With Reactant Having Halo-c(=o)-halo, Halo-c(=o)-o-, Or -o-c(=o)-o- Group Patents (Class 528/196)
  • Patent number: 9018338
    Abstract: A resin that has high heat resistance, high surface hardness and excellent moldability, and is obtained from a biomass resource, and a molded article thereof. The resin comprises a unit (A) and a unit (B) as the main recurring units, and the molar ratio of the unit (A) to the unit (B) being 5/95 to 95/5.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: April 28, 2015
    Assignee: Teijin Limited
    Inventor: Tetsuya Motoyoshi
  • Patent number: 9018340
    Abstract: A copolycarbonate that is derived from a renewable resource, is excellent in heat resistance, flowability and transparency, and prevented from undergoing a dimensional change by water absorption and coloring during molding as well as a transparent molded article obtained therefrom. The copolycarbonate contains predetermined amounts of a unit (A) constituted of an ether diol residue represented by the formula (1), a unit (B) constituted of a bisphenol residue represented by the formula (2), and a unit (C) constituted of another diol residue, wherein the ratio of terminal groups falls within the ranges of the expressions (i) and (ii).
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: April 28, 2015
    Assignee: Teijin Limited
    Inventors: Tsuyoshi Takeda, Tetsuya Motoyoshi, Hiroshi Okamoto
  • Patent number: 9018341
    Abstract: The present invention relates to a method of reducing type IV rubber allergy of synthetic rubber latex products caused by chemical residues remaining after manufacture of the synthetic rubber products by reducing levels of chemical residues found for said products, said method comprising the steps of: subjecting said products to a wash in a strong alkaline solution to remove the chemical residues remaining after manufacture of the rubber latex products, and a system for reducing type IV allergenicity of synthetic rubber products caused by chemical residues remaining after manufacture of the synthetic rubber latex products by reducing residual levels of chemical residues found for said products, and a product, such as a glove, manufactured from synthetic rubber latex processed in accordance with the method and/or using the system.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: April 28, 2015
    Assignee: Budev B.V.
    Inventors: Michiel Inno Paping, Karen-Marlies Schenck
  • Patent number: 9012593
    Abstract: Methods of preparing an aromatic liquid crystalline polyester resin and an aromatic liquid crystalline polyester resin compound are disclosed. A method of preparing an aromatic liquid crystalline polyester resin may include: acetylating a first monomer including an amino group by a reaction with a carboxylic acid anhydride; acetylating a second monomer including a hydroxyl group and not including an amino acid group with an additional carboxylic acid anhydride; and synthesizing an aromatic liquid crystalline polyester prepolymer by a condensation polymerization reaction of the acetylated first and second monomers with dicarboxylic acid. A method of preparing an aromatic liquid crystalline polyester resin compound may use the aromatic liquid crystalline polyester resin prepared according to the forgoing method.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: April 21, 2015
    Assignee: Shenzhen Wote Advanced Materials Co., Ltd.
    Inventors: Sun Hwa Chang, Sang Mi Kang, Dae Yeon Kim, Jin Kyu Lee
  • Patent number: 9012591
    Abstract: A copolymerized polycarbonate resin includes a repeat unit represented by Formula 1; a repeat unit represented by Formula 2; and a repeat unit represented by Formula 3, wherein the repeat unit represented by Formula 1 is different than the repeat unit represented by Formula 3, and wherein Formula 1, 2, and 3 are the same as defined in the specification. The copolymerized polycarbonate resin can have excellent properties in terms of chemical resistance, thermal resistance, and/or external appearance.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: April 21, 2015
    Assignee: Cheil Industries Inc.
    Inventors: Jun Ho Chi, Jong Chan Hur, O Sung Kwon, Woo Suk Chei
  • Patent number: 9006378
    Abstract: A plastic article formed from a thermoplastic composition including a polycarbonate having repeating structural carbonate units according to the formula: in which at least 60 percent of the total number of R1 groups contain aromatic moieties and the balance thereof are aliphatic, alicyclic, or aromatic. The composition also includes an epoxy additive having at least two epoxy groups per molecule and a phenolic diphosphite derived from pentaerythritol. The thermoplastic composition exhibits a dE (2000 hrs.) value of less than 1.5 after 2000 hours of heat aging at 130° C., measured according ISO 11664-4:2008(E)/CIE S 014-4/E:2007 using CIE illuminant D65 and a 2.5 mm thick molded plaque of the thermoplastic composition.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: April 14, 2015
    Assignee: SABIC Global Technologies B.V.
    Inventors: Joshua Arie van den Bogerd, Johannes de Brouwer
  • Publication number: 20150087798
    Abstract: To provide a method for continuous production of a polycarbonate with safety, wherein (1) the contents of impurities in phosgene, which adversely affect a product, such as carbon tetrachloride, chloroform, etc., are decreased, and in its turn, the contents of the impurities in a polycarbonate are decreased; (2) by using a formed phosgene gas directly for an oligomer reaction step without going through a purification step, noxious phosgene is not substantially held; and preferably, (3) an apparatus is automatically stopped even at abnormal time, and noxious phosgene is detoxicated without being leaked outside the system.
    Type: Application
    Filed: March 13, 2013
    Publication date: March 26, 2015
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Kazuhiro Sekiguchi, Toshiyuki Yasuda
  • Patent number: 8981017
    Abstract: The present invention is a polycarbonate-polyorganosiloxane copolymer (A-1) comprising a polycarbonate block composed of a specific structural unit and a polyorganosiloxane block composed of a specific structural unit, wherein (1) the content of the polyorganosiloxane block portion is 1 to 30% by mass, (2) the average number of the repeating structural units represented by the general formula (II) is 70 to 1000, (3) the viscosity-average molecular weight of the copolymer is 13000 to 26000, and (4) the content of the phenol residue having an allyl group in the copolymer is 400 ppm by mass or less, the copolymer providing a molded article having excellent thermal stability and excellent color tone after even when the molding is carried out at high temperature; a process for production of the copolymer; and a polycarbonate resin using the polycarbonate-polyorganosiloxane copolymer.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: March 17, 2015
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Yasuhiro Ishikawa
  • Patent number: 8975367
    Abstract: Disclosed are polymer compositions including polycarbonates, polyphosphonates, copoly(phosphonate carbonate)s, and organic salts and/or silicone containing compounds that exhibit a superior combination of properties compared to prior art.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: March 10, 2015
    Assignee: FRX Polymers, Inc.
    Inventors: Dieter Freitag, Jan-Pleun Lens, Marc A. Lebel
  • Patent number: 8975361
    Abstract: The present invention relates to water and solvent-free polymers, in particular water and solvent-free synthetic rubber products like styrene butadiene rubber products and butadiene rubber products as well as a process for the production thereof. The invention further relates to a device suitable to accomplish said process.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: March 10, 2015
    Assignee: LANXESS Deutschland GmbH
    Inventors: Wolfgang Krumbe, Rolf Feller, Paul Wagner, Hanns-Ingolf Paul, Martin Siebuerger, Heike Kloppenburg, Alicia Le-Sattler, John Lovegrove
  • Patent number: 8975360
    Abstract: Nanocomposites comprising a sulfonated telechelic polycarbonate and an organically modified clay are disclosed. The polycarbonate nanocomposites have improved physical and mechanical properties.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: March 10, 2015
    Assignee: SABIC Global Technologies B.V.
    Inventors: Daniel J. Brunelle, Martino Colonna, Maurizio Fiorini, Corrado Berti, Enrico Binassi
  • Patent number: 8969505
    Abstract: A branched aromatic polycarbonate resin having a degree of branching (N value) controlled within a specific range is manufactured by subjecting an aromatic polycarbonate prepolymer that has a branched structure introduced using a specific amount of a branching agent to molecular-weight-increasing linking reaction with an aliphatic diol compound in the presence of a transesterification catalyst under the condition of a reduced pressure. The amount (A) of the branching agent used is adjusted on the basis of the correlation between the amount (A) of the branching agent used and the N value of the branched aromatic polycarbonate resin.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: March 3, 2015
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Yoshinori Isahaya, Atsushi Hirashima, Hidefumi Harada, Maki Ito, Jun-ya Hayakawa, Takehiko Isobe, Taichi Tokutake, Yousuke Shinkai
  • Patent number: 8969436
    Abstract: A method of producing a molded article by melting a granule at a temperature of 280 to 380° C. and molding it, wherein the granule satisfies the following conditions (I) and (II): (I) when 100 parts by weight of the granule is cleaned with 100 parts by weight of a 1N nitric acid aqueous solution, the amount of an Fe compound eluted into the 1N nitric acid aqueous solution cleaning fluid is 1 to 100 ppb in terms of the Fe atom based on the granule; and (II) the granule comprises (A) 100 parts by weight of a polycarbonate resin (component a) and (B) 0.00010 to 0.5 parts by weight of a specific phosphorous-based compound (component b).
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: March 3, 2015
    Assignee: Teijin Chemicals, Ltd.
    Inventors: Manabu Norimatsu, Tomomitsu Onizawa, Seiichi Tanabe
  • Patent number: 8962117
    Abstract: In one embodiment, a process for producing a bisphenol A product comprises: reacting phenol with acetone in the presence of a sulfur containing promoter to obtain a reaction mixture comprising bisphenol A, phenol, and the promoter; after reacting the phenol with the acetone, cooling to form a crystal stream comprising crystals of bisphenol A and phenol; separating the crystals from the crystal steam; melting the crystals to form a molten stream of bisphenol A, phenol, and sulfur; contacting the molten stream with a base to reduce a sulfur concentration in the molten stream and form a reduced sulfur stream; and removing phenol from the reduced sulfur stream to form a bisphenol A product. Also disclosed herein is a container comprising: a polycarbonate formed from a bisphenol A having a sulfur concentration of 0.5 to 15 ppm based upon the weight of the bisphenol A.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: February 24, 2015
    Assignee: Sabic Global Technologies B.V.
    Inventors: Hatem Abdallah Belfadhel, Johannes de Brouwer, Marcel Vieveen, Christian Wold, Eric Brander
  • Patent number: 8962788
    Abstract: A method for producing a polycarbonate comprising: reacting a diaryl carbonate with a dihydroxy compound to form a polycarbonate, wherein the polycarbonate comprises: less than or equal to 1000 ppb of molybdenum; less than or equal to 33 ppb of vanadium; less than or equal to 33 ppb of chromium; less than or equal to 375 ppb of niobium; less than or equal to 33 ppb of nickel; less than or equal to 10 ppb of zirconium; and less or equal to 10 ppb iron.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 24, 2015
    Assignee: Sabic Global Technologies B.V.
    Inventors: Ignacio Vic Fernandez, Mykhaylo Lyakhovych, Sergio Ferrer Nadal
  • Patent number: 8962787
    Abstract: A method for producing polycarbonate by melt polymerization can comprise: (a) adding acetone, diaryl carbonate, and dihydroxy compound to the melt polymerization unit, wherein the acetone is added to the melt polymerization unit as a mixture with the diaryl carbonate and/or the dihydroxy compound; (b) adding a catalyst to the melt polymerization unit, optionally without separating out acetone prior to the addition of the catalyst; and (c) operating the melt polymerization unit under conditions so that the diaryl carbonate(s) and dihydroxy compound(s); dihydroxy compound reacts with the diaryl carbonate to produce polycarbonate with a desired specification, and a phenol by-product.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: February 24, 2015
    Assignee: Sabic Global Technologies B.V.
    Inventors: Ignacio Vic Fernandez, Fernan Mateos Salvador, Mykhaylo Lyakhovych, Sergio Ferrer Nadal
  • Publication number: 20150042921
    Abstract: An optical-compensation film, an optical-compensation polarizing sheet and a liquid crystal display are disclosed.
    Type: Application
    Filed: June 25, 2013
    Publication date: February 12, 2015
    Inventors: Ki Man Kim, Jaegeon You
  • Publication number: 20150045451
    Abstract: The present invention provides new classes of phenolic compounds derived from hydroxyacids and tyrosol or tyrosol analogues, useful as monomers for preparation of biocompatible polymers, and the biocompatible polymers prepared from these monomeric hydroxyacid-phenolic compounds, including novel biodegradable and/or bioresorbable polymers. These biocompatible polymers or polymer compositions with enhanced bioresorbabilty and processibility are useful in a variety of medical applications, such as in medical devices and controlled-release therapeutic formulations. The invention also provides methods for preparing these monomeric hydroxyacid-phenolic compounds and biocompatible polymers.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 12, 2015
    Inventors: Durgadas Bolikal, Joachim B. Kohn, Lioubov Kabalnova
  • Publication number: 20150024205
    Abstract: A method of producing polycarbonate-based polymer microparticles including forming an emulsion in a system in which a polycarbonate-based polymer (A), a polymer (B) different from the polycarbonate-based polymer (A) and an organic solvent (C) are dissolved and mixed together and which causes phase separation into two phases of a solution phase having the poly-carbonate-based polymer (A) as its main component and a solution phase having the polymer (B) different from the polycarbonate-based polymer (a) as its main component, and contacting a poor solvent for the polycarbonate-based polymer (A) with the emulsion at a temperature of 80° C. or higher to thereby precipitate microparticles of the polycarbonate-based polymer (A).
    Type: Application
    Filed: January 18, 2013
    Publication date: January 22, 2015
    Inventors: Itaru Asano, Hiroshi Takezaki
  • Patent number: 8937146
    Abstract: The polycarbonate resin of the present invention comprises a structural unit derived from a dihydroxy compound represented by a specific formula (1), a structural unit derived from a dihydroxy compound represented by a specific formula (2), and a structural unit derived from a dihydroxy compound represented by any one of specific formulae (3) to (6), wherein the content of structural units derived from dihydroxy compounds represented by the specific formulae (3) to (6) is within a specific range based on the total of structural units derived from dihydroxy compounds in the polycarbonate resin.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: January 20, 2015
    Assignees: Mitsubishi Chemical Corporation, Nitto Denko Corporation
    Inventors: Masashi Yokogi, Shingo Namiki, Tomohiko Tanaka, Nao Murakami
  • Publication number: 20150018510
    Abstract: The present invention relates to a polycarbonate resin having, in the molecule, at least a structural unit represented by the following formula (1), wherein the terminal hydroxyl group concentration of the polycarbonate resin is 300 ppm or less: wherein each of R1 and R2 independently represents a substituted or unsubstituted alkyl group having a carbon number of 1 to 20 or a substituted or unsubstituted aryl group, and X represents a single bond, a carbonyl group, a substituted or unsubstituted alkylidene group, a substituted or unsubstituted sulfur atom, or an oxygen atom.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 15, 2015
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Masahide SHIDOU, Tatsuya Hitomi
  • Patent number: 8932976
    Abstract: An improved method of preparing an ion exchange resin catalyst by partial neutralization of the ion exchange resin catalyst with a promoter. The promoter and a fluid are introduced into a vessel or a reactor which is partially filled with the ion exchange resin catalyst forming an ion exchange resin catalyst bed in the vessel or reactor. The fluid and the promoter are recirculated in an upflow direction at a velocity sufficient to partially fluidize the ion exchange resin catalyst bed and to achieve a rapid uniform distribution of the promoter throughout the catalyst bed.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: January 13, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Thomas C. Young, David R. Brooks
  • Patent number: 8933167
    Abstract: A polyamide comprising (a) a unit comprising adipic acid and hexamethylenediamine and (b) a unit comprising isophthalic acid and hexamethylenediamine, wherein a ratio of the isophthalic acid component to the total carboxylic acid component in the polyamide is 0.05?(x)?0.5 and a range of blocking ratio (Y) is ?0.3?(Y)?0.8. Also provided are compositions comprising 30 to 95% by mass of the above polyamide and 5 to 70% by mass of an inorganic filler.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: January 13, 2015
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yukiyoshi Sasaki, Hiroshi Oyamada, Yasukazu Shikano
  • Patent number: 8927678
    Abstract: A thermoplastic polyimide resin containing a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), a content ratio of the repeating structural unit of formula (2) with respect to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) being from 40 to 70% by mol: wherein R1 represents a divalent group having from 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure; R2 represents a divalent chain aliphatic group having from 5 to 12 carbon atoms; and X1 and X2 each independently represent a tetravalent group having from 6 to 22 carbon atoms containing at least one aromatic ring.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: January 6, 2015
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Yuuki Sato, Jun Mitadera
  • Patent number: 8927680
    Abstract: A molded article produced by molding a coating solution that contains a polycarbonate resin represented by the following formula (1) has excellent transparency, good water repellency and oil repellency, a lower friction coefficient and excellent surface lubricity, having a capability of improving abrasion resistance. In the formula (1), Rf represents a perfluoroalkyl group having 5 or more carbon atoms and 11 or more fluorine atoms or a perfluoroalkyl group having a specific structure; and W represents a divalent group including therein a specific structural unit.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: January 6, 2015
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Hironobu Morishita, Kengo Hirata
  • Patent number: 8927679
    Abstract: The disclosure describes a process to produce toner with tunable gloss levels comprising a stabilizer to freeze particle growth following aggregation, where the stabilizer does not chelate metal ions.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: January 6, 2015
    Assignee: Xerox Corporation
    Inventors: Yulin Wang, Ke Zhou, Tie Hwee Ng, Edward Graham Zwartz, Cuong Vong, Shigang Qiu
  • Patent number: 8921508
    Abstract: In one aspect, the present disclosure encompasses polymerization systems for the copolymerization of CO2 and epoxides comprising 1) a catalyst including a metal coordination compound having a permanent ligand set and at least one ligand that is a polymerization initiator, and 2) a chain transfer agent having two or more sites that can initiate polymerization. In a second aspect, the present disclosure encompasses methods for the synthesis of polycarbonate polyols using the inventive polymerization systems. In a third aspect, the present disclosure encompasses polycarbonate polyol compositions characterized in that the polymer chains have a high percentage of —OH end groups and a high percentage of carbonate linkages. The compositions are further characterized in that they contain polymer chains having an embedded polyfunctional moiety linked to a plurality of individual polycarbonate chains.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 30, 2014
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Geoffrey W. Coates, Anna E. Cherian, Chris A. Simoneau, Alexei A. Gridnev, Jay J. Farmer
  • Publication number: 20140378643
    Abstract: A continuous process for the manufacture of a polycarbonate comprises: combining an aromatic dihydroxy compound stream and a diaryl carbonate stream to form a mixture; controlling a weight or molar ratio of the diaryl carbonate to the aromatic dihydroxy compound by: measuring a sound velocity, Vs, in the mixture at an operating temperature of the controlling step; and determining the weight or molar ratio of the diaryl carbonate to the aromatic dihydroxy compound in the mixture; and adjusting a flow rate of at least one of the aromatic dihydroxy compound stream and the diaryl carbonate stream, if needed, to achieve a desired weight or molar ratio of the diaryl carbonate to the aromatic dihydroxy compound; and polymerizing the aromatic dihydroxy compound and the diaryl carbonate in the presence of a catalyst to produce the polycarbonate.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Inventors: Ignacio Vic Fernandez, Isabel Macian Aviles
  • Patent number: 8916673
    Abstract: The present invention provides a process for producing a liquid crystalline polyester resin, wherein an acetylation reaction and an oligomerization reaction of raw materials are carried out in an acetylation reaction vessel, and then a deacetylation polycondensation of a liquid after the oligomerization reaction is carried out in a polycondensation reaction vessel, wherein the acetylation reaction vessel used is a vessel having an inner wall surface composed of an alloy containing 50% by mass or more of Ni and 10% by mass or more of Mo; and the inner wall surface of the acetylation reaction vessel is divided into three or more band-like zones arrayed in the height direction of the vessel, and the oligomerization reaction is carried out while maintaining the temperatures of each band-like zone in a particular relationship.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: December 23, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Kunihiko Miyauchi, Michiyoshi Matsumoto, Hideyuki Umetsu
  • Publication number: 20140364546
    Abstract: Provided is a polycarbonate resin composition pellet, which has a light transmittance at a wavelength of 380 nm of 97.0% or more when the light transmittance is measured by using a methylene chloride solution having a concentration of 12 g/dL, the solution being charged into a quartz glass cell having an optical path length of 5 cm, and which has a viscosity-average molecular weight (Mv) of from 11,000 to 22,000.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 11, 2014
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Yoshio Okamoto, Takayoshi Tanaka, Masami Takimoto, Yasunobu Yamazaki
  • Patent number: 8907044
    Abstract: The polycarbonate resin of the present invention comprises a structural unit derived from a dihydroxy compound represented by a specific formula (1), a structural unit derived from a dihydroxy compound represented by a specific formula (2), and a structural unit derived from a dihydroxy compound represented by any one of specific formulae (3) to (6), wherein the content of structural units derived from dihydroxy compounds represented by the specific formulae (3) to (6) is within a specific range based on the total of structural units derived from dihydroxy compounds in the polycarbonate resin.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: December 9, 2014
    Assignees: Mitsubishi Chemical Corporation, Nitto Denko Corporation
    Inventors: Masashi Yokogi, Shingo Namiki, Tomohiko Tanaka, Nao Murakami
  • Patent number: 8877304
    Abstract: It is an object of the present invention to provide an optical film which has reverse chromatic dispersibility that its retardation becomes smaller as the wavelength becomes shorter and a low photoelastic constant.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: November 4, 2014
    Assignee: Teijin Chemicals, Ltd.
    Inventors: Tetsuya Motoyoshi, Masatoshi Ando, Makoto Ueno, Akiko Nishijima
  • Patent number: 8865856
    Abstract: A polycarbonate of number average molecular weight from 500 to 10000, glass transition point from 30 to 80° C. and hydroxyl group value of 30 mg KOH/g or less. The use of the polycarbonate in a urethane modified resin used as an ingredient for the production of a toner or a developer. A urethane modified resin obtained by reacting a polymer mixture containing the polycarbonate and a polycondensed resin of glass transition point from 10 to 60° C. and hydroxyl group value from 20 to 100 mg KOH/g with a polyfunctional isocyanate compound wherein the ratio of polycarbonate to polycondensed resin is from 20:80 to 80:20 by weight and the molar ratio of isocyanate groups in the polyisocyanate compound to hydroxyl groups in the polymer mixture is from 0.4 to 1.2:1. A toner for electronic copying containing the urethane modified polycarbonate based resin. A developer containing the toner and optionally a carrier.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: October 21, 2014
    Assignee: BASF SE
    Inventors: Yoshihisa Fujii, Hiroyasu Kanno, Torii Yoshinori, Ema Kenji
  • Patent number: 8865857
    Abstract: A medical device includes a substrate having at least a portion thereof functionalized with at least one reactive member and a chemotactic agent functionalized with at least one complementary reactive member. The at least one reactive member and the at least one complementary reactive member are covalently bonded, adhering the chemotactic agent to the substrate.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: October 21, 2014
    Assignee: Sofradim Production
    Inventors: Sébastien Ladet, Philippe Gravagna
  • Patent number: 8865855
    Abstract: The problem to be solved by the present invention is to provide a polycarbonate copolymer containing a plant-derived raw material, which is excellent in the mechanical strength and heat-resistant and assured of small refractive index, large Abbe number, small birefringence and excellent transparency. The present invention provides a polycarbonate copolymer containing a constitutional unit derived from a dihydroxy compound represented by the following formula (1) and a constitutional unit derived from an alicyclic dihydroxy compound, wherein the Abbe number is 50 or more and the 5% thermal reduction temperature is 340° C. or more; and a method of producing this polycarbonate copolymer by reacting a dihydroxy compound represented by the following formula (1) and an alicyclic hydroxy compound with a carbonic acid diester in the presence of a polymerization catalyst.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: October 21, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Michiaki Fuji, Minako Akita, Tomohiko Tanaka
  • Patent number: 8846858
    Abstract: The disclosure provides a method for alcoholysis of a polycarbonate-containing composition comprising a polycarbonate and a component comprising a phosphorus-containing flame retardant, an acrylonitrile-butadiene-styrene, or a combination of the phosphorus-containing flame retardant and acrylonitrile-butadiene-styrene. The method comprises contacting the composition with a solvent that forms a solution or a filterable suspension of the component but not the polycarbonate; separating the solution or the filterable suspension from the polycarbonate; and heating the polycarbonate in the presence of an alcohol and a catalyst at a temperature from 70° C. to 200° C., and a pressure from 5 mbar to 40 bar for a time sufficient to depolymerize the polycarbonate and produce a dihydroxy aromatic compound and a dialkyl carbonate.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Philip Wesley Bell, Alexander Stanislaus, Venkata Ramanarayanan Ganapathy Bhotla, Rathinam Jothi Mahalingam
  • Patent number: 8841405
    Abstract: A process, thermoset resin, and thermoplastic structures from renewable chemical feedstocks derived from the essential oils from herbs and other plants. The processes for making diphenol products including extracting isomers of 4-methoxyphenylpropene from plant sources, transforming isomers by olefin cross or self-cross olefin metathesis and at least one catalyst to produce dimeric structures having two equivalents of protected phenolic groups, and deprotecting methyl ethers to yield diphenolic products.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: September 23, 2014
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Matthew C. Davis
  • Patent number: 8841404
    Abstract: Polycarbonate compositions having flame retardant properties and improved impact resistance are disclosed, together with methods for preparing the same.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: September 23, 2014
    Assignee: SABIC Global Technologies B.V.
    Inventors: Haseena Aripuram Parakkal, Sriram Krishnamurthy, Wim Steendam, Gautam Chatterjee
  • Publication number: 20140275466
    Abstract: A method for producing a polycarbonate comprising: reacting a diaryl carbonate with a dihydroxy compound to form a polycarbonate, wherein the polycarbonate comprises: less than or equal to 1000 ppb of molybdenum; less than or equal to 33 ppb of vanadium; less than or equal to 33 ppb of chromium; less than or equal to 375 ppb of niobium; less than or equal to 33 ppb of nickel; less than or equal to 10 ppb of zirconium; and less or equal to 10 ppb iron.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Inventors: Ignacio Vic Fernandez, Mykhaylo Lyakhovych, Sergio Ferrer Nadal
  • Patent number: 8829149
    Abstract: Processes for preparing polyester resins as toner production components. The processes include reacting an organic diol and a cyclic alkylene carbonate to produce carbon dioxide (CO2) and a polyalkoxy diol. The carbon dioxide is reacted with an alkylene glycol or alkylene oxide to produce additional cyclic alkylene carbonate having the same chemical structure as the cyclic alkylene carbonate used to produce the polyalkoxy diol. The additional cyclic alkylene carbonate is added with the cyclic alkylene carbonate used to produce the polyalkoxy diol. The polyalkoxy diol can be reacted with an organic diacid or diester in preparing a polyester resin. To prepare a toner, the polyester resin can be contacted with at least one toner production component.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: September 9, 2014
    Assignee: Xerox Corporation
    Inventor: Guerino G. Sacripante
  • Patent number: 8816039
    Abstract: The present invention provides a copolycarbonate that has a low photoelastic constant and has fewer foamed cells and that is in particular suitable for use in optical fields. The present invention is a copolycarbonate containing 10 to 90 mol % of a unit (A) derived from spiroglycol and 90 to 10 mol % of a unit (B) derived from aromatic phenol and having terminals satisfying the following expressions (i) and (ii), 0.0001<(a)/(d)<0.1??(i) 0.02<(b)/(d)<0.8??(ii) wherein (a) is an amount of a terminal group derived from spiroglycol, (b) is an amount of a terminal group derived from aromatic phenol, and (d) is a total terminal group amount.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: August 26, 2014
    Assignee: Teijin Limited
    Inventors: Tetsuya Motoyoshi, Masatoshi Ando, Tsuyoshi Takeda
  • Patent number: 8796401
    Abstract: The present invention relates to a new polymerization process which is suitable for polymerizing high molecular weight products of high viscosity such as polycarbonates and polystyrenes in reasonable time. The present invention achieves the above-identified object by means of a polymerization process, wherein at least in the final stages of the polymerization reaction, two different types of mechanical mixing means are employed as alternatives, designated first and second mixing means. The first mixing means do generate new surfaces in the material to be treated by means of mechanical mixing and by means of gravity driven mixing, while the second mixing means do generate new surfaces in the material to be treated not by means of mechanical mixing and only by means of gravity driven mixing.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: August 5, 2014
    Assignee: Princo Middle East FZE
    Inventor: Yi-Lin Chu
  • Publication number: 20140206826
    Abstract: The present inventions provide a novel polycarbonate copolymer having high fluidity and high molecular weight which is formed of a structural unit derived from an aliphatic diol compound and a structural unit derived from an aromatic dihydroxy compound, having a structure represented by the formula (III): having the content of the structural unit derived from the aliphatic diol compound of 1-30 mol %, having the Q-value (280° C., 160 kg load) in the range from 0.02 to 1.
    Type: Application
    Filed: May 18, 2012
    Publication date: July 24, 2014
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Yoshinori Isahaya, Atsushi Hirashima, Hidefumi Harada, Maki Ito, Jun-ya Hayakawa, Takehiko Isobe, Taichi Toku take, Yousuke Shinkai
  • Patent number: 8785591
    Abstract: The disclosure pertains to amphiphilic block copolymers comprising an aliphatic polycarbonate chain coupled to a hydrophilic polymer. Such amphiphilic polymers may have the formula A-L-B, where A- is a polycarbonate or polyethercarbonate chain having from about 3 to about 500 repeating units, L is a linker moiety and -B is a hydrophilic oligomer having from about 4 to about 200 repeating units. Provided copolymers are useful as surfactants capable of emulsifying aqueous solutions and supercritical carbon dioxide. Provided copolymers also have utility as additives for use in enhanced oil recovery methods.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: July 22, 2014
    Assignee: Novomer, Inc.
    Inventors: Scott D. Allen, Chris A. Simoneau, John M. Salladay, David M. Hatfield, John W. Stevens
  • Publication number: 20140179892
    Abstract: The disclosure provides a method for alcoholysis of a polycarbonate-containing composition comprising a polycarbonate and a component comprising a phosphorus-containing flame retardant, an acrylonitrile-butadiene-styrene, or a combination of the phosphorus-containing flame retardant and acrylonitrile-butadiene-styrene. The method comprises contacting the composition with a solvent that forms a solution or a filterable suspension of the component but not the polycarbonate; separating the solution or the filterable suspension from the polycarbonate; and heating the polycarbonate in the presence of an alcohol and a catalyst at a temperature from 70° C. to 200° C., and a pressure from 5 mbar to 40 bar for a time sufficient to depolymerize the polycarbonate and produce a dihydroxy aromatic compound and a dialkyl carbonate.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Philip Wesley Bell, Alexander Stanislaus, Venkata Ramanarayana Ganapathy Bhotla, Rathinam Jothi Mahalingam
  • Publication number: 20140179889
    Abstract: Elevated temperature electrospinning apparatus comprises a pump upstream of or containing a resistance heater, means to shield applied electrostatic field from the resistance heater, and a temperature modulator for modulating temperature in the spinning region.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: Cornell University
    Inventors: Yong Lak JOO, Huajun ZHOU
  • Patent number: 8748555
    Abstract: The present invention provides articles made from structurally precise poly(propylene carbonate) and blends thereof. Provided articles include articles manufactured from poly(propylene carbonate) wherein the PPC has a high head-to-tail ratio, low ether linkage content, narrow polydispersity and low cyclic carbonate content. Also provided are articles made from, incorporating or coated with structurally precise PPC.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: June 10, 2014
    Assignee: Novomer, Inc.
    Inventor: Scott D. Allen
  • Patent number: 8742057
    Abstract: A polycarbonate resin composition (X), comprises: (A) a polycarbonate resin containing (a) a structural unit derived from a dihydroxy compound having a moiety represented by the following formula (1) in a part of a structure; and (B) an aromatic polycarbonate resin, wherein a reduced viscosity of the aromatic polycarbonate resin (B) is 0.55 dl/g or less, a proportion of the aromatic polycarbonate resin (B) in the polycarbonate resin composition (X) is 30 wt % or more, and a total light transmittance of the polycarbonate resin composition (X) is 90% or less: CH2—O??(1).
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: June 3, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Masashi Yokogi, Haruo Sasaki
  • Patent number: 8735531
    Abstract: A diol from which a resin material having high processability and a high refractive index can be manufactured, a polycarbonate resin and a polyester resin which is a polymer of the diol, and a molded article and an optical element formed of the polymer. The diol is represented by the general formula (1) shown below; the polycarbonate resin and the polyester resin are polymers thereof; and the molded article and the optical element are formed of the polymers, wherein R1 and R2 each independently denote one of a hydrogen atom and an alkyl group having 1 or more and 6 or less carbon atoms; Q denotes one of an oxyethylene group, a thioethylene group and a single bond.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 27, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Katsumoto Hosokawa, Takahiro Kojima, Toshikazu Takata, Kazuko Nakazono, Yasuhiro Kohsaka, Yasuhito Koyama, Toshihide Hasegawa, Ryota Seto
  • Patent number: 8735535
    Abstract: A method for producing a polycarbonate resin comprises a step of performing polycondensation through a transesterification reaction in the presence of a transesterification catalyst by using a dihydroxy compound as a raw material compound and a carbonic acid diester, wherein the dihydroxy compound comprises at least an aliphatic dihydroxy compound having an etheric oxygen atom on a hydroxy group, the raw material compound comprises the specific amount of a nitrogen-containing compound, and the production method of a polycarbonate resin comprises a step of previously heating the aliphatic dihydroxy compound at the specific temperature, holding the compound in the melted state for the specific time, and then mixing the melt with a carbonic acid diester.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 27, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Shingo Namiki, Masanori Yamamoto