At Least Six Carbon Atoms Patents (Class 526/348.2)
  • Publication number: 20070255027
    Abstract: The present invention provides method of preparing alkene-acrylate-norbornene terpolymer by polymerization of a monomer mixture consisting of alkene, acrylate and norbornene by a radical initiator under the presence of a Lewis acid. In the method of preparing the alkene-acrylate-norbornene terpolymer of the present invention, the terpolymer may be prepared in the mild condition of low temperature and low pressure by using the Lewis acid so that the process is simple and the property of the terpolymer may be easily controlled. In addition, the terpolymer prepared by the method includes the ethylene and the norbornene simultaneously so that it has high glass transition temperature, and the brittle property in forming of film is improved.
    Type: Application
    Filed: April 27, 2007
    Publication date: November 1, 2007
    Applicant: LG CHEM, LTD.
    Inventors: Yoo-young Jung, Byoung-ho Jeon, Bae-kun Shin, Ki-soo Lee
  • Patent number: 7265193
    Abstract: This invention relates to a process to polymerize olefins comprising: contacting: (i) propylene and (ii) a mixture comprising, optionally ethylene, and three or more different alpha olefins having 4 to 20 carbon atoms, wherein at least one alpha olefin is present at Z percent or more, based upon the weight of the mixture, where Z=Y+X, where X=(100 divided by the number of alpha olefins present in the mixture) and Y equals 1 to 75, where Z is not more than 95%, with (iii) a metallocene catalyst system.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: September 4, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Weiqing Weng, Srivatsan Srinivas, Robert J. Wittenbrink
  • Publication number: 20070179046
    Abstract: Provided is catalyst composition including a transition metal complex precatalyst represented by Formula 1; a first cocatalyst represented by Formula 2 which is an alkylaluminum compound; and a second cocatalyst represented by Formula 3 which is a salt compound comprising a Bronsted acid cation and a noncoordinating, compatible anion. Here, R1, R2, R3, R4, E, Q1, Q2 and M are defined in the specification. Al(R6)3 Formula 2 Here, R6 is defined in the specification. [L-H]+[ZA4]? Here, L, [L-H]+, Z and A are defined in the specification. A catalyst composition including binuclear transition metal complexes, an alkylaluminum compound, and a salt compound including a Bronsted acid cation, and a noncoordinating, compatible anion, and a method of preparing the catalyst composition are provided. The activity of the catalyst composition has been improved.
    Type: Application
    Filed: February 1, 2007
    Publication date: August 2, 2007
    Applicant: LG CHEM, LTD.
    Inventors: Eunjung LEE, Choong Hoon LEE, Seungwhan JUNG, Jung A LEE, Boram LEE
  • Patent number: 7238765
    Abstract: High density polyethylene having reduced melt elasticity and a reduced level of highly short-chain branched polymer molecules and wire and cable insulation compositions based thereon having improved strippability and oxidative stability are provided.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: July 3, 2007
    Assignee: Equistar Chemicals, LP
    Inventors: Chun D. Lee, Timothy S. Schloemer
  • Patent number: 7230056
    Abstract: A two-step catalyst preparation method is disclosed. First, a support is combined with an indenoindolyl Group 3-10 metal complex and a first activator comprising an alkyl alumoxane to give a supported complex. The supported complex is subsequently combined with a second activator comprising an ionic borate to produce a borate-treated supported complex. Activating indenoindolyl metal complexes in this sequence surprisingly provides an exceptional activity boost compared with other ways of activating them with either or both types of activators.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: June 12, 2007
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 7223823
    Abstract: This invention relates to a process of polymerizing ethylene in a reactor comprising contacting a catalyst system comprising a supported chromium catalyst and an aluminum alkyl cocatalyst, where the catalyst and cocatalyst are contacted by cofeeding the catalyst and cocatalyst to the reactor or feeding the catalyst and cocatalyst separately to the reactor, where the catalyst and cocatalyst are not contacted prior to the step of feeding or cofeeding, with ethylene, and from 0 to 50 mole % of one or more comonomers, where the polymerization occurs at a temperature between 50 and 120° C., and the molar ratio of aluminum from the cocatalyst to the chromium in the supported chromium catalyst is 30:1 or more.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: May 29, 2007
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventor: Zerong Lin
  • Patent number: 7208559
    Abstract: An ethylene-based polymer which is an ethylene/C4 to C10 ?-olefin copolymer and satisfies the following requirements [k1] to [k3]: [k1] melt flow rate (MFR) under a loading of 2.16 kg at 190° C. is in the range of 1.0 to 50 g/10 minutes; [k2] LNR defined as a scale of neck-in upon film molding is in the range of 0.6 to 1.4; and [k3] take-up speed at break [DS (m/min)] at 160° C. and melt flow rate (MFR) satisfy the following relationship (Eq-1): 12×MFR0.577?DS?165×MFR0.577 (Eq-1), and a thermoplastic resin composition containing the ethylene-based polymer, provide a molded product, preferably a film, excellent in moldability and mechanical strength.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: April 24, 2007
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasuo Satoh, Mamoru Takahashi, Hideki Bando, Yoshiho Sonobe, Yasushi Nakayama
  • Patent number: 7195806
    Abstract: The present invention includes an end use article (i.e., an article of manufacture) and a process for making the same, wherein the end use article has a relatively high gloss and exhibits excellent processability over a wide range of processing conditions. The end use article can be formed with glossy polyethylene having an “a” parameter less than or equal to about 0.40, and the glossy polyethylene can be a Metallocene polyethylene. The end use article can have a 60° specular gloss of at least about 40%, or from about 40% to about 80%, or from about 60% to about 80%. The end use article may be pigmented or unpigmented.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: March 27, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Gregory S. DeKunder, Eric Maziers, Brian B. Cole, G. Travis Meredith, Gerhard Guenther, Walter T. Jagmin
  • Patent number: 7192998
    Abstract: A process for producing olefin polymers, which comprises the steps of polymerizing an olefin monomer in a polymerization zone in the presence of a catalyst comprising a transition metal compound to form an olefin polymer, and adding at the end of or downstream from the polymerization zone a composition having a weight averaged molecular weight of at least 100 and containing a group R, a cation Y, an anionic group —C(R1)2—X?, and optionally a group —C(R1)2—X—H, the composition having a relative the composition having a relative mole fraction n of cations Y and a relative mole fraction m of group —C(R1)2—X—H, wherein 0<n?1, 0??m<1, and n+m=1. Use of such m=1. Use of such a composition for rendering inert undesired quantities of acidic compounds or halogen-containing compounds present in an olefin polymer by mixing the olefin polymer intimately with the additive composition.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: March 20, 2007
    Assignee: Dow Global Technologies Inc.
    Inventors: Pascal E. R. E. J. Lakeman, Johan A. Thoen
  • Patent number: 7193003
    Abstract: A copolymer of a strait chain ?-olefin and a vinyl compound (I) represented by the general formula CH2?CH—R, wherein R is a hydrocarbon group, the steric parameter Es of the substituent R is ?1.64 or less and the steric parameter B1 of the substituent R is 1.53 or more, an adhesive containing the same as an effective ingredient, and an laminate containing the adhesive.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: March 20, 2007
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Nobuo Oi, Akihiro Kondo, Toshiki Mori
  • Patent number: 7183364
    Abstract: Disclosed is a method of producing a polyolefin composition comprising contacting a metallocene pre-catalyst with a substoichiometric amount of a co-catalyst; adding a first olefin monomer; and polymerizing the first monomer for a time sufficient to form the polyolefin. The method allows for the use of a minimum amount of activating co-catalyst, and allows for the production of stereoregular and non-stereoregular polyolefins. The use of configurationally stable metallocene pre-catalysts allows for the production of monomodal isotactic polyolefins having narrow polydispersity. The use of configurationally unstable metallocene pre-catalysts allows for the production of monomodal atactic polyolefins having narrow polydispersity. The method of the present invention optionally further comprises contacting the polyolefin with a second amount of said co-catalyst; adding a second olefin monomer; polymerizing said second olefin monomer to form a block-polyolefin composition.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: February 27, 2007
    Assignee: University of Maryland, College Park
    Inventor: Lawrence R. Sita
  • Patent number: 7179876
    Abstract: A polyethylene film having a balance of improved physical and mechanical properties and a method for making the same are provided. In one aspect, the film includes a 1% secant modulus of greater than 25,000 psi, a dart impact resistance of greater than 500 g/mil, and a MD tear strength of greater than 500 g/mil. In one aspect, the method comprises reacting ethylene derived units and a comonomer in the presence of a hafnium-based metallocene at a temperature of from 70° C. and 90° C., an ethylene partial pressure of from 120 psia and 260 psia, and a comonomer to ethylene ratio of from 0.01 to 0.02 to produce an ethylene based polymer. The method further comprises extruding the ethylene based polymer at conditions sufficient to produce a polyethylene film comprising a secant modulus of greater than 25,000 psi, a dart impact resistance of greater than 500 g/mil, and a MD tear strength of greater than 500 g/mil.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: February 20, 2007
    Assignee: Univation Technologies, LLC
    Inventors: John F. Szul, James McLeod Farley, Laughlin G. McCullough, Ryan Winston Impelman
  • Patent number: 7172816
    Abstract: A polyethylene film having a balance of improved physical and mechanical properties and a method for making the same are provided. In one aspect, the film includes a 1% secant modulus of greater than 25,000 psi, a dart impact resistance of greater than 500 g/mil, and a MD tear strength of greater than 500 g/mil. In one aspect, the method comprises reacting ethylene derived units and a comonomer in the presence of a hafnium-based metallocene at a temperature of from 70° C. and 90° C., an ethylene partial pressure of from 120 psia and 260 psia, and a comonomer to ethylene ratio of from 0.01 to 0.02 to produce an ethylene based polymer. The method further comprises extruding the ethylene based polymer at conditions sufficient to produce a polyethylene film comprising a secant modulus of greater than 25,000 psi, a dart impact resistance of greater than 500 g/mil, and a MD tear strength of greater than 500 g/mil.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: February 6, 2007
    Assignee: Univation Technologies, LLC
    Inventors: John F. Szul, James McLeod Farley, Laughlin G. McCullough, Ryan Winston Impelman
  • Patent number: 7157540
    Abstract: The olefinic polymer characterised in that the n-decane-soluble content thereof is 10% by weight or less and the content of a ligand having a cyclopentadienyl structure is 5 ppb by weight or less. The process for producing an olefinic polymer is a process of producing an olefinic polymer by (co)polymerizing olefins in a gas phase using a fluidized-bed reactor, the process comprising: a polymerization step of (co)polymerizing the olefins with allowing a saturated aliphatic hydrocarbon to exist in a concentration of 2 to 30 mol % in the fluidized-bed reactor and a ligand removing step involving a step of bringing the resulting (co)polymer into contact with a ligand-remover and a step of heating said (co)polymer which has been brought into contact with the ligand-remover.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: January 2, 2007
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Satoru Ohtani, Shinji Abe, Hiroto Nishida
  • Patent number: 7157534
    Abstract: The invention provides a process for the preparation of a propylene polymer in which propylene and a comonomer copolymerizable therewith and of greater molecular weight than propylene are polymerized in a single site catalyst catalized polymerization reaction, characterised in that said polymerization reaction is effected at least in part at a temperature of at least 70° C.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: January 2, 2007
    Assignee: Borealis Technology Oy
    Inventors: Petri Lehmus, Kimmo Hakala, Päivi Pitkänen, Manfred Arnold, Andreas Meinecke, Udo Manfred Stehling
  • Patent number: 7132486
    Abstract: Linear low density polyethylenes (LLDPEs) that have relatively high melt index ratios (MIR) and relatively high melt strength (MS) are described. This combination of melt properties is achieved by a substantially non-blended LLDPE. Catalysts used to produce these polyethylenes are generally a blend of bridged bisindenyl zirconocene dichlorides, where one zirconocene contains saturated indenyls and the other unsaturated indenyls.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: November 7, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Armenag Hagop Dekmezian, Natalie Ann Merrill
  • Patent number: 7129197
    Abstract: One or more oligomers of an olefin are prepared in the presence of a single-site catalyst. Preferably, the olefin is an ?-olefin, and the oligomers are a poly-alpha-olefin (PAO). The PAO so prepared is completely or substantially free of tertiary hydrogen resulting from isomerization. Consequently, the PAO possesses improved biodegradability, improved oxidation resistance, and/or a relatively higher viscosity index. The PAO has many useful applications, such as a component of a lubricant.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: October 31, 2006
    Assignee: Shell Oil Company
    Inventors: Wei Song, William J. Heilman
  • Patent number: 7125946
    Abstract: The invention provides an ethylene-?-olefin copolymer which is superior in extrusion molding processability. The present invention is to provide a copolymer of ethylene and ?-olefin of from 4 to 20 carbon atoms, having melt flow rate of from 1 to 100 g/10 min, an activation energy for melt flow of 60 kJ/mol or more, melt tension at 190° C. (MT), intrinsic viscosity ([?]) and a chain length A which satisfy the formula (1) to (3), wherein the chain length A is a chain length at peak position of a logarithm normal distribution curve of a component having the highest molecular weight among logarithm normal distribution curves obtained by dividing a chain length distribution curve obtained by gel permeation chromatography measurement into at least two logarithm normal distribution curves.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: October 24, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yuki Iseki, Yasuro Suzuki, Tadahiro Mitsuno
  • Patent number: 7119153
    Abstract: This invention relates to catalyst compositions comprising a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. This invention also relates to methods to prepare and use the catalyst compositions and new polyolefins. The compositions and methods disclosed herein provide ethylene polymers and copolymers with lower MI, increased melt strength, and good MD tear properties.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: October 10, 2006
    Inventors: Michael D. Jensen, Joel L. Martin, Max P. McDaniel, Qing Yang, Matthew G. Thorn, Elizabeth A. Benham, Ted H. Cymbaluk, Ashish M. Sukhadia, Rajendra K. Krishnaswamy, Mark E. Kertok
  • Patent number: 7112643
    Abstract: Methods of producing a polymer include contacting at least one olefin with a catalyst prepared by contacting a support comprising alumina with a sulfating agent and with chromium. Polymer compositions produced in this manner may exhibit relatively low levels of long chain branching and relatively high molecular weights. In an embodiment, polymer compositions with a PDI in a range of from about 6 to about 15 have MW values greater than about 300,000 g/mol and Eo values less than about 1×106 Pa·s. The polymer compositions may further have Theological breadths greater than about 0.25 and relaxation times less than about 10 seconds.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: September 26, 2006
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Collins, Elizabeth A. Benham, Paul J. DesLauriers
  • Patent number: 7109282
    Abstract: This invention relates to a process for controlling the architecture of copolymers of at least two unsaturated monomers, made by free-radical polymerization in the presence of a cobalt-containing chain transfer agent, including the control of molecular weight, degree of branching and vinyl end group termination, by varying at least one of the variables of molar ratio of monomers, their relative chain transfer constants, polymerization temperature and degree of conversion and amount of cobalt chain transfer agent; and polymers made thereby.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: September 19, 2006
    Assignees: E. I. du Pont de Nemours and Company, Commonwealth Scientific and Industrial Research Organisation
    Inventors: Graeme Moad, Ezio Rizzardo, Catherine Louise Moad, Steven Dale Ittel, Lech Wilczek, Alexei A. Gridnev
  • Patent number: 7081285
    Abstract: Blown films and blow molded objects may be prepared using a polyethylene composition comprising a unimodal metallocene catalyzed polyethylene copolymer. The polyethylene copolymer has high melt fow rate and good melt strength allowing it to be useful in both extrusion and injection blow molding. Blown film prepared therewith has a high level of clarity.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: July 25, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Vincent Henri Barre, Tim Coffy, Ben Hicks, Rodolfo Mier, Jay Nguyen
  • Patent number: 7071137
    Abstract: A method for making a Ziegler-Natta catalyst support includes the steps of contacting a fumed silica with a surface modifying agent such as a compound having the formula RMgX MgR?R? wherein R, R? and R? are each individually a moiety selected from an alkyl group, cycloalkyl, aryl or alkaryl group, and X is a halogen selected from the group consisting of chlorine, bromine and iodine, to provide a pretreated silica seeding agent. The pretreated silica seeding agent is then dispersed in a non-aqueous liquid magnesium halide/alkanol complex, and the magnesium halide is crystallized onto the silica particles to form catalyst support particles especially suitable for Ziegler-Natta catalysts.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: July 4, 2006
    Assignee: Novolen Technology Holdings, C.V.
    Inventors: Douglas D. Klendworth, Frank Wolf Spaether
  • Patent number: 7041765
    Abstract: Films with excellent machine direction (MD) tear properties comprise at least one layer made from a polymer comprising: (A) at least 50 weight percent (wt%) propylene; and (B) at least 5 wt % ethylene and/or one or more unsaturated comonomers. Representative of component (B) unsatuarated comonomers are the C4-20 ?-olefins, C4-20 dienes, styrenic compounds, and the like. Preferably, the film has at least one of a (i) haze value of less than about 10, (ii) 45 degree gloss of greater than about 65, and (iii) dart value of greater than about 100 g/mil. In one preferred embodiment, the layer comprises a compolymer characterized as having at least one of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a B-value greater than about 1.4 when the comonomer content, i.e.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: May 9, 2006
    Assignee: Dow Global Technologies Inc.
    Inventors: Li-Min Tau, Pak-Wing S. Chum, Seema Karande, Clive Bosnyak
  • Patent number: 7037998
    Abstract: The olefinic polymer characterised in that the n-decane-soluble content thereof is 10% by weight or less and the content of a ligand having a cyclopentadienyl structure is 5 ppb by weight or less. The process for producing an olefinic polymer is a process of producing an olefinic polymer by (co)polymerizing olefins in a gas phase using a fluidized-bed reactor, the process comprising: a polymerization step of (co)polymerizing the olefins with allowing a saturated aliphatic hydrocarbon to exist in a concentration of 2 to 30 mol % in the fluidized-bed reactor and a ligand removing step involving a step of bringing the resulting (co)polymer into contact with a ligand-remover and a step of heating said (co)polymer which has been brought into contact with the ligand-remover.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: May 2, 2006
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Satoru Ohtani, Shinji Abe, Hiroto Nishida
  • Patent number: 7037989
    Abstract: Substantially random ethylene and/or ?-olefin copolymers containing units derived from vicinally disubstituted olefin monomers are described. The vicinally disubstituted olefin monomers may be represented by the generic formula (R1)CH?CH(R2), where R1 and R2 independently comprise hydrocarbyl or silyl-hydrocarbyl groups containing 1 or more carbon atoms, or may be linear, branched or cyclic substituted or unsubstituted hydrocarbyl groups having from 1-100 carbon atoms, or they may contain 30 or less carbon atoms. The copolymers may be prepared by coordination polymerization by means of contacting at least one vicinally disubstituted olefin monomer and ethylene and/or ?-olefin, optionally with one or more other coordination polymerizable monomers, with a catalyst system comprising a monocyclopentadienyl heteroatom-containing Group 4 transition metal catalyst component.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: May 2, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Smita Kacker, Enock Berluche, Timothy Daniel Shaffer, Jo Ann Marie Canich
  • Patent number: 7038000
    Abstract: There is provided a process for the copolymerisation of propylene with at least one C4-20 ?-olefin or C4-20 diene in a reaction medium in the presence of a catalyst system at a temperature of greater that 80° C. or at a temperature and pressure above the critical temperature and pressure of the reaction medium. Under such conditions, comonmer incorporation is higher than under standard conditions.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: May 2, 2006
    Assignee: Borealis Technology OY
    Inventors: Torvald Vestberg, Pirjo Jaaskelainen, Paivi Pitkanen, Kauno Alastalo
  • Patent number: 7026421
    Abstract: Random copolymers of propylene with other 1-alkenes having up to carbon atoms, whose content of comonomers is in the range from 0.7 to 1.4% by weight if the only comonomer present in the propylene copolymers is ethylene, or whose content of comonomers is in the range from 0.7 to 3.0% by weight if at least one C4–C10-1-alkene is present as comonomer, and whose cold-xylene-soluble fraction is from 1.0 to 2.5% by weight if ethylene is present as a comonomer in the propylene copolymers, or whose cold-xylene-soluble fraction is from 0.75 to 2.0% by weight if the only comonomers present are C4–C10-1-alkenes, and a process for preparing the random copolymers of propylene is described, as is their use for producing films, fibers or moldings, and also the films, fibers and moldings themselves and biaxially stretched films made from random propylene copolymers of this type and processes for their production.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: April 11, 2006
    Assignee: Basell Polyolefine GmbH
    Inventors: David Appleyard, Franz Langhauser, Murray Horton, Roland Hingmann, Günther Schweier, Volker Rauschenberger, Ingolf Hennig, Dieter Lilge, Werner Schöne, Meinolf Kersting
  • Patent number: 7025917
    Abstract: A method for producing a polyolefin stretched sheet which comprises extruding a polyolefin having a weight average molecular weight of 100,000 to 500,000 into a primary sheet, rolling the primary sheet at a rolling magnification of 5 or more, and stretching the rolled sheet into a polyolefin sheet which is totally stretched at a stretching magnification of 15 or more. The method can be employed for producing a polyolefin stretched sheet excellent in creep resistance, tensile strength and modulus in tension, with no use of a ultra-high molecular weight polyethylene and with excellent productivity.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: April 11, 2006
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Katsuo Matsuzaka, Koichi Adachi, Michiaki Sasayama, Koji Yamaguchi
  • Patent number: 7001967
    Abstract: A transparent heat-resistant resin optical materials having excellent heat resistance and dynamic characteristics, having negative birefringence and exhibiting a high refractive index and a high Abbe number, especially optical compensating members such as films, sheets and retardation films for LCD display element. The transparent heat-resistant resin optical material is made of a copolymer containing a specific olefin residue unit and a specific N-phenyl-substituted maleimide residue unit and having a weight average molecular weight, as reduced into standard polystyrene, of from 5×103 to 5×106, the transparent heat-resistant resin optical material exhibiting negative birefringence; and a retardation film having a relationship of three-dimensional refractive indexes of nz?ny>nx, nz>ny?nx, or nz>nx?ny.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: February 21, 2006
    Assignee: Tosoh Corporation
    Inventors: Shinsuke Toyomasu, Yojiro Ikai
  • Patent number: 6992152
    Abstract: Apparatus for olefin polymerization includes one or more shell and tube olefin polymerization reactors, each of which has an olefin polymerization reaction mixture inlet connection and a crude polyolefin product outlet connection. Each reactor is equipped with a recirculation system including a pump arranged to circulate a reaction mixture through the tube side of the reactor independently of the introduction of olefin polymerization reaction mixture into the reactor. The apparatus may also include an inlet reaction mixture distribution manifold and an outlet polymerization reaction mixture collection manifold interconnecting the reactors for operation in parallel. The apparatus also includes catalyst composition and catalyst modifier inlets for each reactor arranged such that a catalyst modifier to may be introduced into each reactor at a rate which is independent of the introduction of catalyst composition.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: January 31, 2006
    Assignee: Texas Petrochemicals LP
    Inventors: Christopher Lobue, Gilbert Valdez, Daniel Herndon, C. Edward Baxter, Jr., Russell E. Reid, Sr.
  • Patent number: 6977283
    Abstract: The present invention relates to a process for polymerizing monomer and comonomer(s) utilizing a bulky ligand transition metal metallocene-type catalyst or catalyst system, where the process is operated in the absence of or with a low amount of any of the isomers of the comonomer(s). The level of these isomers in the process of the invention are eliminated or maintained below a threshold level. It has been discovered that removal of certain isomers of the comonomer used in a polymerization process using metallocene-type catalysts results in an improved process.
    Type: Grant
    Filed: April 7, 1998
    Date of Patent: December 20, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Shutt, Kevin R. Squire, Abdulgaffar Vadgama
  • Patent number: 6958377
    Abstract: A process for polymerizing olefins is disclosed. The process uses an organometallic complex with at least one non-bridged indenoindolyl ligand bonded to M. The substituent on the indole nitrogen contains an atom selected from the group consisting of S, O, P, and N. Polyolefins from the process have unexpectedly high molecular weight compared with polyolefins made using similar supported indenoindolyl complexes.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: October 25, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie
  • Patent number: 6956094
    Abstract: The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: October 18, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Simon Mawson, Sun-Chueh Kao, Tae Hoon Kwalk, Timothy Roger Lynn, David H. McConville, Matthew Gary McKee, John Francis Szul, Kersten Anne Terry, Timothy T. Wenzel, Mark Gregory Goode, John Henry Oskam, Robert J. Jorgensen, Robert Harold Vogel
  • Patent number: 6936675
    Abstract: A polyethylene film having a balance of improved physical and mechanical properties and a method for making the same are provided. In one aspect, the film includes a 1% secant modulus of greater than 25,000 psi, a dart impact resistance of greater than 500 g/mil, and a MD tear strength of greater than 500 g/mil. In one aspect, the method comprises reacting ethylene derived units and a comonomer in the presence of a hafnium-based metallocene at a temperature of from 70° C. and 90° C., an ethylene partial pressure of from 120 psia and 260 psia, and a comonomer to ethylene ratio of from 0.01 to 0.02 to produce an ethylene based polymer. The method further comprises extruding the ethylene based polymer at conditions sufficient to produce a polyethylene film comprising a secant modulus of greater than 25,000 psi, a dart impact resistance of greater than 500 g/mil, and a MD tear strength of greater than 500 g/mil.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: August 30, 2005
    Assignee: Univation Technologies, LLC
    Inventors: John F. Szul, James McLeod Farley, Laughlin G. McCullough, Ryan Winston Impelman
  • Patent number: 6933353
    Abstract: A method for preparing a supported organometallic complex is disclosed. An organometallic complex is combined with a support material that has been treated with an organozinc compound. The organometallic complex comprises a Group 3 to 10 transition metal and an indenoindolyl ligand that is bonded to the transition metal. Also disclosed is a process for polymerizing an olefin using the supported complex. Organozinc treatment of the support unexpectedly boosts catalyst activity and polyolefin molecular weight.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: August 23, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 6927258
    Abstract: Improved thermoplastic polymer blend compositions comprising an isotactic polypropylene component and an alpha-olefin and propylene copolymer component, said copolymer comprising crystallizable alpha-olefin sequences. In a preferred embodiment, improved thermoplastic polymer blends are provided comprising from about 35% to about 85% isotactic polypropylene and from about 30% to about 70% of an ethylene and propylene copolymer, wherein said copolymer comprises isotactically crystallizable propylene sequences and is predominately propylene. The resultant blends manifest unexpected compatibility characteristics, increased tensile strength, and improved process characteristics, e.g., a single melting point.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: August 9, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sudhin Datta, Charles Cozewith, Periagaram Ravishankar, Edmund J. Stachowski
  • Patent number: 6911516
    Abstract: Copolymers of ethylene with C3-C12 ?-olefin have a polydispersity Mw/Mn of ?10, a density of from 0.85 to 0.95 g/cm3, a proportion of from 1 to 40% by weight of comonomer and a molar mass Mn above 150,000 g/mol and a comonomer composition distribution breadth index above 70%. A process for their preparation is described, as are their use and fibers, moldings, films and polymer mixtures comprising these copolymers.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: June 28, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Dieter Lilge, Günther Schweier, Markus Endres
  • Patent number: 6908972
    Abstract: A method for making ethylene polymers and copolymers is disclosed. The method uses a catalyst system comprising a low level of an aluminum-containing activator, a bridged indenoindolyl transition metal complex, and a treated silica support. The method enables economical preparation of ethylene copolymers having very low density. The silica-supported, bridged complexes incorporate comonomers efficiently and are valuable for a commercial slurry loop process. Use of a bridged indeno[2,1-b]indolyl complex provides exceptionally efficient comonomer incorporation, and gives polymers with a substantial and controlled level of long-chain branching. The method facilitates the production of a wide variety of polyolefins, from HDPE to plastomers.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: June 21, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Barbara M. Tsuie, Karen L. Neal-Hawkins, Sandor Nagy, Michael W. Lynch, Mark P. Mack, Shaotian Wang, Jean A Merrick-Mack, Clifford C. Lee, Joel A. Mutchler, Kenneth W. Johnson
  • Patent number: 6903170
    Abstract: Ethylene and optional comonomers are polymerized using a supported metallocene catalyst, an alumoxane activator, and triisobutylaluminum (TIBAL). A silica support is first pretreated with a silane compound and then with an organoboron compound. The treated silica is then combined with a Group 4 metallocene complex and an alumoxane to generate a supported, activated catalyst. While it was previously thought that the particular support treatment technique used herein provided benefits only for polymerizations catalyzed by non-metallocene single-site complexes, it has now been found that similar benefits can be realized even with conventional metallocenes if TIBAL is selected as the scavenger.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: June 7, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 6897272
    Abstract: Disclosed herein are processes for polymerizing ethylene, acyclic olefins, and/or selected cyclic olefins, and optionally selected olefinic esters or carboxylic acids, and other monomers. The polymerizations are catalyzed by selected transition metal compounds, and sometimes other co-catalysts. Since some of the polymerizations exhibit some characteristics of living polymerizations, block copolymers can be readily made. Many of the polymers produced are often novel, particularly in regard to their microstructure, which gives some of them unusual properties. Numerous novel catalysts are disclosed, as well as some novel processes for making them. The polymers made are useful as elastomers, molding resins, in adhesives, etc.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: May 24, 2005
    Assignee: E.I. Du Pont de Nemours and Company
    Inventors: Maurice S. Brookhart, Lynda Kaye Johnson, Samuel David Arthur, Stephan James McLain
  • Patent number: 6891002
    Abstract: A process for producing a polyolefin according to the present invention comprises (co) polymerizing one or two or more ?-olefins in a vapor phase in a fluidized-bed reactor, wherein the concentration of (A) a saturated aliphatic hydrocarbon in the fluidized bed reactor is 1 mol % or more and at least one compound selected from (B) an aliphatic amide and (C) a nonionic surfactant constituted only of carbon, oxygen and hydrogen atoms is made to exist in the reactor. The present invention can provide a process for producing a polyolefin, the process ensuring that the prevention of clogging caused by the generation of sheet or block polymers and a high efficiency of the production of a polyolefin due to good catalytic activity can be accomplished at the same time and also having superb continuous productivity.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: May 10, 2005
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Shinji Abe, Shotaro Matsuda, Satoru Ohtani, Hiroto Nishida, Michiharu Sakata, Tomohiro Arase
  • Patent number: 6887957
    Abstract: A process for the gas-phase (co-)polymerization of olefins in a fluidised bed reactor using a Ziegler-Natta type catalyst characterised in that the polymerisation is performed in the presence of an additive having the formula R—Cl where R is an alkyl group of 2 to 7 carbon atoms.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: May 3, 2005
    Assignee: BP Chemicals Limited
    Inventors: Christine Chabrand, Muriel Esteban, Caroline Mladenov
  • Patent number: 6881802
    Abstract: A catalyst obtained by contacting a specific transition metal compound (A) of Group 7 of the Periodic Table of the Elements, having a pyrazolyl group with an aluminum compound selected from organoaluminums and aluminoxanes and/or a specific boron compound, and a process for producing an addition polymer which comprises polymerizing an addition polymerizable monomer with the catalyst.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: April 19, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Kiyoshi Fujisawa, Masaaki Nabika
  • Patent number: 6878790
    Abstract: The present invention relates to polyolefins and in particular to polyolefins comprising C3-C20 monomers and having a molecular weight of at least 700 kg/mol preferably 1000 kg/mol. The present invention further relates to a hafnium based metallocene catalyst and a process for making such polyolefins.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: April 12, 2005
    Assignee: The Procter & Gamble Company
    Inventors: Judith Preuschen, Bernhard Rieger, Carsten Troll
  • Patent number: 6875835
    Abstract: A copolymer of ethylene and a higher alpha olefin, preferably 1-hexene, can be produced using an activated chromium containing catalyst system and a cocatalyst selected from the group consisting of trialkylboron, trialkylsiloxyalutninum, and a combination of trialkylboron and thalkylaluminum compounds. The polymerization process must be carefully controlled to produce a copolymer resin having an exceptionally broad molecular weight distribution, extremely high PENT ESCR values, and a natural branch profile that impacts branching preferably into the high molecular weight portion of the polymer. The resulting copolymer resin is especially useful in high stiffness pipe applications.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: April 5, 2005
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe, Paul J. DesLauriers
  • Patent number: 6867278
    Abstract: The present invention is directed to homo-polymers and copolymers of mono-1-olefins, a method of making such polymers,and uses of such polymers. Polymers of the present invention are formed by contacting at least one mono-1-olefin having from 2 to about 20 carbon atoms per molecule and at least one mono-1-olefin co-monomer having from 2 to about 10 carbon atoms per molecule in a reaction zone under polymerization conditions in the presence of a hydrocarbon diluent, a catalyst system, and a cocatalyst. In another aspect of the present invention, ethylene copolymers are employed to produce PE-100 pipe. Further, these ethylene copolymers may be employed to produce PE-100 pipe having both small diameters and diameters in excess of 42 inches substantially without sagging or other gravitational deformation. Copolymers of ethylene and 1-hexene are disclosed which are used to produce PE-100 pipe.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: March 15, 2005
    Assignee: Chevron Phillips Chemical Company
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Al R. Wolfe, Paul J. DesLauriers, Pamela L. Meager, William R. Coutant, David C. Rohlfing, Steven J. Secora
  • Patent number: 6867277
    Abstract: An ethylene-based polymer resin which is obtained by copolymerizing ethylene with an ?-olefin having 5 to 20 carbon atoms, and has a melt flow rate (MFR) measured at 190° C. under a load of 21.18 N according to JIS K7210-1995, of not less than 0.01 g/10 min. and less than 1 g/10 min., wherein the melt flow rate and a melt tension(MT) at 190° C. (unit: cN) of the resin satisfy a relation of the following expression (1) and an intrinsic viscosity [?] (unit: dL/g) and the melt flow rate of the resin satisfy a relation of the following expression (2): 2×MFR?0.59<MT<3.6×MFR?0.66??(1) 1.02×MFR?0.094<[?]<1.50×MFR?0.156??(2).
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: March 15, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Yuki Iseki
  • Patent number: 6864332
    Abstract: A process for polymerizing monomers in the gas phase, in fluidized bed reactors is described, where unsaturated, gas phase monomers are fed into the reactors in the presence of a mixture of inert diluents having a composition that allows the dew point to be adjusted, this leading to high production rates under stable operation in a non condensed operation mode.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: March 8, 2005
    Assignees: Braskem S.A., Convex International
    Inventors: Antonio Luiz Duarte Braganca, Antonio Luiz Ribeiro de Castro Morschbacker, Enio Rubbo, Cid Neto Miro, Tamara Barlem, Arj Mukherjee
  • Patent number: 6858681
    Abstract: The process for producing an olefinic polymer comprises introducing a saturated aliphatic hydrocarbon in a liquid phase state and in a vapor phase state into the aforementioned fluidized-bed and (co)polymerizing in the condition that when the inside radius of the cylinder section of the fluidized-bed reactor is defined as a distance of 1, the relationship between the concentration (C1) of the saturated aliphatic hydrocarbon put in a liquid state in the peripheral portion of the cylinder section at a relative distance of 0.7 to 1.0 from the center of the cylinder section as a start point and the concentration (C2) of the saturated aliphatic hydrocarbon put in a liquid state in the center portion of the cylinder section at a relative distance less than 0.7 from the center fulfills the following equation: C1>C2 at a place close to the upstream section of said gas distributing plate.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: February 22, 2005
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Satoru Ohtani, Shinji Abe, Hiroto Nishida