Silicon Reactant Contains An Ethylenically Unsaturated Group Patents (Class 528/32)
  • Publication number: 20130109824
    Abstract: The present invention relates to a method for preparing poly(organic oxidized silicon) particles having UV-absorbing groups, including reacting an organoalkoxysilane precursor having a UV-absorbing group selected from a group consisting of organotrialkoxysilane, diorganoalkoxysilane and a mixture thereof, in the presence of a base, with a silane compound selected from a group consisting of tetraalkoxysilane, alkyltrialkoxysilane, tetraalkoxysilane, aryltrialkoxysilane, dialkyldialkoxysilane, diaryldialkoxysilane, arylalkyldialkoxysilane and a mixture thereof, serving as a crosslinking regulator and UV stability enhancer, so as to prepare poly(organic oxidized silicon) particles selected from a group consisting of polysilsesquioxane, silsesquioxane-siloxane copolymer, silsesquioxane-silica copolymer, silsesquioxane-siloxane-silica copolymer and silsesquioxane-siloxane copolymer, having UV-absorbing groups.
    Type: Application
    Filed: July 15, 2011
    Publication date: May 2, 2013
    Applicant: NANO AND MICRO TECHNOLOGIES CO., LTD.
    Inventors: Young Baek Kim, Goo Jin Jeong, In Whan Kim
  • Publication number: 20130105772
    Abstract: A semiconductor device containing a novel cyclosiloxane polymer showing electroconductivity or semiconductivity has a charge transport layer comprising a plasma polymer containing structural units (A) each having a transition metal as a central metal and structural units (B) each situated between structural units (A) adjacent to each other and having a cyclosiloxane skeleton. The charge transport layer is formed by plasma polymerization of an organic metal compound having the transition metal as the central metal and the cyclosiloxane compound in a reactor.
    Type: Application
    Filed: October 24, 2012
    Publication date: May 2, 2013
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Renesas Electronics Corporation
  • Patent number: 8431670
    Abstract: Silsesquioxane polymers, silsesquioxane polymers in negative tone photo-patternable dielectric formulations, methods of forming structures using negative tone photo-patternable dielectric formulations containing silsesquioxane polymers, and structures made from silsesquioxane polymers.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: April 30, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert David Allen, Phillip Joe Brock, Blake W. Davis, Qinghuang Lin, Robert Dennis Miller, Alshakim Nelson, Ratnam Sooriyakumaran
  • Patent number: 8425711
    Abstract: To provide a glass substrate with protective glass which suppresses formation of microscopic scratches on the back surface of the glass substrate in the production process for a display device, and which prevents a strength decrease in the process or formation of etch pits after a chemical etching treatment; a process for producing a display device by using the glass substrate with protective glass; and a double-sided removable resin sheet for the glass substrate with protective glass. A glass substrate with protective glass, which comprises a glass substrate and a protective glass plate laminated on each other, and which is characterized in that the glass substrate and the protective glass plate are laminated by a double-sided removal resin sheet.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: April 23, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Toshihiko Higuchi, Satoru Takaki
  • Patent number: 8426506
    Abstract: Addition-crosslinkable silicone compositions having high adhesion, rapid curing, and reduced odor and extractables contain a silylated citric acid.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: April 23, 2013
    Assignee: Wacker Chemie AG
    Inventors: Johann Mueller, Markus Merget, Klaus Schnitzer
  • Patent number: 8420762
    Abstract: The present invention provides a silicone resin composition comprising (A) an organopolysiloxane having at least two alkenyl groups, (B) an organohydrogenpolysiloxane having at least two hydrogen atoms each bonded to a silicon atom, (C) a catalyst comprising a platinum group metal, (D) fine silicone particles, and (E) a (meth)acrylate compound. The present silicone resin composition cures in a short time to form a cured product having excellent adhesion strength with solder resists and copper substrates.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: April 16, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Tsutomu Kashiwagi
  • Patent number: 8420712
    Abstract: To provide a silicone impression material having high viscosity of a kneaded material before curing and low hardness after curing. A dental silicone impression material composition includes: A) an organopolysiloxane mixture comprising a) an organopolysiloxane having at least two aliphatic unsaturated hydrocarbons in one molecule and having viscosity of 1,000,000 mPa·s or more at 25° C., and b) an organopolysiloxane having at least one aliphatic unsaturated hydrocarbon in one molecule and having viscosity of 100 to 5,000 mPa·s at 25° C., wherein a ratio of a):b) is 1:0.5 to 10; B) an organohydrogenpolysiloxane having at least three hydrogen atoms directly bonded to a silicon atom in one molecule; C) a silicone-soluble platinum compound; D) an organopolysiloxane not having a functional group; and E) an inorganic filler.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: April 16, 2013
    Assignee: GC Corporation
    Inventors: Hiroshi Kamohara, Shouichi Fukushima
  • Patent number: 8415443
    Abstract: Disclosed herein are metal-terpyridine complexes and their use in hydrosilylation reactions.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 9, 2013
    Assignees: Momentive Performance Materials Inc., Cornell University
    Inventors: Johannes G. P. Delis, Paul J. Chirik, Aaron M. Tondreau
  • Patent number: 8409684
    Abstract: A release sheet, on which a stamper receiving layer for producing an optical recording medium is laminated, comprising a release agent layer on a side to which the stamper receiving layer is laminated, wherein the release agent layer is formed using a release agent that contains an organopolysiloxane (other than an MQ resin below) containing an alkenyl group in the molecule, an MQ resin containing an alkenyl group and having, as constituent components, M units represented by formula (1) R12R2—Si—O—??(1) (where, R1 denotes an organic group and R2 denotes an alkenyl group), and Q units represented by formula (2) and a cross-linking agent, and that does not substantially contain particles consisting of inorganic matter, and the alkenyl group content in said MQ resin ranges from 0.5 to 5 wt %. The release sheet can reduce concave defects on a convex-concave pattern transfer surface of the stamper receiving layer.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: April 2, 2013
    Assignee: Lintec Corporation
    Inventors: Takuya Okuda, Shin Kubota
  • Patent number: 8410239
    Abstract: Novel organopolysiloxane compositions crosslinkable into elastomeric foams (or “silicone foams”) have a low density, that is, less than 0.20 g/cm3 and also have good mechanical properties.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: April 2, 2013
    Assignee: Bluestar Silicones France
    Inventors: Delphine Blanc, Roser Casas, Christian Pusineri
  • Patent number: 8399592
    Abstract: The present invention has its object to provide a liquid-form modified product of polyhedral polysiloxane which is excellent in moldability and transparency, and a composition produced using the modified product. In addition, the present invention can provide an easy-to-handle modified product and composition. The present invention provides a modified product of polyhedral polysiloxane which is obtainable by modifying a polyhedral polysiloxane compound (a) with a compound (b), and a composition containing the modified product. The polyhedral polysiloxane compound (a) has an alkenyl group and/or a hydrosilyl group, and the compound (b) has a hydrosilyl group and/or an alkenyl group each capable of hydrosilylation with the component (a).
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: March 19, 2013
    Assignee: Kaneka Corporation
    Inventors: Takao Manabe, Makoto Seino, Shinya Mizuta
  • Patent number: 8389650
    Abstract: A curable polyorganosiloxane composition for use in an LED or optical lens, including: (A) an alkenyl group-containing polyorganosiloxane which contains a (A1) branched polyorganosiloxane including an SiO4/2 unit and an R3SiO1/2 unit, and optionally an R2SiO unit and/or an RSiO3/2 unit, wherein at least three R per molecule are vinyl groups, and optionally (A2) a linear polyorganosiloxane having R bonded to a silicon atom, wherein at least two R per molecule are vinyl groups, wherein 100 mol % or more of the R present in components (A1) and (A2), excluding alkenyl groups, are methyl groups; (B) a polyalkylhydrogensiloxane including an SiO4/2 unit and an R3(CH3)2SiO1/2 unit, the polyalkylhydrogensiloxane having the formula [R3(CH3)2SiO1/2]8[SiO4/2]4 or [R3(CH3)2SiO1/2]10[SiO4/2]5, wherein each R3 represents a hydrogen atom, and (C) a platinum-vinylsiloxane complex. The composition having desirable light transmission properties, and is unlikely to suffer yellowing due to exposure to heat.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: March 5, 2013
    Assignee: Momentive Performance Materials Japan LLC
    Inventors: Masanori Takanashi, Hideki Kobayashi
  • Patent number: 8383005
    Abstract: A thermally conductive silicone grease composition comprising: (A) an organopolysiloxane having at least two alkenyl groups in one molecule and having a kinetic viscosity of 5,000 to 100,000 mm2/s at 25° C.; (B) a hydrolyzable methylpolysiloxane having a trifunctional termination at one end and represented by the following general formula (2): wherein R2 represents an alkyl group having 1 to 6 carbon atoms and b is an integer of 5 to 100; (C) a thermally conductive filler having a thermal conductivity of at least 10 W/m·° C.; (D) an organohydrogenpolysiloxane containing from 2 to 5 hydrogen atoms in one molecule directly bound to silicon atoms (Si—H groups); (E) a bonding aid having a triazine ring and at least one alkenyl group in one molecule; and (F) a catalyst selected from the group consisting of platinum and platinum compounds.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: February 26, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Kenichi Tsuji, Kunihiro Yamada, Hiroaki Kizaki, Nobuaki Matsumoto
  • Patent number: 8377634
    Abstract: This invention relates to acrylic functional resin compositions. More particularly, this invention relates to Poly [organ-co-(meth)acryloxyorgano]silsequioxane resins that are curable upon exposure to ultraviolet radiation with photo initiator or upon heating with or without a free radical generator. The resin compositions have high storage stability at room temperature and produces films that are useful as planarization layer, interlayer dielectric, passivation layer, gas permeable layer, negative photoresist, antireflective coating, conformal coating and IC packaging.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: February 19, 2013
    Assignee: Dow Corning Corporation
    Inventors: John Dean Albaugh, Gregory Scott Becker, Sina Maghsoodi, Eric Scott Moyer, Sheng Wang, Craig Rollin Yeakle
  • Patent number: 8378051
    Abstract: The present invention provides a silicone resin lens obtained by molding and curing a silicon resin composition into a lens, wherein the lens has a refractive index at 400 nm of 1.5 or more, a ratio of a refractive index at 400 nm to a refractive index at 596 nm of 1.01 or more, an Abbe's number of 45 or more, and an absolute value of a differential of refractive indexes against temperatures, dn/dT, of 250×10?6/degrees C. or less. Further, the present invention provides a method for preparing the silicone resin lens according to any one of claims 1 to 3, wherein the silicone resin lens is prepared in conditions where a ratio of a molding shrinkage ratio found after subjecting the silicone resin composition to post-cure to a molding shrinkage ratio found after subjecting the silicone resin composition to molding is 0.8 to 1.2.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: February 19, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Tsutomu Kashiwagi
  • Patent number: 8372937
    Abstract: The present invention discloses a two-component adhesion promoter composition for surface pretreatment, comprising two components, the first component, K1, comprising at least one hydrolyzable adhesion promoter substance A which is selected from the group comprising organosilicon compounds, organotitanium compounds, organozirconium compounds, and mixtures thereof; and the second component, K2, comprising at least one compound B which reacts with the adhesion promoter substance A or triggers or catalyzes condensation of the adhesion promoter substance A, and the first and the second components in the unopened state being present in two compartments (1, 2) separated from one another by at least one dividing wall (3).
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: February 12, 2013
    Assignee: Sika Technology AG
    Inventors: Gerald Trabesinger, Gerhard Zingerle, Wolf-Rüdiger Huck, Stefan Junge
  • Patent number: 8372936
    Abstract: A silicone-type pressure-sensitive adhesive composition comprising (A) 100 weight parts of organopolysiloxane condensation reaction product that has at least two alkenyl groups and that is yielded by a condensation reaction between (a) hydroxyl-functional diorganopolysiloxane and (b) organopolysiloxane resin, (B) organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in the molecule, in an amount sufficient to provide from 1 to 200 silicon-bonded hydrogen atoms with reference to all the alkenyl groups in the composition, (C) an organotitanium compound, at from 0.1 to 20 weight parts, and (D) a platinum catalyst in a catalytic quantity.
    Type: Grant
    Filed: December 25, 2008
    Date of Patent: February 12, 2013
    Assignee: Dow Corning Toray Company, Ltd.
    Inventors: Haruna Mizuno, Seiji Hori, Takateru Yamada
  • Patent number: 8361489
    Abstract: The present invention generally relates to implantable devices for producing insulin in diabetic animals. Some embodiments include amphiphilic biomembranes for use in biological applications (e.g., as an alternative and/or supplemental insulin source). Some embodiments also include live insulin-producing cells contained within one or more amphiphilic membranes so as to prevent or diminish an immuno-response and/or rejection by the host.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: January 29, 2013
    Assignee: The University of Akron
    Inventors: Joseph P. Kennedy, Gabor Erdodi
  • Patent number: 8362141
    Abstract: An addition curable self-adhesive silicone rubber composition comprising (A) an organopolysiloxane containing at least two alkenyl groups, (B) an organohydrogenpolysiloxane containing at least three SiH groups, (C) an aromatic ring-free organohydrogenpolysiloxane containing at least two SiH groups, and (F) an addition reaction catalyst, with a SiH/alkenyl molar ratio ranging from 0.8 to 5.0, is briefly moldable and cures to various metals and organic resins.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: January 29, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Nobu Kato, Noriyuki Meguriya, Toshio Yamazaki
  • Patent number: 8344075
    Abstract: A hybrid siloxane polymer, an encapsulant, and an electronic device, the hybrid siloxane polymer including a linear first siloxane resin including moieties represented by the following Chemical Formulas 1a and 1b, the first siloxane resin including double bonds at both terminal ends thereof, and a second siloxane resin having a reticular structure:
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: January 1, 2013
    Assignee: Cheil Industries, Inc.
    Inventors: Woo-Han Kim, June-Ho Shin, Sang-Ran Koh, Sung-Hwan Cha, Hyun-Jung Ahn
  • Patent number: 8344170
    Abstract: A poly(cyclosiloxane) network comprises the hydrosilation reaction product of a cyclosiloxane of the formula (I) wherein R and R2 are the same or different for each siloxane moiety of hydrogen, an alkyl group, an aryl group, and a cycloalkyl group, and wherein n is an integer from 3 to 8, wherein the cyclosiloxanes are joined by moieties selected from the group consisting of oxygen atoms, linear silanols, branched silanols, halosilanes, alkoxysilanes, vinyl silanes, allyl silanes, vinyl siloxanes, and allyl siloxanes, wherein the Si—O bonds of the cyclosiloxanes are substantially unrearranged compared to the cyclosiloxane precursors of the network.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: January 1, 2013
    Assignee: The University of Akron
    Inventors: Joseph P. Kennedy, Pious Kurian
  • Patent number: 8329307
    Abstract: This invention relates to silicon compositions particularly useful for the production of anti-fouling varnishes that can be applied to flexible or bulk supports. In particular, embodiments of the invention are directed to cross-linkable silicone composition that is cross-linkable by polyaddition and includes at least two inter-reactive polyorganosiloxane (POS) species (A) and (B) in the presence of a metal catalyst (C) in order to allow cross-linking by polyaddition; and optionally at least one particulate component (D); at least one cross-linking inhibitor (E); optionally at least one solvent (F), optionally at least one adhesion promoter (G); and optionally at least one functional additive (H) for imparting specific properties.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: December 11, 2012
    Inventors: Alain Pouchelon, Maryline Quemin
  • Patent number: 8329831
    Abstract: A multi part hydrosilylation curable silicone elastomer composition comprising (i) an organopolysiloxane comprising at least two unsaturated groups and having a viscosity of at least 1,000 mPas at 25° C.; (ii) inorganic filler having a hydrophilic surface; (iii) a filler treating agent comprising an organopolysiloxane comprising at least 2 hydroxy or otherwise hydrolysable groups, or a mixture thereof and having an average degree of polymerization of from 2 to 50; (iv) an organohydrogensiloxane having an average of greater than two silicon bonded hydrogen atoms per molecule having a viscosity of up to about 10 PaS at 25° C.; (v) a hydrosilylation catalyst; and/or a treated filler obtained by the reaction of (ii) and (iii) above characterized in that the filler treating agent (iii) and/or treated filler is packaged separately from organohydrogensiloxane (iv) prior to curing.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: December 11, 2012
    Assignee: Dow Corning Corporation
    Inventor: Lawrence Rapson
  • Patent number: 8318831
    Abstract: The invention relates to hydrophilized curable silicone compositions which contain organopolysiloxanes, hydrophilizers and at least one stabilizing phosphorous compound. The compositions are particularly suitable as curable impression materials in dental applications, especially as wash impression materials.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: November 27, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Joachim W. Zech, Rainer Guggenberger, Henning Hoffmann
  • Publication number: 20120283362
    Abstract: The invention provides a composition comprising a polyolefin and a polyorganosiloxane in which at least 50 mole % of the siloxane units are D units as herein defined and which contains at least one unsaturated group, characterized in that the unsaturated group is group of the formula —X—CH?CH—R? (I) or —X—C?C—R? (II), in which X represents a divalent organic linkage having an electron withdrawing effect with respect to the —CH?CH— or —C?C— bond and/or containing an aromatic ring or a further olefinic double bond or acetylenic unsaturation, the aromatic ring or the further olefinic double bond or acetylenic unsaturation being conjugated with the olefinic unsaturation of —X—CH?CH—R? or with the acetylenic unsaturation of —X—C?C—R? and R? represents hydrogen or a group having an electron withdrawing effect or any other activation effect with respect to the —CH?CH— or —C?C— bond.
    Type: Application
    Filed: December 22, 2010
    Publication date: November 8, 2012
    Inventors: Michael Backer, Francois De Buyl, Damien Deheunynck, Valerie Smits
  • Patent number: 8304084
    Abstract: Provided is a liquid silicone rubber coating composition with a viscosity at 25° C. of 10,000 to 100,000 mPa·s, comprising: (A) (A-1) a substantially straight chain organopolysiloxane containing alkenyl groups only at both molecular chain terminals, and (A-2) a substantially straight chain organopolysiloxane containing an average of at least two alkenyl groups, only at non-terminal molecular chain positions, within each molecule, (B) an organohydrogenpolysiloxane containing an average of at least two hydrogen atoms bonded to silicon atoms within each molecule, (C) an addition reaction catalyst, and (D) an adhesion improver, as well as an air bag with a rubber coating layer comprising a cured product of such a composition. Also provided is an air bag with a rubber coating layer comprising a cured product of such a composition. The liquid silicone rubber coating composition can be used without dissolution in an organic solvent, and displays excellent adhesion to fiber and excellent rubber strength.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: November 6, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hidenori Mizushima, Masayuki Ikeno
  • Publication number: 20120276717
    Abstract: The present invention provides a non-aromatic saturated hydrocarbon group-containing organopolysiloxane containing the following units (I) to (III): (I) a siloxane unit (T unit) represented by R1SiO3/2: 40 to 99 mol %; (II) a siloxane unit (D unit) represented by R2R3SiO2/2: 59 mol % or less; and (III) a siloxane unit (M unit) represented by R4R5R6SiO1/2: 1 to 30 mol %. There can be an organopolysiloxane, which is soluble in a nonpolar organic solvent so that the organopolysiloxane can be peeled in a short time, and which is hardly soluble in a polar organic solvent to be exemplarily used upon coating a photoresist onto a semiconductor side of a joined substrate and removing the photoresist therefrom so that the organopolysiloxane is not peeled from the supporting substrate upon coating a photoresist onto a semiconductor side of a joined substrate and removing the photoresist therefrom.
    Type: Application
    Filed: February 27, 2012
    Publication date: November 1, 2012
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Masahiro FURUYA, Hiroyuki YASUDA, Shohei TAGAMI, Michihiro SUGO, Hideto KATO
  • Publication number: 20120277372
    Abstract: The HBP Free-POSS compounds of Formula I are superior to prior HB polymers and linear polymers in space and electronic applications because they have better resistance to electrons, protons and atomic oxygen, have superior out-gassing performance, and are transparent. They are used as coatings, films, adhesives, sealants and elastomers.
    Type: Application
    Filed: January 19, 2011
    Publication date: November 1, 2012
    Applicant: MICHIGAN MOLECULAR INSTITUTE
    Inventors: Jin Hu, Claire Hartmann-Thompson, Dale J. Meier, Petar R. Dvornic
  • Patent number: 8299198
    Abstract: The present invention provides a polysiloxane composition maintaining high transparency over a wide wavelength region and a wide temperature region and being excellent in heat resistance, low-dielectric characteristics, workability, and the like. A polysiloxane composition includes (A) a polysiloxane which is composed of a polysiloxane compound having a polyhedral skeleton having 6 to 24 Si atoms in its molecule and which has at least one alkenyl group bonded directly or indirectly to a Si atom constituting the polyhedral skeleton, (B) a polysiloxane having a hydrosilyl group, and (C) a hydrosilylation catalyst.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: October 30, 2012
    Assignee: Kaneka Corporation
    Inventors: Takao Manabe, Satoshi Sugiyama, Makoto Seino
  • Patent number: 8299186
    Abstract: A curable organopolysiloxane composition comprising: (A) an organopolysiloxane that contains in one molecule at least two alkenyl groups and at least 30 mole % of all silicon-bonded monovalent hydrocarbon groups in the form of aryl groups: (B) an organopolysiloxane that contains in one molecule at least two silicon-bonded hydrogen atoms and at least 15 mole % of all silicon-bonded organic groups in the form of aryl groups; (C) a branched-chain organopolysiloxane that contains alkenyl, aryl, and epoxy-containing organic groups; and (D) a hydrosilylation catalyst. The composition is capable of forming a cured body that has a high index of refraction and strong adhesion to substrates.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: October 30, 2012
    Assignee: Dow Corning Toray Company, Ltd.
    Inventors: Takashi Sagawa, Masayoshi Terada, Makoto Yoshitake
  • Patent number: 8299185
    Abstract: Disclosed is a cage-type copolymer in which a cage structure is incorporated in its main chain. Also disclosed is a curable resin composition comprising the said copolymer.
    Type: Grant
    Filed: December 25, 2008
    Date of Patent: October 30, 2012
    Assignee: Nippon Steel Chemical Co., Ltd.
    Inventors: Takashi Saito, Mitsuhiro Koike, Yuko Murakami
  • Patent number: 8293849
    Abstract: A silicone composition for sealing a light emitting element includes: (A) a vinyl group-containing organopolysiloxane having a three-dimensional network structure represented by an average unit formula: (SiO4/2)a(ViR2SiO1/2)b(R3SiO1/2)c (where Vi represents a vinyl group, R's are identical or different substituted or unsubstituted monovalent hydrocarbon groups other than alkenyl groups, and a, b, and c are positive numbers satisfying that a/(a+b+c) is 0.2 to 0.6 and b/(a+b+c) is 0.001 to 0.2); (B) an organohydrogenpolysiloxane which has at least two hydrogen atoms, each hydrogen atom being bonded to a silicon atom per molecule, the organohydrogenpolysiloxane being contained in such an amount that an amount of a hydrogen atom bonded to a silicon atom is 0.3 to 3.0 mol per 1 mol of a vinyl group bonded to a silicon atom in the component (A); and (C) a hydrosilylation catalyst (catalytic amount), wherein a coefficient of linear expansion of the composition after curing is 10×10?6 to 290×10?6/° C.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: October 23, 2012
    Assignee: Momentive Performance Materials Japan LLC
    Inventors: Kikuo Mochizuki, Nobuo Hirai
  • Patent number: 8293810
    Abstract: A resin composition suited for rapid prototyping is provided comprising (I) an actinic energy radiation-curable silicone composition, (II) an actinic energy radiation-sensitive polymerization initiator, and (III) an actinic energy radiation absorber. The resin composition experiences little viscosity buildup and maintains fluidity during long-term storage at elevated temperature, and is effective in rapid prototyping or shaping by stereolithography using any actinic energy radiation.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: October 23, 2012
    Assignees: Cmet Inc., Shin-Etsu Chemical Co., Ltd.
    Inventors: Takashi Ito, Tsuneo Hagiwara, Toshiyuki Ozai, Takeshi Miyao
  • Patent number: 8293354
    Abstract: Radiation-curable silsesquioxane resin materials are employed for micro- and nanolithography. The resin materials can include a radiation-curable silsesquioxane resin and a photo-initiator having low viscosity. The low viscosity of the liquid system allows imprinting with low pressure and low temperature; e.g. room temperature. The resist's dry etching resistance is increased and the cured film is more easily separated from the mask. Due to its high modulus after cure, the material allows the fabrication of micro- and nano-features having high aspect ratios while providing a high throughput. Various pattern sizes, for example, ranging from tens of microns to as small as a few nanometers, may be achieved with the UV-curable material system.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: October 23, 2012
    Assignee: The Regents of The University of Michigan
    Inventors: Peng-Fei Fu, Lingjie Jay Guo
  • Patent number: 8278408
    Abstract: Disclosed is a resin composition having an excellent balance between shortness of curing time and longness of pot life. The resin composition contains (A) an organopolysiloxane having an alkenyl group, (B) an organopolysiloxane having a silicon atom-bonded hydrogen atom, (C) a hydrosilylation catalyst, (D) a silane coupling agent and (E) an unsaturated dicarboxylic acid ester. The component (B) contains (B-1) an organopolysiloxane having a molecular weight of not less than 5,000 but not more than 50,000 and (B-2) an organopolysiloxane having a molecular weight of not less than 100 but not more than 5,000, and the ratio of (B-2) to (B-1) is preferably not less than 0.01% by mass but not more than 20% by mass.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: October 2, 2012
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Yoshitsugu Goto, Shigeo Hiyama, Takuya Okada, Jun Watanabe
  • Patent number: 8278367
    Abstract: A subject-matter of the invention is an impression material with at least one compound with at least two alkenyl groups as component (a), at least one compound with at least one chelating group as component (b), at least one organohydropolysiloxane as component (c), at least one hydrosilylation catalyst as component (d) and at least one compound with a chelatable metal atom as component (e), the chelating group of the component (b) exhibiting no reactive groups which can react with the component (c) and/or the component (d). The invention achieves a long storage stability.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: October 2, 2012
    Assignee: Ernst Muehlbauer GmbH & Co. KG
    Inventors: Henrik Boettcher, Stephan Neffgen
  • Patent number: 8273842
    Abstract: An object of the invention is to provide a curing agent and a curable composition capable of forming a cured product, which is applicable for optical material and which has excellent heat and light transparency and crack resistance, and a cured product obtained by curing the same. Moreover, an object of the invention is to provide a method for producing with use of the components of the curing agent a cyclic polyorganosiloxane having a specific structure, in a selective manner and in high yield.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: September 25, 2012
    Assignee: Kaneka Corporation
    Inventors: Yoshikatsu Ichiryu, Masayuki Fujita
  • Patent number: 8273843
    Abstract: An organosilicon compound which is obtained by subjecting a compound (A), a compound (B) and a compound (C) to hydrosilylation reaction: (A) silicone and/or silsesquioxane that has two or more Si—H groups per one molecule and has a molecular weight of 100 to 500,000; (B) silicone and/or silsesquioxane that has two or more alkenyl groups per one molecule and has a molecular weight of 100 to 500,000; and (C) a compound that has one or more epoxy or oxetanyl group and an alkenyl group having 2 to 18 carbon atoms per one molecule.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: September 25, 2012
    Assignee: JNC Corporation
    Inventors: Akio Tajima, Kazuhiro Yoshida
  • Publication number: 20120237765
    Abstract: A novel polycrystalline stoichiometric fine SiC fiber substantially free of impurities is produced using a novel pre-ceramic polymer. The pre-ceramic polymer is prepared by reacting a mixture of chlorodisilane, boron trichloride, and a vinyl chlorodisilane with an excess of hexamethyldisilazane to form the pre-ceramic polymer resin, which may then be melt-spun, cured, pyrolyzed and heat-treated to obtain the finished SiC fiber. The manufacturing process for the production of the fine SiC ceramic fiber allows for flexibility with respect to cross-linking, in that low-cost thermal treatments may replace more complex methods, while obtaining fibers with improved materials properties as compared to currently available SiC fibers.
    Type: Application
    Filed: February 21, 2012
    Publication date: September 20, 2012
    Inventors: Edward J.A. Pope, Christopher L. Hill
  • Patent number: 8268951
    Abstract: Present invention provides a fluorine-containing organopolysiloxane composition comprising a fluorine-containing silicone polymer having a three-dimensional, cross-linked structure, prepared by addition polymerizing the following (A), (B) and (C) and containing 10 to 30 mass % of the fluorine atoms, relative to a total mass of (A) to (C), (A) a vinyl group-containing organopolysiloxane represented by the following formula (1): (B) an organohydrogenpolysiloxane represented by the following formula (2): and (C) an organopolysiloxane having a reactive group on one end alone and represented by the following formula (3), and further comprising (D) a low viscosity silicone oil with a dynamic viscosity of 50 mm2/s or less at 25 degrees C.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: September 18, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiromasa Yamaguchi, Teruki Ikeda
  • Patent number: 8263723
    Abstract: A curable organopolysiloxane composition comprising: (A) an novel organopolysiloxane represented by the following average structural formula: R1aSiO(4-a)/2 {wherein R1 represents a substituted or non-substituted monovalent hydrocarbon group, an alkoxy group, a hydroxyl group, or an organopolysiloxane residue of the following general formula: —X—(SiR2O)mSiR23 (wherein R2 are the same or different, substituted or unsubstituted monovalent hydrocarbon groups; X represents oxygen atoms or a bivalent hydrocarbon group; and ‘m’ is an integer equal to or greater than 1); however, at least one R1 in one molecule is the aforementioned organopolysiloxane residue, at least one R1 is a monovalent hydrocarbon group having aliphatic carbon-carbon double bonds, and ‘a’ is a positive number that satisfies the following condition: 0<a<2)}; (B) an organic silicon compound having in one molecule at least two silicon-bonded hydrogen atoms; and (C) a hydrosilylation catalyst; is capable of forming a cured product of high fle
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: September 11, 2012
    Assignee: Dow Corning Toray Company, Ltd.
    Inventors: Yoshitsugu Morita, Michitaka Suto
  • Patent number: 8263727
    Abstract: A compound having the formula below. Each R is methyl or phenyl; R2 comprises one or more of silane, siloxane, and aromatic groups; n is a nonnegative integer; and m is 1 or 2. The dashed bond is a single bond and the double dashed bond is a double bond, or the dashed bond is a double bond and the double dashed bond is a triple bond. A polymer made by a hydrosilation reaction of a polyhedral oligomeric silsesquioxane having pendant siloxane groups with an acetylene- and silicon-containing compound having at least two vinyl or ethynyl groups, and a crosslinked polymer thereof. The reaction occurs between the pendant siloxane groups and the vinyl or ethynyl groups.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: September 11, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Manoj K. Kolel-Veetil, Teddy M Keller
  • Publication number: 20120226002
    Abstract: Novel silicon compounds containing a siloxane or silane moiety and at least one moiety derived from a furfuryl alcohol, and methods for their synthesis, are provided. The novel compounds may be used as surface modifying agents, surfactants, defoamers, and as monomers for silicone polymerization.
    Type: Application
    Filed: February 29, 2012
    Publication date: September 6, 2012
    Applicant: GELEST TECHNOLOGIES, INC.
    Inventors: Barry C. ARKLES, Youlin PAN, Jonathan D. GOFF
  • Patent number: 8257797
    Abstract: The general field of the invention is that of airbags. The invention relates to a process for improving the tear strength and the combing strength of coated fabrics intended for uses in the field of inflatable bags using a silicone composition comprising an additive containing a polyorganosiloxane resin (V) and a calcium carbonate. After coating the composition onto the fabric supports and curing, the coated supports not only have optimum adhesion and crease resistance properties, but also have good properties in terms of combing strength and tear strength.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: September 4, 2012
    Assignee: Bluestar Silicones France
    Inventors: Laurent Dumont, Alain Pouchelon
  • Patent number: 8258243
    Abstract: The grafted silicone polymer comprises a polymerization product of (a) a mercapto-modified silicone polymer and (b) a radically polymerizable monomer component comprising (meth)acrylic acid and/or a (meth)acrylic acid alkyl ester selected so that the solubility parameter of a polymer obtained only from the radically polymerizable monomer component is at least 9.14 (cal/cm3)1/2, wherein the grafted silicone polymer has a elastic storage modulus of 1 105 Pa or greater at 37° C., 1 Hz and dissolves in decamethylcyclopentasiloxane by 1 weight percent or greater at 23° C.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: September 4, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Takeshi Yamada, Satoshi Haramizu
  • Patent number: 8252881
    Abstract: Disclosed herein is an initiator integrated polydimethylsiloxane (iPDMS). The iPDMS is a polydimethylsiloxane undergoing a hydrosilylation reaction. The initiator 10-undecenyl 2-bromo-2-methyl propionate is integrated on the surface of iPDMS by covalent bond. At % is 0.01-1% confirmed by X-ray photoelectron spectroscopy. Disclosed herein is a method for making an initiator integrated polydimethylsiloxane. Prepolymer A, cross-linker B and vinyl-terminated initiator C were mixed below a ratio of 10:1:4-0.01 for 6-24 hours, then the elastomer was formed. And, disclosed herein is functional surface modification of initiator integrated polydimethylsiloxane and its applications for biocompatibility, organic solvent compatibility and heat-sensitive materials.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: August 28, 2012
    Inventor: Xiongming Ma
  • Patent number: 8252883
    Abstract: Disclosed herein is an organosilicon nanocluster, wherein a silicon cluster is substituted with a conductive organic material, a silicon thin film including the same, a thin film transistor including the silicon thin film, a display device including the thin film transistor, and methods of forming the same. The organosilicon nanocluster may more easily and efficiently form a thin film while maintaining electrical characteristics of an amorphous silicon thin film.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: August 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong Baek Seon, Hyun Dam Jeong, Sang Yoon Lee
  • Patent number: 8247502
    Abstract: Provided is an addition reaction-curable silicone pressure-sensitive adhesive composition, including: (A) a specific diorganopolysiloxane consisting of (A1) a linear diorganopolysiloxane having two or more alkenyl groups, and (A2) a linear diorganopolysiloxane having SiOH groups at the terminals and containing no alkenyl groups, (B) a specific organopolysiloxane containing M units, Q units and SiOH group-containing siloxane units, (C) an organohydrogenpolysiloxane containing three or more SiH groups, (D) an addition reaction retarder, (E) a platinum group metal-based catalyst, and (F) a specific organopolysiloxane containing T units and D units. A cured product layer formed from a cured product of this composition can be peeled from a release film with minimal peeling force, and exhibits excellent adhesion to silicone rubbers.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: August 21, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Shunji Aoki
  • Patent number: 8247515
    Abstract: The present invention generally relates to amphiphilic grafts and co-networks made from at least one hydrophilic polymer and at least one hydrophobic polymer, and to processes for preparing such amphiphilic grafts and co-networks. In another embodiment, the present invention relates to amphiphilic co-networks formed from the combination of at least one polysiloxane and at least one polyacrylamide. In yet another embodiment, the present invention relates to amphiphilic co-networks formed from the combination of at least one polysiloxane, at least one polyacrylamide and at least one crosslinking agent.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: August 21, 2012
    Assignee: The University of Akron
    Inventors: Joseph P. Kennedy, Gabor Erdodi
  • Patent number: 8232363
    Abstract: A polymeric material with a variable modulus of elasticity is described herein. The polymeric material described herein is useful for forming implantable medical devices (e.g. ophthalmic lenses, breast implants, and body augmentation devices). In addition, medical devices formed from the polymer material can be used to controllably release a therapeutic agent. Also, the polymeric material may be used to prepare topical compositions or other applications or devices where control of a mechanical property such as material modulus is important.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: July 31, 2012
    Assignee: Abbott Medical Optics Inc.
    Inventors: Can B. Hu, Thuy B. Mai