Encodes An Enzyme Patents (Class 536/23.2)
  • Publication number: 20150079065
    Abstract: Disclosed are Klotho variant proteins in which residue Glu414 and/or residue Asp238 is substituted with an amino acid different than L-Glu or L-Asp, respectively, as well as polynucleotides encoding the variant proteins, and the use thereof in therapy, especially for the treatment of cancers, especially breast cancer and pancreatic cancer.
    Type: Application
    Filed: April 16, 2013
    Publication date: March 19, 2015
    Inventors: Ido Wolf, Tamar Rubinek
  • Publication number: 20150079641
    Abstract: The invention relates to an isolated nucleotide sequence encoding an amino acid sequence that is at least ?90%, ?92%, ?94%, ?96%, ?97%, ?98%, ?99% or 100%, preferably ?97%, particularly preferably ?98%, very particularly preferably ?99%, and extremely preferably 0%, identical to the amino acid sequence of SEQ ID NO:2, wherein SEQ ID NO:2, at position 553, or at a corresponding position of the amino acid sequence, has a proteinogenic amino acid other than L-tyrosine, to a microorganism comprising the nucleotide sequence and also to a process for producing fine chemicals using this microorganism.
    Type: Application
    Filed: April 12, 2013
    Publication date: March 19, 2015
    Applicant: EVONIK INDUSTRIES AG
    Inventors: Robert Gerstmeir, Iris Wiegrabe
  • Publication number: 20150079063
    Abstract: Polypeptides comprising at least one carboxy-terminal peptide (CTP) of chorionic gonadotropin attached to the carboxy terminus but not to the amino terminus of a coagulation factor and polynucleotides encoding the same are disclosed. Pharmaceutical compositions comprising the polypeptides and polynucleotides of the invention and methods of using and producing same are also disclosed.
    Type: Application
    Filed: May 9, 2014
    Publication date: March 19, 2015
    Applicant: OPKO Biologics Ltd.
    Inventors: Udi Eyal FIMA, Gili Hart
  • Publication number: 20150079638
    Abstract: Disclosed are variants of Humicola grisea CeI7A (CBH1.1), H. jecorina CBH1 variant or S. thermophilium CBH1, nucleic acids encoding the same and methods for producing the same. The variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted.
    Type: Application
    Filed: August 20, 2014
    Publication date: March 19, 2015
    Applicant: Danisco US Inc.
    Inventors: Frits GOEDEGEBUUR, Peter Gualfetti, Colin Mitchinson, Edmund Larenas
  • Publication number: 20150082484
    Abstract: The present invention relates to genes, proteins and methods comprising molecules that alter amino acid levels. In one embodiment, the present invention relates to altering guanidino substrate hydrolysis activities in plants, arthropods and microorganisms using molecules within the arginase family and other molecules that alter an amino acid levels. In ones embodiment, the present invention relates to altering threonine substrate deamination and dehydration activities in plants, arthropods and microorganisms using molecules within the threonine deaminase family and other molecules that alter amino acid levels. In one embodiment, the present invention relates to using genes, proteins and methods comprising arginase or threonine deaminase for altering the pathophysiology of plants, arthropods and microorganisms. In a preferred embodiment, the present invention relates to altering guanidino substrate hydrolysis activity in plants, arthropods, and microorganisms using arginase.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Inventors: Gregg A. Howe, Hui Chen
  • Publication number: 20150079117
    Abstract: The present invention includes methyltransferase (MTase)-defective recombinant viruses as live vaccine candidates for human metapneumovirus (hMPV), human respiratory syncytial virus (hRSV), and human parainfluenza virus type 3 (PIV3). Here the inventors provide the technical description for generating MTase-defective paramyxoviruses useful as immunogens, as well Cas related materials and methods.
    Type: Application
    Filed: June 11, 2012
    Publication date: March 19, 2015
    Applicant: OHIO STATE INNOVATION FOUNDATION
    Inventors: Jianrong Li, Yu Zhang
  • Publication number: 20150082493
    Abstract: The present invention relates to GH61 polypeptide variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: April 26, 2013
    Publication date: March 19, 2015
    Inventors: Janine Lin, Doreen Bohan, Michelle Maranta, Leslie Beresford, Michael Lamsa, Matt Sweeney, Mark Wogulis, Elizabeth Znameroski, Frank Winther Rasmussen
  • Patent number: 8980603
    Abstract: Described herein is a variant of wild type Gaussia luciferase that catalyzes glow-type emission kinetics suited for high-throughput functional screening applications. Polypeptides, functional fragments, variants, and nucleic acids that encode the enhanced luciferase are further described. One such polypeptide corresponds to wild type Gaussia luciferase with a substitution mutation of I for M at position 43 of the mature peptide. Methods of use, assay systems and kits that contain the polypeptides and/or nucleic acids are further described.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: March 17, 2015
    Assignee: The General Hospital Corporation
    Inventors: Bakhos A. Tannous, Casey Maguire
  • Patent number: 8980589
    Abstract: Mutant delta-9 elongases having the ability to convert linoleic acid [18:2, LA] to eicosadienoic acid [20:2, EDA] and/or ?-linolenic [18:3, ALA] to eicosatrienoic acid [20:3, ETrA] are disclosed herein. Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding mutant delta-9 elongases, along with a method of making long chain polyunsaturated fatty acids [“PUFAs”] using these mutant delta-9 elongases in oleaginous yeast are also disclosed.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: March 17, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Michael W. Bostick, Hongxian He, Yougen Li, Quinn Qun Zhu
  • Patent number: 8980607
    Abstract: The present invention relates to glycerol-3-phosphate acyltransferases and polynucleotides encoding the same. The present invention provides non-naturally occurring polynucleotides encoding a protein having at least 85% homology to the amino acid sequence of SEQ ID NO: 2, as well as an expression vector and transformant comprising such polynucleotides. The present invention also provides a method for producing food using the transformant, and food produced by the method.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: March 17, 2015
    Assignee: Suntory Holdings Limited
    Inventor: Misa Ochiai
  • Patent number: 8980606
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize a variety of chiral compounds.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: March 17, 2015
    Assignee: Codexis, Inc.
    Inventors: Onorato Campopiano, Emily Mundorff, Birthe Borup, Rama Voladri
  • Patent number: 8980605
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize a variety of chiral compounds.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: March 17, 2015
    Assignee: Codexis, Inc.
    Inventors: Charlene Ching, John M. Gruber, Gjalt W. Huisman, Emily Mundorff, Lisa M. Newman
  • Patent number: 8980613
    Abstract: This disclosure describes genetically modified photosynthetic microorganisms, e.g., Cyanobacteria, that contain one or more exogenous genes encoding a phospholipase and/or thioesterase, which are capable of producing an increased amount of lipids and/or fatty acids. This disclosure also describes genetically modified photosynthetic microorganisms that contain one or more exogenous genes encoding a diacyglycerol acyltransferase, a phosphatidate phosphatase, and/or an acetyl-CoA carboxylase, which are capable of producing increased amounts of fatty acids and/or synthesizing triglycerides, as well as photosynthetic microorganism comprising mutations or deletions in a glycogen biosynthesis or storage pathway, which accumulate a reduced amount of glycogen under reduced nitrogen conditions as compared to a wild type photosynthetic microorganism.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: March 17, 2015
    Assignee: Matrix Genetics, LLC
    Inventors: James Roberts, Fred Cross, Paul Warrener, Ernesto Javier Munoz, Jason W. Hickman
  • Patent number: 8980591
    Abstract: The present invention relates to a protein having an activity to promote fatty acid chain elongation, a polynucleotide encoding the same, etc. The present invention provides, for example, a polynucleotide containing the nucleotide sequence shown in SEQ ID NO: 1 or 4, a polynucleotide encoding a protein which consists of the amino acid sequence shown in SEQ ID NO: 2, an expression vector and a transformant, each containing such a polynucleotide, a method for preparing lipids or fatty acids by using such a transformant, or a food or the like containing lipids or fatty acids prepared by such a method.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: March 17, 2015
    Assignee: Suntory Holdings Limited
    Inventor: Misa Ochiai
  • Patent number: 8980612
    Abstract: Methods for the fermentive production of four carbon alcohols are provided. Specifically, butanol, preferably 2-butanol is produced by the fermentive growth of a recombinant bacteria expressing a 2-butanol biosynthetic pathway. The recombinant microorganisms and methods of the invention can also be adapted to produce 2-butanone, an intermediate in the 2-butanol biosynthetic pathways disclosed herein.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: March 17, 2015
    Assignee: Butamax Advanced Biofuels LLC
    Inventors: Gail K. Donaldson, Andrew C. Eliot, Vasantha Nagarajan, Charles E. Nakamura, Jean-Francois Tomb
  • Patent number: 8980864
    Abstract: The present invention relates to compositions, methods and kits using polynucleotides, primary transcripts and mmRNA molecules.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: March 17, 2015
    Assignee: Moderna Therapeutics, Inc.
    Inventors: Stephen G. Hoge, Antonin de Fougerolles, Jeff Lynn Ellsworth
  • Patent number: 8980614
    Abstract: Methicillin-resistant (MRSA) and multi-drug resistant strains of Staphylococcus aureus are becoming increasingly prevalent in both human and veterinary clinics. S. aureus-causing bovine mastitis yields high annual losses to the dairy industry. Treatment of mastitis by broad range antibiotics is often not successful and may contribute to development of antibiotic resistance. Bacteriophage endolysins are a promising new source of antimicrobials. The endolysin of prophage ?SH2 of Staphylococcus haemolyticus strain JCSC1435 (?SH2 lysin) shows lytic activity against live staphylococcal cells. Deletion constructs were tested in zymograms and turbidity reduction assays to evaluate the contribution of each functional module to lysis. The CHAP domain exhibited three-fold higher activity than the full length protein. Activity was further enhanced in the presence of bivalent calcium ions.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: March 17, 2015
    Assignee: The United States of America, as represented by The Secretary of Agriculture
    Inventors: David M. Donovan, Igor V. Abaev, Mathias Schmelcher
  • Publication number: 20150071899
    Abstract: Some aspects of this disclosure provide compositions, methods, and kits for improving the specificity of RNA-programmable endonucleases, such as Cas9. Also provided are variants of Cas9, e.g., Cas9 dimers and fusion proteins, engineered to have improved specificity for cleaving nucleic acid targets. Also provided are compositions, methods, and kits for site-specific nucleic acid modification using Cas9 fusion proteins (e.g., nuclease-inactivated Cas9 fused to a nuclease catalytic domain). Such Cas9 variants are useful in clinical and research settings involving site-specific modification of DNA, for example, genomic modifications.
    Type: Application
    Filed: June 30, 2014
    Publication date: March 12, 2015
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, John Paul Guilinger, David B. Thompson
  • Publication number: 20150072395
    Abstract: The present provides selection markers, methods, nucleic acids, and vectors of use in the preparation of recombinant Clostridium spp.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 12, 2015
    Inventors: David Jeffrey Fraser Walker, Shilpa Nagaraju, Michael Koepke, Alexander Paul Mueller
  • Publication number: 20150074855
    Abstract: There is provided a novel Campanula flavonoid 3?,5?-hydroxylase gene, and a plasmid comprising the gene under the control of the cauliflower mosaic virus 35S promoter.
    Type: Application
    Filed: April 12, 2013
    Publication date: March 12, 2015
    Inventors: Yoshikazu Tanaka, Yukihisa Katsumoto
  • Publication number: 20150074836
    Abstract: The invention concerns nucleic acids coding for mutated or truncated forms of the human parkin gene, or forms comprising multiplication of exons, and the corresponding proteins and antibodies. The invention also concerns methods and kits for identifying mutations of the parkin gene, and for studying compounds for therapeutic purposes.
    Type: Application
    Filed: August 7, 2014
    Publication date: March 12, 2015
    Applicants: Aventis Pharma S.A., Institut National de la Santé et de la Recherche Médicale
    Inventors: Alexis Brice, Christophe Lucking, Patrice Denefle
  • Publication number: 20150072397
    Abstract: Polynucleotide sequences are provided encoding a thermostable cellulase and directing its increased expression are provided, and the use of the thermostable cellulase in hydraulic fracturing methods and the treatment of flowback fluids.
    Type: Application
    Filed: March 12, 2013
    Publication date: March 12, 2015
    Inventors: Xuqiu Tan, Kenneth E. Barrett, Richard S. Lee
  • Publication number: 20150071898
    Abstract: Some aspects of this disclosure provide compositions, methods, and kits for improving the specificity of RNA-programmable endonucleases, such as Cas9. Also provided are variants of Cas9, e.g., Cas9 dimers and fusion proteins, engineered to have improved specificity for cleaving nucleic acid targets. Also provided are compositions, methods, and kits for site-specific recombination, using Cas9 fusion proteins (e.g., nuclease-inactivated Cas9 fused to a recombinase catalytic domain). Such Cas9 variants are useful in clinical and research settings involving site-specific modification of DNA, for example, genomic modifications.
    Type: Application
    Filed: June 30, 2014
    Publication date: March 12, 2015
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, John Paul Guilinger, David B. Thompson
  • Publication number: 20150072383
    Abstract: The present disclosure provides engineered transaminase polypeptides for the production of amines, polynucleotides encoding the engineered transaminases, host cells capable of expressing the engineered transaminases, and methods of using the engineered transaminases to prepare compounds useful in the production of active pharmaceutical agents. The present disclosure provides engineered polypeptides having transaminase activity, polynucleotides encoding the polypeptides, methods of the making the polypeptides, and methods of using the polypeptides for the biocatalytic conversion of ketone substrates to amine products. The present enzymes have been engineered to have one or more residue differences as compared to the amino acid sequence of the naturally occurring transaminase of Vibrio fluvialis. In particular, the transaminases of the present disclosure have been engineered for efficient formation of chiral tryptamine derivatives from its corresponding prochiral ketone substrates.
    Type: Application
    Filed: March 22, 2013
    Publication date: March 12, 2015
    Inventors: Jovana Nazor, Derek Smith, Michael Crowe, Shiwei Song, Steven J. Collier
  • Publication number: 20150068108
    Abstract: The present invention describes bacterial strains CECT 7968, CECT 7969 and NCIMB 42026 of the species B. subtilis, capable of expressing the heterologous synthetic mutated genes: pdc and adhB, originating from Z. mobilis, 'tesA, originating from E. coli, and atfl, originating from Acinetobacter sp. ADP1. Furthermore, said strains may overexpress at least one of the genes of the ACC (acetyl-CoA carboxylase) and acyl-CoA synthetase enzymatic complexes. The use of said strains produces an increase in the production of biofuel, preferably biodiesel from glycerin as the carbon source. Moreover, the present invention describes the use of said bacterial strains for the production of said biofuel, biodiesel, from glycerin, as well as a process for synthesising biofuel, preferably biodiesel, using the strains described in the present invention and the biofuel duly obtained.
    Type: Application
    Filed: August 17, 2012
    Publication date: March 12, 2015
    Applicant: IDEN BIOTECHNOLOGY, S.L.
    Inventors: Gustavo Enrique Schujman, Diego De Mendoza
  • Patent number: 8975053
    Abstract: An object is to efficiently produce thermostable catalase at low cost by expressing it as a recombinant protein in large quantity. A recombinant microorganism capable of efficiently expressing thermostable catalase can be provided by obtaining a DNA necessary for efficiently producing it as a recombinant protein, and the thermostable catalase can be efficiently produced at low cost by cultivating the obtained recombinant microorganism. Hydrogen peroxide can be efficiently decomposed at low cost, even at high temperature, by treating a solution containing hydrogen peroxide with the thermostable catalase of the present invention.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: March 10, 2015
    Assignee: Meiji Seika Pharma Co., Ltd.
    Inventors: Kaoru Okakura, Fusuke Mazuka, Takayoshi Fukushima, Koichiro Murashima
  • Patent number: 8975472
    Abstract: Preparation and use of isolated nucleic acids useful in altering the oil phenotype of plants are described. Isolated nucleic acids and their encoded polypeptides are described that alter the content of alpha-tocotrienol, beta-tocotrienol, or both, in transformed seeds and oil obtained from the transformed seeds. Expression cassettes, host cells and transformed plants are described that contain the foregoing nucleic acids.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: March 10, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventor: Knut Meyer
  • Patent number: 8975056
    Abstract: Alpha-amylases from Bacillus subtilis (AmyE), variants thereof, nucleic acids encoding the same, and host cells comprising the nucleic acids are provided. Methods of using AmyE or variants thereof are disclosed, including liquefaction and/or saccharification of starch. Such methods may yield sugars useful for ethanol production or high fructose corn syrup production. In some cases, the amylases can be used at low pH, in the absence of calcium, and/or in the absence of a glucoamylase.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: March 10, 2015
    Assignee: Danisco US Inc.
    Inventors: Luis G. Cascao-Pereira, William A. Cuevas, David A. Estell, Sang-Kyu Lee, Scott D. Power, Sandra W. Ramer, Amr Toppozada, Louise Wallace
  • Patent number: 8975063
    Abstract: The present invention relates to host cells that produce compounds that are characterized as benzylisoquinolines, as well as select precursors and intermediates thereof. The host cells comprise one, two or more heterologous coding sequences wherein each of the heterologous coding sequences encodes an enzyme involved in the metabolic pathway of a benzylisoquinoline, or its precursors or intermediates from a starting compound. The invention also relates to methods of producing the benzylisoquinoline, as well as select precursors and intermediates thereof by culturing the host cells under culture conditions that promote expression of the enzymes that produce the benzylisoquinoline or precursors or intermediates thereof.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: March 10, 2015
    Assignee: California Institute of Technology
    Inventors: D. Christina Smolke, Kristy Hawkins
  • Patent number: 8975059
    Abstract: The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: March 10, 2015
    Assignee: Novozymes A/S
    Inventors: Alfredo Lopez de Leon, Michael Rey
  • Patent number: 8975050
    Abstract: Described is a method for generating conjugated dienes through a biological process. More specifically, the application describes a method for producing conjugated dienes (for example butadiene, isoprene or dimethylbutadiene) from light alkenols via enzymatic dehydration, in particular by making use of an alkenol dehydratase.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: March 10, 2015
    Assignee: Scientist of Fortune, S.A.
    Inventor: Phillippe Marliere
  • Patent number: 8975048
    Abstract: Described herein are multimeric oxidoreductase complexes which function in the enzymatic conversion of a carbon substrate. The complexes comprise a dehydrogenase subunit and a cytochrome C subunit. Also described are polynucleotides coding for the multimeric complexes and methods of use thereof.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: March 10, 2015
    Assignee: Danisco US Inc.
    Inventors: Robert M. Caldwell, M. Harunur Rashid, Fernando Valle
  • Patent number: 8975040
    Abstract: The properties of an Fc-containing protein, for example, an antibody, are controlled by altering the sialylation of the oligosaccharides in the Fc region by transfecting the cell line expressing the Fc-containing protein with a vector sequence encoding a sialidase. The modified Fc-containing proteins have therapeutic utility in diseases or conditions in which it is desirable to control the affinity for one or more of the Fc?RI, Fc?RIIA, and Fc?RIIIA receptors, ADCC activity, macrophage or monocyte activation, serum half-life, and avidity.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: March 10, 2015
    Assignee: Janssen Biotech, Inc.
    Inventors: Michael Naso, T. Shantha Raju, Bernard Scallon
  • Patent number: 8975062
    Abstract: The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: March 10, 2015
    Assignee: Novozymes, Inc.
    Inventor: Nikolaj Spodsberg
  • Publication number: 20150064138
    Abstract: Various aspects and embodiments of the invention are directed to methods and compositions for reversing antibiotic resistance or virulence in and/or destroying pathogenic microbial cells such as, for example, pathogenic bacterial cells. The methods include exposing microbial cells to a delivery vehicle with at least one nucleic acid encoding an engineered autonomously distributed circuit that contains a programmable nuclease targeted to one or multiple genes of interest.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 5, 2015
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: TIMOTHY KUAN-TA LU, ROBERT JAMES CITORIK, MARK KYLE MIMEE
  • Publication number: 20150064789
    Abstract: Disclosed herein are compositions for linking DNA binding domains and cleavage domains (or cleavage half-domains) to form non-naturally occurring nucleases. Also described are methods of making and using compositions comprising these linkers.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 5, 2015
    Inventors: David Paschon, Lei Zhang
  • Publication number: 20150064716
    Abstract: The present invention provides native Goodpasture antigen binding protein isoforms, monoclonal antibodies directed against such proteins, and methods for their use.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 5, 2015
    Inventors: Juan Saus, Fernando Revert
  • Publication number: 20150064183
    Abstract: Targeted therapeutics that localize to a specific subcellular compartment such as the lysosome are provided. The targeted therapeutics include a therapeutic agent and a targeting moiety that binds a receptor on an exterior surface of the cell, permitting proper subcellular localization of the targeted therapeutic upon internalization of the receptor. Nucleic acids, cells, and methods relating to the practice of the invention are also provided.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 5, 2015
    Inventors: Jonathan LeBowitz, Stephen M. Beverley
  • Publication number: 20150064184
    Abstract: Provided herein are methods and compositions for treating a subject suffering from a deficiency in arylsulfatase A in the CNS. The methods include systemic administration of a bifunctional fusion antibody comprising an antibody to a human insulin receptor and an arylsulfatase A.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: William M. PARDRIDGE, Ruben J. BOADO
  • Publication number: 20150064736
    Abstract: Described herein are novel nucleic acids, proteins and methods that can be used to provide new catalysts with desirable traits for industrial processes. In particular, novel reductases isolated from the environment using PCR methods are described.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 5, 2015
    Applicant: DANISCO US INC.
    Inventors: Mark Donnelly, William H. Eschenfeldt, Jonathan Trent
  • Publication number: 20150064157
    Abstract: The present invention provides further improved compositions and methods for efficient lysosomal targeting based on the GILT technology. Among other things, the present invention provides methods and compositions for targeting lysosomal enzymes to lysosomes using furin-resistant lysosomal targeting peptides. The present invention also provides methods and compositions for targeting lysosomal enzymes to lysosomes using a lysosomal targeting peptide that has reduced or diminished binding affinity for the insulin receptor.
    Type: Application
    Filed: November 7, 2014
    Publication date: March 5, 2015
    Inventors: Jonathan H. LeBowitz, John Maga
  • Publication number: 20150065412
    Abstract: The present invention provides engineered protease variants. In particular, the protease variants comprise combinable mutations at selected surface positions that affect the charge and/or hydrophobicity of the enzyme to enhance at least one desired property of the resulting variant enzyme in a chosen application. Compositions comprising the protease variants, and methods for using the same are also provided.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 5, 2015
    Applicant: DANISCO US INC.
    Inventors: Luis G. Cascao-Pereira, David A. Estell, James T. Kellis, JR.
  • Publication number: 20150064159
    Abstract: Methods and compositions relating to the engineering of an improved protein with methionine-?-lyase enzyme activity are described. For example, in certain aspects there may be disclosed a modified cystathionine-?-lyase (CGL) comprising one or more amino acid substitutions and capable of degrading methionine. Furthermore, certain aspects of the invention provide compositions and methods for the treatment of cancer with methionine depletion using the disclosed proteins or nucleic acids.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: George GEORGIOU, Everett STONE, Wei-Cheng LU
  • Publication number: 20150064160
    Abstract: Methods and compositions related to the engineering of a protein with L-cyst(e)ine degrading enzyme activity are described. For example, in certain aspects there may be disclosed a modified cystathionine-?-lyase comprising one or more amino acid substitutions and capable of degrading L-cyst(e)ine. Furthermore, certain aspects of the invention provide compositions and methods for the treatment of cancer with L-cyst(e)ine using the disclosed proteins or nucleic acids.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: George GEORGIOU, Everett STONE
  • Publication number: 20150064752
    Abstract: A polypeptide conferring an acid-tolerant property on a yeast cell, a polynucleotide encoding the polypeptide, a yeast cell including an increased amount of the polypeptide, a method of producing a product by using the yeast cell, and a method of producing an acid-tolerant yeast cell are provided.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 5, 2015
    Inventors: WOO YONG LEE, CHANG DUK KANG, JU YOUNG LEE, KWANG MYUNG CHO
  • Publication number: 20150064137
    Abstract: Polypeptides, viruses, methods and compositions provided herein are useful for the selective elimination of senescent cells. Method aspects include methods for inducing apoptosis in a senescent cell comprising administering to the cell a polynucleotide, virus, host cell, or pharmaceutical composition described herein. Other methods include expressing a pro-apoptotic gene in a senescent cell comprising administering to the cell the polynucleotide, virus, or pharmaceutical composition as described herein.
    Type: Application
    Filed: April 16, 2013
    Publication date: March 5, 2015
    Applicant: Kythera Biopharmaceuticals, Inc.
    Inventors: Serge Lichtsteiner, Nathaniel David
  • Publication number: 20150064733
    Abstract: Compositions, devices, kits and methods are disclosed for assaying glucose with a glycosylated, modified flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH), variant thereof or an active fragment thereof, where at least one asparagine residue at positions N2, N168 and N346 of mature, wild-type A. oryzae FAD-GDH according to SEQ ID NO:2 is substituted by one or more amino acids not suitable for glycosylation, thereby eliminating or inactivating, respectively, a potential glycosylation site at this position.
    Type: Application
    Filed: October 30, 2014
    Publication date: March 5, 2015
    Inventors: Hartmut Duefel, Thomas Meier, Michael Tacke
  • Publication number: 20150064154
    Abstract: Methods and compositions related to the use of a protein with kynureninase activity are described. For example, in certain aspects there may be disclosed a modified kynureninase capable of degrading kynurenine. Furthermore, certain aspects of the invention provide compositions and methods for the treatment of cancer with kynurenine depletion using the disclosed proteins or nucleic acids.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: George GEORGIOU, Everett STONE
  • Publication number: 20150065380
    Abstract: The present invention relates to epilepsy-inducing brain somatic mutations which are associated with intractable epilepsy caused by malformations of cortical development, and uses thereof. More particularly, the present invention relates to an mTOR (Mammalian target of rapamycin) gene having mutations in a nucleotide sequence or an mTOR protein having mutations in an amino acid sequence resulting from the mutations in the nucleotide sequence. Further, the present invention relates to a technique for diagnosing intractable epilepsy caused by malformations of cortical development using the gene or the protein.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 5, 2015
    Inventors: Jeong Ho LEE, Dong Seok Kim, Hoon Chul Kang, Jae Seok Lim, Woo-II Kim
  • Patent number: 8969034
    Abstract: Methods and compositions have been described that relate to a newly identified polypeptide family wherein each member has O-glycosidase activity and specified sequence characteristics. This family of enzymes can be used for example for cleaving O-linked glycans and for synthesis of neoglycopeptides or neoglycoproteins.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: March 3, 2015
    Assignee: New England Biolabs, Inc.
    Inventors: Dimitris Koutsioulis, Ellen Guthrie