Imide-containing Reactant Patents (Class 528/322)
  • Publication number: 20130217753
    Abstract: The invention provides amphiphilic macromolecules that are useful for delivering nucleic acids to cells and that are useful as delivery agents for gene therapy.
    Type: Application
    Filed: March 13, 2013
    Publication date: August 22, 2013
    Applicant: Rutgers, the State University of New Jersey
    Inventor: Rutgers, the State University of New Jersey
  • Patent number: 8513375
    Abstract: The invention is directed to maleimide thermosets incorporating imide-extended mono-, bis-, or polymaleimide compounds. These imide-extended maleimide compounds are prepared by the condensation of appropriate anhydrides with appropriate diamines to give amine terminated compounds. These compounds are then condensed with excess maleic anhydride to yield imide-extended maleimide compounds.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: August 20, 2013
    Inventors: Farhad G Mizori, Stephen M Dershem
  • Patent number: 8507100
    Abstract: The invention aims to provide a resin primer which can stick an insulator layer to a conductor foil whereof the surface is not much roughened with sufficient adhesive force, a conductor foil with resin, a laminated sheet and a method of manufacturing same. The resin primer of the invention comprises a resin having film-forming ability and a breaking energy of 0.15 J or more. The conductor foil with resin of the invention comprises a resin layer comprising a conductor foil and the aforesaid resin primer. Further, the laminated sheet of the invention comprises the conductor foil, an insulating layer disposed facing the conductor foil, and a resin layer comprising the aforesaid resin primer disposed between the conductor foil and insulating layer so that it is in contact therewith. This laminated sheet can be manufactured by heating and pressurizing a laminate comprising the aforesaid conductor foil with resin, and a prepreg laminated on this resin layer.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: August 13, 2013
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Kenji Tanaka, Kazumasa Takeuchi, Nobuyuki Ogawa, Katsuyuki Masuda
  • Publication number: 20130189622
    Abstract: A block copolymer of a polyimide and a polyamic acid is disclosed. Further disclosed are a method for producing the block copolymer and a positive type photosensitive composition comprising the block copolymer. The solubility of the photosensitive composition in an alkaline aqueous solution is controlled to achieve high resolution of a pattern. Further disclosed are a protective film of a semiconductor device and an ITO insulating film of an organic light emitting diode (OLED), which are formed using the block copolymer. The protective film and the ITO insulating film are very stable over time.
    Type: Application
    Filed: March 12, 2013
    Publication date: July 25, 2013
    Applicant: LG CHEM, LTD.
    Inventor: LG CHEM, LTD.
  • Patent number: 8492506
    Abstract: An object of the present invention, which was made to solve the problems above, is to provide a polyimide precursor resin composition superior in transparency allowing reduction of the residual volatile material rate during molding and giving a polyimide resin composition (e.g., polyimide film) superior in mechanical properties and transparency even when a cheaper polyamide-imide is used.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: July 23, 2013
    Assignee: Unitika Ltd.
    Inventors: Takeshi Yoshida, Akira Shigeta, Yoshiaki Echigo
  • Patent number: 8487064
    Abstract: Disclosed herein are polymer compounds and a method for preparing thereof. More specifically, provided are polymer compounds with well-connected, narrow size distribution free-volume element and a method for preparing the polymer compounds by thermal rearrangement for aromatic polyimides containing ortho-positioned functional groups in the solid state.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: July 16, 2013
    Assignee: Industry-University Cooperation Foundation, Hanyang University
    Inventors: Young Moo Lee, Ho-Bum Park, Chul-Ho Jung, Sang-Hoon Han
  • Patent number: 8481672
    Abstract: The present invention relates generally to mercaptofunctional high ?? EO chromophores and EO polymers, and particularly to mercaptofunctional high ?? EO chromophores and EO polymers useful for making electro-optical devices and systems. Mercaptofunctional high ?? EO chromophores are covalently bonded to poly(imido sulfide) polymers producing high Tg, low optical loss, covalently bonded, high ?? EO chromophore containing polymers. Methods of synthesizing these EO materials using mild polymerization conditions are also described.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: July 9, 2013
    Assignee: Corning Incorporated
    Inventors: Mingqian He, Jianguo Wang
  • Publication number: 20130172518
    Abstract: Disclosed is a flexible maleimide polymer. The flexible maleimide polymer includes a reaction product of reactants (a)-(c). The reactant (a) is maleimide, a compound with a structure represented by Formula (I), a compound with a structure represented by Formula (II), or combinations thereof wherein R1 is —(CH2)10—CO2H, and R2 is H, OH, SO3Na, NO2, CN or CO2H. The reactant (b) is a compound with a structure represented by formula (III) wherein A is R3 is H or methyl group, x is between 1-12, R4 is H or methyl group, and y and z are both between 1-5. The reactant (c) is a compound with a structure represented by formula (IV), or a compound with a structure represented by formula (V) wherein R5 and R6 are independent H or C1-4 alkyl group.
    Type: Application
    Filed: July 16, 2012
    Publication date: July 4, 2013
    Inventors: Li-Fu HUANG, Li-Duan TSAI, Wei-Hsin WU
  • Publication number: 20130172509
    Abstract: Microfabricated particles are dispersed throughout a matrix to create a composite. The microfabricated particles are engineered to a specific structure and composition to enhance the physical attributes of a composite material. The microfabricated particles are generated by forming a profile extrudate. A profile extrudate is an article of indefinite length that has a cross sectional profile of a desired structure with micro-scale dimensions. Upon or after formation, the profile extrudate may be divided along its length into a plurality of microfabricated particles.
    Type: Application
    Filed: September 20, 2011
    Publication date: July 4, 2013
    Applicant: Interfacial Solutions IP, LLC
    Inventors: Adam R. Pawloski, Jeffrey Jacob Cernohous
  • Publication number: 20130102755
    Abstract: Product containing epichlorohydrin and at least one alkyl glycidyl ether in an amount of less than 0.1 g/kg of product. Use of the product containing epichlorohydrin in the manufacture of epoxy resins, of glycidyl ethers, of glycidyl esters, of glycidyl amides, of glycidyl imides, of products that will be used in food and drink applications, of cationization agents, and of flame retardants, of products which will be used as detergent ingredient and of epichlorohydrin oligomers.
    Type: Application
    Filed: December 10, 2012
    Publication date: April 25, 2013
    Applicant: SOLVAY SA
    Inventor: Solvay SA
  • Patent number: 8420768
    Abstract: Higher diamondoid derivatives capable of taking part in polymerization reactions are disclosed as well as intermediates to these derivatives, polymers formed from these derivatives and methods for preparing the polymers.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: April 16, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Jeremy E. Dahl, Robert M. Carlson, Shenggao Liu
  • Patent number: 8420771
    Abstract: Provided are a new pH-sensitive co-polymer prepared from polyethylene oxide and a method of preparing the same. The polyethylene oxide co-polymer includes repeating units expressed by the Chemical Formulas 1 and 2, and further includes at least one of repeating units expressed by the Chemical Formulas 3 through 6.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: April 16, 2013
    Inventors: Jung-Ahn Kim, Hyun-Oh Yoo
  • Patent number: 8389631
    Abstract: The present invention is a thermosetting bismaleimide resin system comprising a liquid phase and a solid phase where the non-crystallizing liquid phase contains the curing agents diallyl ether of a substantially aromatic radical and a bis(alkenylphenoxy) ether of a substantially aromatic radical along with a substantially aromatic bismaleimide as a particle slurry and optionally a free radical inhibitor. The curing agents are non-crystallizing compositions for use in bismaleimide resin formulations to increase the thermal durability of a cured resin composite as shown by reduced microcracking as measured by reduced weight loss after thermal aging. The present invention resists microcracking over bismaleimide resin systems which incorporate other curing agents or combinations of curing agents. The present invention further provides a bismaleimide resin formulation suitable to make prepregs with reduced crystallization for reduced viscosity supporting improved manufacturing properties and improved tack.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: March 5, 2013
    Assignee: Cytec Technology Corp.
    Inventors: Christopher Bongiovanni, Jack Boyd, Christopher Pederson
  • Patent number: 8366804
    Abstract: The present invention discloses a new type of polyimide membranes including hollow fiber and flat sheet membranes with high permeances for air separations and a method of making these membranes. The new polyimide hollow fiber membranes have O2 permeance higher than 300 GPU and O2/N2 selectivity higher than 3 at 60° C. under 308 kPa for O2/N2 separation. The new polyimide hollow fiber membranes also have CO2 permeance higher than 1000 GPU and single-gas selectivity for CO2/CH4 higher than 20 at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: February 5, 2013
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Raisa Minkov, Syed A. Faheem, Travis C. Bowen, Jeffrey J. Chiou
  • Publication number: 20130029049
    Abstract: A polyimide copolymer represented by formula (I) or formula (II) is provided. In formula (I) or formula (II), B is a cycloaliphatic group or aromatic group, A is an aromatic group, R is hydrogen or phenyl, and m and n are 20-50. The invention also provides a method for fabricating a patterned metal oxide layer.
    Type: Application
    Filed: December 23, 2011
    Publication date: January 31, 2013
    Inventors: Jhy-Long JENG, Jeng-Yu TSAI, Shur-Fen LIU, Chin-Ching LIN, Yu-Chun CHEN, Wen-Ching SUN, Jinn-Shing KING
  • Patent number: 8361555
    Abstract: This invention relates to hydroxy alkyl isocyanurates, coating compositions comprising hydroxy alkyl isocyanurates and methods for producing hydroxy alkyl isocyanurates. Dried and cured coating compositions containing the hydroxy alkyl isocyanurates provide excellent durability, gloss and distinctness of image.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: January 29, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventor: Donald Albert Paquet, Jr.
  • Patent number: 8350002
    Abstract: A process is provided for producing an ethylene/vinyl alcohol copolymer by which impurities such as catalyst residue and by-products and solvent are removed to a high degree. A high-quality, homogeneous product can be efficiently produced by including a washing step including: introducing a paste containing an ethylene/vinyl alcohol copolymer and an alcohol into a washing tank; applying a shear force to the paste to knead the paste while contacting the paste with washing water so that a surface of the paste is repeatedly displaced by an inner part thereof; and discharging the alcohol to an outside of the tank together with the washing water to obtain a water-containing ethylene/vinyl alcohol copolymer composition having a small alcohol content.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: January 8, 2013
    Assignee: The Nippon Synthetic Chemical Industry Co., Ltd.
    Inventors: Keisuke Fujimura, Nobuaki Sato, Satoshi Matsunuma, Yasufumi Beniya
  • Publication number: 20130004901
    Abstract: Organic coating compositions, particularly antireflective coating compositions, are provided that comprise that comprise a component that comprises one or more uracil moieties. Preferred compositions of the invention are useful to reduce reflection of exposing radiation from a substrate back into an overcoated photoresist layer and/or function as a planarizing, conformal or via-fill layer.
    Type: Application
    Filed: December 30, 2011
    Publication date: January 3, 2013
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Owendi ONGAYI, Vipul JAIN, Suzanne COLEY, Anthony ZAMPINI
  • Publication number: 20130004893
    Abstract: Organic coating compositions, particularly antireflective coating compositions, are provided that comprise that comprise a component that comprises one or more parabanic acid moieties. Preferred compositions of the invention are useful to reduce reflection of exposing radiation from a substrate back into an overcoated photoresist layer and/or function as a planarizing, conformal or via-fill layer.
    Type: Application
    Filed: December 30, 2011
    Publication date: January 3, 2013
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Vipul Jain, Owendi Ongayi, Suzanne Coley, Anthony Zampini
  • Patent number: 8338561
    Abstract: Polyamide having a melting point between 330° C. and 370° C., said polyamide comprising: a diamine component (a) comprising between 0 and 55 mole %, based on the total number of moles of the diamine component (a), of at least one aliphatic diamine having more than 6 carbon atoms, and between 45 and 100 mole %, based on the total number of moles of the diamine component (a), of at least one aliphatic diamine having at most 6 carbon atoms, and a dicarboxylic acid component (b) comprising more than 50 mole %, based on the total number of moles of the dicarboxylic acid component (b), of terephthalic acid, with the exception of a certain specific polyamide (P*).
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: December 25, 2012
    Assignee: Solvay Advanced Polymers, L.L.C.
    Inventors: Dale R. Warren, Nancy Singletary, Mark G. Reichmann
  • Patent number: 8329387
    Abstract: The present invention relates to an antireflective coating composition comprising a novel polymer without an aromatic chromophore, where the polymer comprises a structural unit derived from an aminoplast and a structural unit derived from a diol, triol, dithiol, trithiol, other polyols, diacid, triacid, other polyacids, diimide or mixture thereof, where the diol, dithiol, triol, trithiol, diacid, triacid, diimide, diamide or imide-amide optionally contain one or more nitrogen and/or sulfur atoms or contain one or more alkene groups. The invention also relates to the novel polymer and a process for using the novel antireflective coating composition in a lithographic process.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: December 11, 2012
    Assignee: AZ Electronic Materials USA Corp.
    Inventors: Huirong Yao, Guanyang Lin, Jian Yin, Hengpeng Wu, Mark Neisser, Ralph Dammel
  • Patent number: 8304511
    Abstract: The present invention is directed a method comprising administering a composition to an individual, wherein the composition comprises a plurality of conjugates, each conjugate in the plurality a protein derivatized with a water-soluble polymer, wherein the polymer is coupled to the protein via succinimide groups covalently attached to either cysteine sulfhydryl groups or lysine amino groups, and substantially all of the succinimide groups present in the composition are present in a ring-opened form.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: November 6, 2012
    Assignee: Nektar Therapeutics
    Inventors: Antoni Kozlowski, Remy F. Gross, III, Samuel P. McManus
  • Patent number: 8293369
    Abstract: An intermediate transfer media, such as a belt, that includes a fluoropolyimide polymer.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: October 23, 2012
    Assignee: Xerox Corporation
    Inventors: Jin Wu, Yu Qi, Nan-Xing Hu, Yuhua Tong
  • Publication number: 20120255854
    Abstract: Internal components of plasma reactors are composed of a toleratable, ceramic filled plasma-useful polymer such as a high temperature engineering thermoplastic, preferably a polyamideimide. The parts exhibit a low erosion rate upon exposure to plasma at low pressure.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Applicant: QUADRANT EPP AG
    Inventors: Scott Howard Williams, Richard William Campbell, Stephan Glander
  • Publication number: 20120248379
    Abstract: An intermediate transfer member includes a poly(amic acid amideimide), or a mixture of a poly(amic acid amideimide), a phosphate ester, an optional polysiloxane, and an optional conductive filler component.
    Type: Application
    Filed: March 29, 2011
    Publication date: October 4, 2012
    Applicant: XEROX CORPORATION
    Inventors: Jin WU, Jonathan H. HERKO, Francisco J. LOPEZ, Kyle B. TALLMAN, Michael S. ROETKER, David W. MARTIN, Brian P. GILMARTIN
  • Publication number: 20120237771
    Abstract: A process for producing fine particles of polyamide-imide resin includes a dissolution step and a precipitation step wherein the dissolution step is selected from steps (a1) and (b1); (a1) polyamide-imide resin is dissolved in an organic solvent to prepare a polyamide-imide resin solution A1 having a polyamide-imide resin content of less than 5 mass %; and (b1) polyamide-imide resin is dissolved in an organic solvent to prepare a polyamide-imide resin solution B1 having a polyamide-imide resin content of less than 10 mass %, and the precipitation step is selected from (a2) the polyamide-imide resin solution A1 is added to a solvent that is virtually free from surface active agents and able to precipitate fine particles of the polyamide-imide resin to cause precipitation of fine particles of the polyamide-imide resin, and (b2) the polyamide-imide resin solution B1 is subjected to flash crystallization to cause precipitation of fine particles of the polyamide-imide resin.
    Type: Application
    Filed: October 6, 2010
    Publication date: September 20, 2012
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Hiroaki Akasaka, Takae Ono, Toshiya Takahashi
  • Publication number: 20120225926
    Abstract: The invention provides amphiphilic macromolecules that are useful for delivering nucleic acids to cells and that are useful as delivery agents for gene therapy.
    Type: Application
    Filed: February 22, 2012
    Publication date: September 6, 2012
    Inventors: Kathryn E. Uhrich, Sarah M. Sparks, Li Gu, Alex Harmon, Charles M. Roth, Carolyn Waite
  • Patent number: 8247523
    Abstract: Disclosed herein is a method for producing a purified 2-aryl-3,3-bis(4-hydroxyaryl) phthalimidine of formula (I) wherein R1 is hydrogen or a C1-25 hydrocarbyl group and R2 is a hydrogen, a C1-25 hydrocarbyl group, or a halogen, and wherein the method comprises dissolving a crude phthalimidine compound in an aqueous base solution; precipitating the dissolved, crude phthalimidine compound from the aqueous base solution by adding an acid in an amount effective to lower the pH of the solution to 9.0 to 12.0, to provide a semicrude phthalimidine compound; and isolating the semicrude phthalimidine compound from the aqueous base solution, to provide the purified 2-aryl-3,3-bis(4-hydroxyaryl)phthalimidine of formula (I), and having a phenolphthalein compound content of less than 2,500 ppm, based on the weight of the purified 2-aryl-3,3-bis(4-hydroxyaryl)phthalimidine.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: August 21, 2012
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Venkata Rama Narayanan Ganapathy Bhotla, Balakrishnan Ganesan, Kishan Gurram, Salkod Parameshwar Mallika, Kumar Arun Satyanarayana, Swaminathan Shubashree
  • Publication number: 20120172540
    Abstract: Disclosed is a liquid crystal alignment agent that includes a polymer including polyamic acid including a repeating unit represented by the following Chemical Formula 1, polyimide including a repeating unit represented by the following Chemical Formula 2, or a combination thereof. In Chemical Formulae 1 and 2, X1, X2, Y1 and Y2 are the same as defined in the detailed description.
    Type: Application
    Filed: September 21, 2011
    Publication date: July 5, 2012
    Applicant: CHEIL INDUSTRIES INC.
    Inventors: Jae-Deuk YANG, Eun-Ha KIM, Myoung-Youp SHIN, Yong-Sik YOO, Guk-Pyo JO, Jung-Gon CHOI
  • Publication number: 20120131757
    Abstract: The present invention intends to provide a particle removing member of a substrate processing equipment which can be assuredly conveyed into the substrate processing equipment and can conveniently and assuredly remove an adhered foreign matter, and a particle removing method of a substrate processing equipment that uses the particle removing member.
    Type: Application
    Filed: January 3, 2012
    Publication date: May 31, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Koichi HASHIMOTO, Yoshio OTA
  • Patent number: 8187788
    Abstract: Disclosed is a photosensitive resin composition comprising an alkali-soluble resin, wherein the dissolution rate of the alkali-soluble resin in an aqueous sodium carbonate solution is not less than 0.04 ?m/sec. When a photosensitive layer having a thickness of 30 ?m is formed by applying the photosensitive resin composition onto a base and removing the solvent by heating, and thus-obtained photosensitive layer is irradiated with an active ray of 1000 mJ/cm2 or less, the dissolution rate of the portion irradiated with the active ray in the photosensitive layer made of the photosensitive resin composition is not less than 0.22 ?m/sec and the film residual rate of the portion not irradiated with the active ray is not less than 90%.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: May 29, 2012
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Kuon Miyazaki, Takashi Hayakawa
  • Publication number: 20120115333
    Abstract: A polybenzoxazole precursor is represented by the following formula (1): wherein R1a to R4a, R1b to R4b, X1, Y1 and m are defined in the specification.
    Type: Application
    Filed: January 18, 2012
    Publication date: May 10, 2012
    Applicant: FUJIFILM CORPORATION
    Inventors: Kenichiro SATO, Tsukasa YAMANAKA
  • Publication number: 20120108785
    Abstract: Methods for preparing a poly(ether carbonates) of the formula HO—[(CH2CH2—O)n—CO2]m—(CH2CH2—O)n—H are provided. The method comprises polymerizing an activated oligomer of the formula of H—O—(CH2CH2—O)n—CO2-Z, where Z is reactive leaving group.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 3, 2012
    Applicant: Nektar Therapeutics
    Inventors: J. Milton Harris, Michael David Bentley, Xuan Zhao, Xiaoming Shen
  • Patent number: 8158746
    Abstract: The invention provides an active energy ray curable liquid composition containing a compound having a bonding group represented by a general formula (I), and a liquid cartridge. ([A] in the formula (I) is a cyclic group represented by a general formula (II), [Y] in the formula (II) is a cyclic linking group having a carbonyl group and a site containing an unsaturated carbon bond adjacent to the carbonyl group, and E in the formula (I) is a bonding group having at least one amide bond and at least one of divalent organic groups which may be substituted.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: April 17, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kenji Shinjo
  • Publication number: 20120071627
    Abstract: PEG and related polymer derivatives having weak, hydrolytically unstable linkages near the reactive end of the polymer are provided for conjugation to drugs, including proteins, enzymes, small molecules, and others. These derivatives provide a sufficient circulation period for a drug-PEG conjugate, followed by hydrolytic breakdown of the conjugate and release of the bound molecule. In some cases, drugs that demonstrate reduced activity when permanently coupled to PEG maintain a therapeutically suitable activity when coupled to a degradable PEG in accordance with the invention. The PEG derivatives of the invention can be used to impart improved water solubility, increased size, a slower rate of kidney clearance, and reduced immunogenicity to a conjugate formed by attachment thereto. Controlled hydrolytic release of the bound molecule into an aqueous environment can then enhance the drug's delivery profile by providing a delivery system which employs such polymers and utilizes the teachings provided herein.
    Type: Application
    Filed: November 30, 2011
    Publication date: March 22, 2012
    Applicant: Nektar Therapeutics
    Inventor: J. Milton Harris
  • Publication number: 20120070769
    Abstract: There is disclosed an intermediate transfer member that includes a layer of a poly(imide-carbonate) copolymer having dispersed therein conductive particles. The layer can be a surface layer.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 22, 2012
    Applicant: XEROX CORPORATION
    Inventors: Yu Qi, Nan-Xing Hu, Jin Wu
  • Publication number: 20120059119
    Abstract: To provide a thermosetting polyimide resin composition that can provide a cured product which generates a small amount of decomposition gas even when exposed to, for example, a high-temperature environment of about 250° C., and which exhibits high heat resistance, high durability, favorable flexibility, and favorable adhesive property; a cured product produced from the thermosetting polyimide resin composition; and an adhesive produced from the thermosetting polyimide resin composition. The thermosetting polyimide resin composition containing (a) a polyimide produced through reaction between a tetracarboxylic acid component containing a tetracarboxylic dianhydride and/or a tetracarboxylic acid, and a diamine; and (b) a maleimide composition containing at least one polymaleimide compound represented by any of formulas (4-1) to (4-3).
    Type: Application
    Filed: May 6, 2010
    Publication date: March 8, 2012
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Tsuyoshi Bito, Jitsuo Oishi, Shuto Kihara
  • Patent number: 8119754
    Abstract: Room temperature curing structural adhesive compositions including polyurethane oligomers having multi-methacrylate functionality, cycloalkylmethacrylate, at least one maleimide-functionalized compound and a cure system are disclosed. These compositions exhibit enhanced high temperature properties, including hot strength, heat/humidity strength, and heat aging strength, without compromising initial tensile strength and fixture speeds and still possessing a room temperature cure.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: February 21, 2012
    Assignee: Henkel Corporation
    Inventors: Susan Lamtroung Levandoski, Christopher J. Verosky, Brian M. Czabaj
  • Patent number: 8114387
    Abstract: Copolymers having linked internal polyether blocks and internal polyamide blocks have advantageous physical properties and solvent-gelling abilities. The copolymer may be prepared from a reaction mixture that contains 1,4-cyclohexane dicarboxylic acid (CHDA) and poly(alkyleneoxy) diamine (PAODA). Optionally, the reaction mixture contains no monofunctional compound reactive with either amine or carboxylic acid groups, however some of this monofunctional compound may be present. Dimer diamine and/or dimer acid may be present in the reaction mixture. A copolymer may also be prepared from a reaction mixture containing dimer acid and at least two diamine compound(s) including PAODA and short-chain aliphatic diamine having 2-6 carbons (SDA), wherein: a) the reaction mixture comprises x grams of PAODA and y grams of SDA, and x/(x+y) is 0.8-0.98; b) the reaction mixture weighs z grams, and x/z is at least 0.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: February 14, 2012
    Assignee: Arizona Chemical Company, LLC
    Inventor: Mark S. Pavlin
  • Patent number: 8104148
    Abstract: The invention provides a kind of prepolymer with 4-(N-maleimide phenyl)Ether (MPGE) epoxy resin and 4,4?-diphenylmethane bismaleimide (BMI) as reactants, with free radical initiator leading to reaction in solvents, and adding inhibitor after reaction, with the mole ratio of 0.05-0.5 for BMI and MPGE; the initiator usage is 0.01%-0.15% of mole total for reactant monomers; the solvent usage is 50%-70% of the total weight of the reactants; the inhibitor usage is half to double of mole amount of the initiator used. This kind of prepolymer can be used to produce high-performance thermosetting resin composition corresponding to the packaging requirements for electronic components and Integrated Circuits (IC).
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: January 31, 2012
    Assignees: Iteq (Dongguan) Corporation, Iteq Corporation
    Inventors: Yufang He, Lijun Su
  • Patent number: 8088365
    Abstract: PEG and related polymer derivatives having weak, hydrolytically unstable linkages near the reactive end of the polymer are provided for conjugation to drugs, including proteins, enzymes, small molecules, and others. These derivatives provide a sufficient circulation period for a drug-PEG conjugate, followed by hydrolytic breakdown of the conjugate and release of the bound molecule. In some cases, drugs that demonstrate reduced activity when permanently coupled to PEG maintain a therapeutically suitable activity when coupled to a degradable PEG in accordance with the invention. The PEG derivatives of the invention can be used to impart improved water solubility, increased size, a slower rate of kidney clearance, and reduced immunogenicity to a conjugate formed by attachment thereto. Controlled hydrolytic release of the bound molecule into an aqueous environment can then enhance the drug's delivery profile by providing a delivery system which employs such polymers and utilizes the teachings provided herein.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: January 3, 2012
    Assignee: Nektar Therapeutics
    Inventor: J. Milton Harris
  • Publication number: 20110313126
    Abstract: A liquid crystal alignment agent includes a polymer and an organic solvent for dissolving the polymer. The polymer contains a repeating structural unit represented by the following formula (I): wherein each of P and Q is a divalent organic group. The liquid crystal alignment agent has a viscosity in the range from 5 to 40 cps at 25° C. A liquid crystal alignment film made of the liquid crystal alignment agent and a liquid crystal display element including the liquid crystal alignment film are also disclosed.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 22, 2011
    Applicant: CHI MEI CORPORATION
    Inventor: Huai-Pin HSUEH
  • Publication number: 20110290112
    Abstract: The present invention discloses a new type of polyimide membranes including hollow fiber and flat sheet membranes with high permeances for air separations and a method of making these membranes. The new polyimide hollow fiber membranes have O2 permeance higher than 300 GPU and O2/N2 selectivity higher than 3 at 60° C. under 308 kPa for O2/N2 separation. The new polyimide hollow fiber membranes also have CO2 permeance higher than 1000 GPU and single-gas selectivity for CO2/CH4 higher than 20 at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Raisa Minkov, Syed A. Faheem, Travis C. Bowen, Jeffrey J. Chiou
  • Patent number: 8067527
    Abstract: A polyamic acid comprising at least 10 mol % repeating units represented by the formula [1] or [2]; and a polyimide represented by the formula [3] or [4] which is obtained from the polyamic acid. A polyimide film having high heat resistance and satisfactory in light-transmitting properties and tensile strength is obtained from the polyamic acid. (In the formulae, R1 and R2 each independently represents hydrogen or C1-10 alkyl; R3 and R4 each independently represents hydrogen, halogeno, C1-10alkyl, or phenyl or the R3 and R4 on adjoining carbon atoms are bonded to each other to form C3-8 cycloalkyl or phenyl; R5 represents a divalent organic group; and n is an integer of 2 or larger.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: November 29, 2011
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Hideo Suzuki, Takayuki Tamura, Yoshikazu Ootsuka
  • Patent number: 8058358
    Abstract: The invention provides hyper-branched polymer manufactured by adding a bismaleimide and a barbituric acid into a Brönsted base solution and reacting the mixture at 20 to 100° C. The formation may further include maleimide monomer and/or multi-maleimide monomer to modify the hyper-branched polymer properties. In addition, the barbituric acid is added to the reaction in a batch not initially charged with other reactants in a one-pot.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: November 15, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Pin Pan, Tsung-Hsiung Wang
  • Publication number: 20110267739
    Abstract: A polyimide resin is provided. The polyimide resin comprises the reaction product of a polyimide resin and an amine comprising a C1-10 hydrocarbon substituted with CN, F, SO2, SO, S, SO3, SO3?, PO, PO2H, PO3H, PO2?, PO3?2, CO, CO2?, CO2H, CONH, CONH2, NHCOHN, OCONH, OCO2, N, NH, NH2, NO2, CSNH, CSNH2, NHCSNH, OTi(OR4)3, or OSi(OR4)3 or combinations of these, wherein R4 is a C1-10 aliphatic or aromatic hydrocarbon. The resin may be used to provide a thin film that in turn, may advantageously be used to form, wholly or in part, articles such as capacitors, sensors, batteries, flexible printed circuit boards, keyboard membranes, motor/transformer insulations, cable wrappings, industrial tapes, interior coverage materials, and the like. In particular, a capacitor comprising the thin film and methods of making the same are also provided.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Gary William Yeager, Norberto Silvi, Patricia Chapman Irwin, Robert Colin McTigue
  • Patent number: 8044168
    Abstract: Disclosed is an aqueous binder composition for mineral fibers that comprises a water-soluble binder component produced by reacting, in one or more steps, at least one alkanolamine, at least one carboxylic anhydride and at least one polyalkylene glycol component selected from polyalkylene glycols, copolymers and derivates thereof and, optionally, treating the reaction product with a base.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: October 25, 2011
    Assignee: Rockwool International A/S
    Inventor: Mads Gudik-Sorensen
  • Patent number: 8034893
    Abstract: A resin solution composition comprising (A) a polyamic acid resin, (B) an alkoxysilyl-containing polyamic acid resin, and (C) an organic solvent cures into a product that has good substrate adhesion and heat resistance and is effective in forming a protective film on a semiconductor device prior to encapsulation with epoxy resin molding material (molding compound) in that it overcomes the chip cracking and thermal deterioration problems of semiconductor packages by thermal stress.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: October 11, 2011
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hideki Akiba, Toshio Shiobara
  • Publication number: 20110244247
    Abstract: An intermediate transfer media, such as a belt, that includes a fluoropolyimide polymer.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: XEROX CORPORATION
    Inventors: Jin Wu, Yu Qi, Nan-Xing Hu, Yuhua Tong
  • Patent number: 8013103
    Abstract: Disclosed herein are polymer compounds, a method for preparing thereof. More specifically, provided are polymer compounds with well-connected, narrow size distribution free-volume element and a method for preparing the polymer compounds by thermal rearrangement for aromatic polyimides containing ortho-positioned functional groups in the solid state.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: September 6, 2011
    Assignee: Industry-University Cooperation Foundation, HANYANG UNIVERSITY
    Inventors: Young-Moo Lee, Sang-Hoon Han, Chul-Ho Jung, Ho-Bum Park