic micro pigments and/or fillers in the form of surface-phosphated microparticles, whose surface is at least partially coated with finely divided with alkaline earth carbonate nanoparticles by means of binders based on copolymers comprising as the monomers one or more dicarboxylic acids and one or more monomers from the group of diamines, triamines, dialkanolamines or trialkanolamines and epichlorohydrin, a method for producing such composites, aqueous slurries thereof and the use thereof in papermaking or in the field of production of paints and plastics as well as the use of the binders for the coating of microparticles with nano alkaline earth carbonate.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 19, 2014
    Assignee: Omya International AG
    Inventors: Patrick A. C. Gane, Matthias Buri, René Vinzenz Blum, Catherine Jean Ridgway
  • Publication number: 20140227531
    Abstract: It is an object of the present invention to provide, without using a halogenated compound or a phosphorus compound, a resin composition for printed wiring boards, a prepreg, a laminate, and a metal foil-clad laminate, each of which has high-degree flame retardance, has a low water absorption ratio and a high glass transition temperature, and has a high elastic modulus at high temperature. A resin composition according to the present invention includes a specific maleimide compound (A); a cyanate ester compound (B); a non-halogen epoxy resin (C); and an inorganic filler (D).
    Type: Application
    Filed: May 29, 2012
    Publication date: August 14, 2014
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Takaaki Ogashiwa, Hiroshi Takahashi, Tetsuro Miyahira, Yoshihiro Kato
  • Patent number: 8802776
    Abstract: An epoxy resin composition having excellent connection reliability and transparency, a method for manufacturing a composite unit using the epoxy resin composition, and the composite unit, are disclosed. The manufacturing method includes an attaching step of attaching an epoxy resin composition (2) containing a novolak phenolic curing agent, an acrylic elastomer composed of a copolymer containing dimethylacrylamide and hydroxylethyl methacrylate, an epoxy resin and not less than 5 parts by weight to not more than 20 parts by weight of an inorganic filler to 100 parts by weight of the epoxy resin, to a printed circuit board (1) in the form of a sheet.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: August 12, 2014
    Assignee: Dexerials Corporation
    Inventors: Taichi Koyama, Hironobu Moriyama, Takashi Matsumura, Takayuki Saito
  • Patent number: 8790779
    Abstract: A thermally curable adhesive in strip or film form, having a thickness in the range of 0.1 to 5 mm, containing: a) at least one reactive epoxy prepolymer, b) at least one latent hardener for epoxies, and c) one or more elastomers that are selected from: c1) thermoplastic polyurethanes, c2) thermoplastic isocyanates, and c3) block copolymers having thermoplastic polymer blocks. Further components can additionally be contained, for example a blowing agent for foaming. The adhesive in the uncured state at 22° C. is bendable or wrappable and can be extended at least 100% before tearing. It can be laid onto a foil. It can be used, for example, for adhesive bonding of planar, tubular, or cylindrical components, preferably components made of metal, wood, ceramic, or ferrites.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: July 29, 2014
    Assignee: Henkel AG & Co. KGaA
    Inventors: Eugen Bilcai, Emilie Barriau, Martin Renkel, Sven Wucherpfennig
  • Patent number: 8785525
    Abstract: There is provided a thermosetting light-reflecting resin composition that has a high level of various characteristics required of optical semiconductor element mounting boards, such as optical properties and thermal discoloration resistance, provides high releasability during molding such as transfer molding, and allows molding processes to be performed continuously. There are also provided a highly-reliable optical semiconductor element mounting board and an optical semiconductor device each produced with the resin composition, and methods for efficient production thereof.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: July 22, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Hayato Kotani, Naoyuki Urasaki, Makoto Mizutani
  • Patent number: 8779035
    Abstract: Non-chromated corrosion inhibiting primer formulations having one or more active corrosion inhibitors covalently anchored, or optionally covalently anchored, onto an organic and/or inorganic reactive specie are provided herein.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: July 15, 2014
    Assignee: Cytec Technology Corp.
    Inventors: Kunal Gaurang Shah, Dalip Kumar Kohli
  • Publication number: 20140187676
    Abstract: The present invention provides an epoxy resin composition for sealing a geomagnetic sensor module, including: an epoxy resin; a curing agent; and a phase change material, and provides a geomagnetic sensor module sealed with the epoxy resin composition. The present invention is advantageous in that a geomagnetic sensor can be maintained at a predetermined temperature because a sealing material including a phase change material is used.
    Type: Application
    Filed: March 17, 2013
    Publication date: July 3, 2014
    Applicant: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sung Ho Lee, Boum Seock Kim, Eun Tae Park, Se Hoon Jeong
  • Publication number: 20140177194
    Abstract: A die backside film including a matrix material; and an amount of filler particles to render the die backside film thermally conductive, wherein a thermal conductivity of the amount of filler particles is greater than a thermal conductivity of silica particles. A method including introducing a die backside film on a backside surface of a die, the die backside film including a matrix material including an elastomer an amount of filler particles to render the die backside film thermally conductive, wherein a thermal conductivity of the amount of filler particles is greater than a thermal conductivity of silica particles; and disposing the die in a package.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Inventors: Hitesh Arora, Mihir A. Oka, Chandra M. Jha
  • Publication number: 20140179831
    Abstract: Fire retardant or flame retardant additives are incorporated into thermoplastic, thermoset, and/or elastomeric polymer materials to form polymer compositions having improved fire retardant properties. More particularly, the polymer compositions of the present invention comprise additive compositions which have the effect of improving the FR effectiveness, the additive compositions comprising a mesoporous silicate additive. In addition, the polymer compositions of the present invention comprise additive compositions comprising a mesoporous silicate additive and a filler, wherein the filler is a flame retardant addition, an inert filler, or combinations thereof.
    Type: Application
    Filed: July 19, 2013
    Publication date: June 26, 2014
    Inventors: Thomas J. Pinnavaia, Joel I. Dulebohn, Bruce Nanasy
  • Patent number: 8759422
    Abstract: An adhesive composition comprising elastomeric polymer, epoxy resin, reactive diluent, and filler, is suitable for use within the electronics industry, and in particular for wafer back side coating adhesives. The elastomeric polymer is a mixture of a vinyl elastomer and an epoxy elastomer; the reactive diluent is a combination of two or more diluents, one of which must have carbon to carbon unsaturation, providing cross-linking within the composition after cure; and the filler is a non-conductive filler.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 24, 2014
    Assignee: Henkel IP & Holding GmbH
    Inventors: Eric C. Wang, Kevin Harris Becker, Qizhuo Zhuo
  • Publication number: 20140162072
    Abstract: A thermosetting resin composition contains a liquid epoxy resin, a solid epoxy resin having a softening point of 125° C. or lower, an aromatic diamine compound including benzoate group and a main chain including polymethylene group, a solvent soluble polyimide resin having Tg of 200° C. or higher and a weight average molecular weight Mw of 50000 or smaller, and a phenoxy resin having Tg of 130° C. or higher. A total of amounts of the solvent soluble polyamide resin and the phenoxy resin is 15 weight parts or more and 150 weight parts or less, provided that 100 weight parts are assigned to a total of amounts of the liquid epoxy resin, the solid epoxy resin and the aromatic diamine compound.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Applicant: TAMURA CORPORATION
    Inventors: Tetsuaki SUZUKI, Yusuke TANAHASHI, Nobuaki ISHIZAKA
  • Patent number: 8748513
    Abstract: Disclosed is an epoxy resin composition for printed circuit board, which includes (A) an epoxy resin; (B) a composite curing agent, including amino-triazine-novolac resin and diaminodiphenylsulfone mixed in a certain proportion; (C) a curing accelerator; and (D) an optional inorganic filler.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: June 10, 2014
    Assignee: Taiwan Union Technology Corporation
    Inventor: Hsien-Te Chen