Chalcogen Bonded Directly To The Metal Patents (Class 556/146)
  • Patent number: 7754702
    Abstract: The present invention generally relates to treatment of iron-related conditions with iron carbohydrate complexes. One aspect of the invention is a method of treatment of iron-related conditions with a single unit dosage of at least about 0.6 grams of elemental iron via an iron carbohydrate complex. The method generally employs iron carbohydrate complexes with nearly neutral pH, physiological osmolarity, and stable and non-immunogenic carbohydrate components so as to rapidly administer high single unit doses of iron intravenously to patients in need thereof.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: July 13, 2010
    Assignee: Luitpold Pharmaceuticals, Inc.
    Inventors: Mary Jane Helenek, Marc L. Tokars, Richard P. Lawrence
  • Patent number: 7723493
    Abstract: Metal-containing complexes of a tridentate beta-ketoiminate, one embodiment of which is represented by the structure: wherein M is a metal such as calcium, strontium, barium, scandium, yttrium, lanthanum, titanium, zirconium, vanadium, tungsten, manganese, cobalt, iron, nickel, ruthenium, zinc, copper, palladium, platinum, iridium, rhenium, osmium; R1 is selected from the group consisting of alkyl, alkoxyalkyl, fluoroalkyl, cycloaliphatic, and aryl, having 1 to 10 carbon atoms; R2 is selected from the group consisting of hydrogen, alkyl, alkoxy, cycloaliphatic, and aryl; R3 is linear or branched selected from the group consisting of alkyl, alkoxyalkyl, fluoroalkyl, cycloaliphatic, and aryl; R4 is a branched alkylene bridge with at least one chiral center; R5-6 are individually linear or branched selected from the group consisting of alkyl, fluoroalkyl, cycloaliphatic, aryl, and can be connected to form a ring containing carbon, oxygen, or nitrogen atoms; n is an integer equal to the valence of the metal
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: May 25, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Xinjian Lei, Daniel P. Spence, Hansong Cheng
  • Publication number: 20100096600
    Abstract: The present invention relates to square planar transition metal complexes and their use in organic semiconductive materials as well as in electronic or optoelectronic components.
    Type: Application
    Filed: April 23, 2009
    Publication date: April 22, 2010
    Applicant: Novaled AG
    Inventors: Olaf Zeika, Ansgar Werner, Steffen Willmann
  • Patent number: 7691984
    Abstract: Metal-containing complexes of a tridentate beta-ketoiminate, one embodiment of which is represented by the structure: wherein M is a metal such as calcium, strontium, barium, scandium, yttrium, lanthanum, titanium, zirconium, vanadium, tungsten, manganese, cobalt, iron, nickel, ruthenium, zinc, copper, palladium, platinum, iridium, rhenium, osmium; R1 is selected from the group consisting of alkyl, fluoroalkyl, cycloaliphatic, and aryl, having 1 to 10 carbon atoms; R2 is selected from the group consisting of hydrogen, alkyl, alkoxy, cycloaliphatic, and aryl; R3 is linear or branched selected from the group consisting of alkylene, fluoroalkyl, cycloaliphatic, and aryl; R4 is a branched alkylene bridge with at least one chiral center; R5-6 are individually linear or branched selected from the group consisting of alkyl, fluoroalkyl, cycloaliphatic, aryl, and can be connected to form a ring containing carbon, oxygen, or nitrogen atoms; n is an integer equal to the valence of the metal M.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: April 6, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Xinjian Lei, Daniel P. Spence, Hansong Cheng
  • Publication number: 20090173665
    Abstract: Oil soluble catalysts are used to convert polynuclear aromatic compounds in a hydrocarbon feedstock to higher value mono-aromatic compounds. The catalyst complex includes a catalytic metal center that is bonded to a plurality of organic ligands that make the catalyst complex oil-soluble. The ligands include an aromatic ring and a ligand spacer group. The ligand spacer group provides spacing of 2-6 atoms between the metal center and the aromatic ring. The spacing between the aromatic group and the catalytic metal center advantageously allows the catalyst to selectively crack polynuclear aromatic rings while preserving one of the aromatic rings, thereby increasing the content of mono-aromatic compounds in the hydrocarbon feedstock.
    Type: Application
    Filed: January 3, 2008
    Publication date: July 9, 2009
    Applicant: HEADWATERS TECHNOLOGY INNOVATION, LLC
    Inventors: Bing Zhou, Zhenhua Zhou, Zhihua Wu
  • Patent number: 7550618
    Abstract: The present invention relates to a preparation of iron(II) acetate powder from low grade magnetite and comprises the following steps: (a) adding organic acid to low grade magnetite powder to obtain iron solution; (b) adding hydroxide to the iron solution to obtain iron hydroxide; and (c) adding acetic acid to the iron hydroxide, thereby obtaining iron(II) acetate. According to the present invention, it is possible to obtain high purity iron(II) acetate using low grade magnetite and there are advantages of mass producible environmentally-friendly simple process and prevention of corrosion of facilities.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: June 23, 2009
    Assignee: Korea Institute of Geoscience & Mineral Resources
    Inventors: Hee Dong Jang, Yong Jae Suh, Dae Sup Kil, Kee Kahb Koo, Jae Kyeong Kim, Han Sang Oh
  • Publication number: 20090136677
    Abstract: Metal-containing complexes of a tridentate beta-ketoiminate, one embodiment of which is represented by the structure: wherein M is a metal such as calcium, strontium, barium, scandium, yttrium, lanthanum, titanium, zirconium, vanadium, tungsten, manganese, cobalt, iron, nickel, ruthenium, zinc, copper, palladium, platinum, iridium, rhenium, osmium; R1 is selected from the group consisting of alkyl, fluoroalkyl, cycloaliphatic, and aryl, having 1 to 10 carbon atoms; R2 is selected from the group consisting of hydrogen, alkyl, alkoxy, cycloaliphatic, and aryl; R3 is linear or branched selected from the group consisting of alkylene, fluoroalkyl, cycloaliphatic, and aryl; R4 is a branched alkylene bridge with at least one chiral center; R5-6 are individually linear or branched selected from the group consisting of alkyl, fluoroalkyl, cycloaliphatic, aryl, and can be connected to form a ring containing carbon, oxygen, or nitrogen atoms; n is an integer equal to the valence of the metal M.
    Type: Application
    Filed: November 27, 2007
    Publication date: May 28, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Xinjian Lei, Daniel P. Spence, Hansong Cheng
  • Publication number: 20090029135
    Abstract: A pressure-sensitive adhesive containing a near infrared absorbing dye having excellent shielding function for near infrared rays and excellent in durability is provided. A pressure-sensitive adhesive containing a near infrared absorbing dye, wherein the layer of the pressure-sensitive adhesive has a thickness of 25±5 ?m and absorption intensity at the maximum absorption wavelength of the near infrared absorbing dye after light resistance test is 50% or more for absorption intensity before the test in the light resistance test in which light with an irradiance of 64.5 W/m2 at a wavelength of 300 to 400 nm is irradiated for the layer for 160 hours.
    Type: Application
    Filed: April 28, 2006
    Publication date: January 29, 2009
    Applicant: API CORPORATION
    Inventors: Wataru Sato, Kumiko Okamoto, Yasuyo Saito, Masahiro Kawashima, Takeshi Kaneda
  • Publication number: 20090030214
    Abstract: Peroxo-carbonates derived from molten alkali and/or Group II metal salts, particularly carbonate salts are used as catalysts in oxidation and epoxidation reactions, transition metal compounds may be included to improve the selectivity of the reactions.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 29, 2009
    Inventors: Helge Jaensch, Gary David Mohr
  • Patent number: 7482450
    Abstract: The present invention relates to a process for preparing highly pure tris-ortho-metallated organoiridium compounds and such pure organometallic compounds which may find use as coloring components in the near future as functional components (=functional materials) in a series of different types of applications which can be classed within the electronics industry in the widest sense.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: January 27, 2009
    Assignee: Merck Patent GmbH
    Inventors: Ingrid Bach, Philipp Stössel, Hubert Spreitzer
  • Patent number: 7462732
    Abstract: A volatile nickel aminoalkoxide complex of formula (I) can form a nickel thin film having an improved quality by metal organic chemical vapor deposition (MOCVD).
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: December 9, 2008
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Yunsoo Kim, Chang-Gyoun Kim, Young-Kuk Lee, Taek-Mo Chung, Ki-Seok An, Sun-Sook Lee, Seung-Ho Yoo, Kiwhan Sung
  • Publication number: 20080299046
    Abstract: Methods for controlling surface functionality of metal oxide nanoparticles, nanoparticles having controlled surface functionality, and uses thereof are described herein. Methods for controlling the surface functionality of a metal oxide nanoparticle are can include attaching a ligand to a metal oxide nanoparticle, where the ligand can include a functional portion that is capable of forming an irreversible bond with an object at a site that is complementary to the functional portion without reacting with other reactive sites that may be present. Moreover, metal oxide nanoparticles having versatile ligands can include an anchoring portion that binds to the surface of the metal oxide nanoparticle and a functional portion that is capable of forming an irreversible bond with an object at a site that is complementary to the functional portion without reacting with other reactive sites that may be present.
    Type: Application
    Filed: October 16, 2007
    Publication date: December 4, 2008
    Applicant: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Meghann A. White, Jeffrey T. Koberstein, Nicholas J. Turro
  • Publication number: 20080297044
    Abstract: A metal sulfide nanocrystal manufactured by a method of reacting a metal precursor and an alkyl thiol in a solvent, wherein the alkyl thiol reacts with the metal precursor to form the metal sulfide nanocrystals, wherein the alkyl thiol is present on the surface of the metal sulfide nanocrystal, wherein the alkyl thiol is bonded to the sulfur crystal lattice. A metal sulfide nanocrystal manufactured with a core-shell structure by a method of reacting a metal precursor and an alkyl thiol in a solvent to form a metal sulfide layer on the surface of a core, wherein the alkyl thiol is present on the surface of the metal sulfide nanocrystal, wherein the alkyl thiol is bonded to the sulfur crystal lattice. These metal sulfide nanocrystals can have a uniform particle size at the nanometer-scale level, selective and desired crystal structures, and various shapes.
    Type: Application
    Filed: July 17, 2008
    Publication date: December 4, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Shin Ae Jun, Eun Joo Jang, Seong Jae Choi
  • Publication number: 20080275253
    Abstract: A practical and efficient method for halogenation of activated carbon atoms using readily available N-haloimides and a Lewis acid catalyst has been disclosed. This methodology is applicable to a range of compounds and any halogen atom can be directly introduced to the substrate. The mild reaction conditions, easy workup procedure and simple operation make this method valuable from both an environmental and preparative point of view.
    Type: Application
    Filed: February 29, 2008
    Publication date: November 6, 2008
    Inventors: Yanhua Zhang, Hisashi Yamamoto, Kazutaka Shibatomi
  • Publication number: 20080254216
    Abstract: [PROBLEMS] To provide a metal complex compound capable of being suitably used for manufacturing a metal-containing thin film by the CVD method and a method for preparing a metal-containing thin film. [MEANS FOR SOLVING PROBLEMS] A metal complex compound comprising a ?-diketonato ligand having an alkoxyalkyl-methyl group, and a method for preparing a metal-containing thin film using the metal complex compound by the CVD method.
    Type: Application
    Filed: March 15, 2005
    Publication date: October 16, 2008
    Applicant: Ube Industries, Ltd.
    Inventors: Takumi Kadota, Chihiro Hasegawa, Kouhei Watanuki, Hiroyuki Sakurai, Hiroki Kanato
  • Publication number: 20080176940
    Abstract: The present invention describes Photolabile Compounds methods for use of the compounds. The Photolabile Compounds have a photoreleasable ligand, which can be biologically active, and which is photoreleased from the compound upon exposure to light. In one embodiment, the light is visible light, which is not detrimental to the viability of biological samples, such as cells and tissues, in which the released organic molecule is bioactive and can have a therapeutic effect.
    Type: Application
    Filed: December 14, 2004
    Publication date: July 24, 2008
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Roberto Etchenique, Rafael Yuste, Luis Baraldo
  • Publication number: 20080171890
    Abstract: A volatile nickel aminoalkoxide complex of formula (I) can form a nickel thin film having an improved quality by metal organic chemical vapor deposition (MOCVD).
    Type: Application
    Filed: April 7, 2005
    Publication date: July 17, 2008
    Applicant: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Yunsoo Kim, Chang-Gyoun Kim, Young-Kuk Lee, Taek-Mo Chung, Ki-Seok An, Sun-Sook Lee, Seung-Ho Yoo, Kiwhan Sung
  • Publication number: 20080121870
    Abstract: Briefly described, embodiments of this disclosure include transition-metal charge-transport materials, methods of forming transition-metal charge-transport materials, and methods of using the transition-metal charge-transport materials.
    Type: Application
    Filed: June 14, 2005
    Publication date: May 29, 2008
    Inventors: Marder Seth, Jian-Yang Cho, Bernard Kippelen, Benoit Domercq, Steve Barlow
  • Patent number: 7361415
    Abstract: Disclosed are emissive materials of formula (I) or (II), comprising two bidentate NO-type ligands, or a tetradentate NOON-type ligand, and a transition metal. The emissive materials are useful as electrophosphorescent emitters in organic light-emitting devices. Also disclosed are methods for preparing organic light-emitting diodes comprising these emissive materials, and the use of such diodes as white and yellow organic light-emitting devices.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: April 22, 2008
    Assignee: The University of Hong Kong
    Inventors: Chi-Ming Che, Siu-Chung Chan
  • Patent number: 7335238
    Abstract: The present invention relates to the manufacture of ferrous picrate and the preparation of fuel additives containing ferrous picrate. A process for producing ferrous picrate includes dissolving picric acid in a mixture of an aromatic hydrocarbon and an aliphatic alcohol in the presence of a trace amount of water and a metallic iron, thus forming a ferrous picrate solution. The ferrous picrate solution is blended with an organic solvent to form the fuel additive. Ferrous picrate produced by the product is also described.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: February 26, 2008
    Assignee: RDI Construction
    Inventor: Alan F. Elliott
  • Patent number: 7247687
    Abstract: This invention relates to a transition metal compound represented by the formula LMX wherein M is a Group 3 to 11 metal L is a bulky bidentate or tridentate neutral ligand that is bonded to M by two or three heteroatoms and at least one heteroatom is nitrogen; X is a substituted or unsubstituted catecholate ligand provided that the substituted catecholate ligand does not contain a 1,2-diketone functionality.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: July 24, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Vladimir Kuzunich Cherkasov, Michael Paviovich Bubnov, Nikolay Olegovich Druzhkov, Valentina Nikolavena Glushakova, Irina Alexandrovna Teplova, Nina Aleksandrovna Skorodumova, Gleb Arsent′evich Abakumov, Cynthia A. Ballinger, Kevin R. Squire, Jo Ann Marie Canich, Enock Berluche, Lisa Saunders Baugh, Donald Norman Schulz, Baiyi Zhao
  • Patent number: 7030200
    Abstract: Late transition metal complexes of certain ligands which contain phosphinidine and/or imine groups are useful as components of polymerization catalysts for olefins. Useful metals in the complexes include Ni, Pd, Fe and Co. Oligomers and/or polymers of olefins such as ethylene can be made.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: April 18, 2006
    Assignees: E.I. du Pont de Nemours and Company, University of North Carolina
    Inventors: Maurice Brookhart, Olafs Daugulis
  • Patent number: 7005531
    Abstract: The present invention refers to a method for making iron(III)gluconate complex, preferably alkali iron(III)gluconate complex. The method includes the following steps: (i) mixing a water soluble iron(III)salt in aqueous solution, simultaneously or in any desired sequence, with a member selected from gluconic acid, a water soluble salt of gluconic acid and combinations thereof, and a member selected from an alkali hydroxide, an alkali carbonate, an alkali hydrogen carbonate and combinations thereof, so that the reaction mixture has an acid value (pH-value) within the range of from 7.0 to 12, provided that when alkali hydroxide is used, gluconic acid or a water soluble salt of gluconic acid is provided at the beginning of the reaction or is added to the reaction mixture simultaneously with the alkali hydroxide; (ii) heating the reaction mixture until the iron(III)gluconate complex has formed; and (iii) adding an organic solvent which is miscible with water until the iron(III)gluconate complex is precipitated.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: February 28, 2006
    Assignee: Cilag AG
    Inventors: Michael Justus, Rolf Hänseler
  • Patent number: 6965045
    Abstract: An organic metal precursors containing one or more organic ligands bonded to one or more metal atoms, wherein the organic ligand is rapidly dissociated from the metal atom upon exposure to light and degraded leaving a metal or a metal oxide. By using the organic metal precursors, an electroconductive, metal-containing patterned film can be easily deposited on a substrate at room temperature under atmospheric pressure without using photosensitive resins.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: November 15, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won Cheol Jung, Seok Chang, Soon Taik Hwang, Young Hun Byun
  • Patent number: 6933399
    Abstract: Described herein are metal complexes having the formula wherein M is nickel, palladium, or platinum; Q1-Q4 are each independently sulfur, selenium, or tellurium; X1-X4 are each independently a divalent linking group having 1 to about 125 carbons; m1 to m4 are each independently 0 or 1; and W1-W4 are each independently hydrogen, carboxylic acid, carboxylic acid anhydride, carboxylic acid chloride, sulfonic acid, or sulfonyl chloride, with the proviso that W1-W4 are not all hydrogen. The complexes have strong absorptions in the near infrared.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: August 23, 2005
    Assignee: The University of Connecticut
    Inventors: Ulrich T. Mueller-Westerhoff, Richard W. Sanders
  • Patent number: 6919467
    Abstract: The present invention provides a catalyst precursor and catalyst system comprising the precursor, an embodiment of the precursor is selected from the following structures: wherein T is a bridging group; M is selected from Groups 3 to 7 atoms, and the Lanthanide series of atoms the Periodic Table of the Elements; Z is a coordination ligand; each L is a monovalent, bivalent, or trivalent anionic ligand; X and Y are each independently selected from nitrogen, oxygen, sulfur, and phosphorus; R is a non-bulky substituent that has relatively low steric hindrance with respect to X; and R? is a bulky substituent that is sterically hindering with respect to Y.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: July 19, 2005
    Assignee: Univation Technologies, LLC
    Inventor: Rex Eugene Murray
  • Patent number: 6828454
    Abstract: Complexes of the formula I where M═Ni, Pd; process for preparing the metal complexes and the use of the complexes obtainable in this way for the polymerization and copolymerization of olefins, for example in suspension polymerization processes, gas-phase polymerization processes and bulk polymerization processes.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: December 7, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Marc Oliver Kristen, Peter Preishuber-Pflügl, Benno Bildstein, Alexander Krajete
  • Patent number: 6784319
    Abstract: Compositions comprising (±)-2-((dimethylamino)methyl)cyclohexanone, a transition-metal salt, and an organic solvent and methods of preparing (±)-cis-2-((dimethylamino)methyl)-1-(aryl)cyclohexanols, in particular (±)-cis-2-((dimethylamino)methyl)-1-(3-methoxyphenyl)cyclohexanol, are disclosed herein. In one embodiment, the (±)-2-((dimethylamino)methyl)cyclohexanone and transition-metal salt are in the form of a (±)-2-((dimethylamino)methyl)cyclohexanone:transition-metal salt complex. In another embodimemt, aryl is 3-methoxyphenyl.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: August 31, 2004
    Assignee: Euro-Celtique, S.A.
    Inventors: Robert J. Kupper, Andreas Stumpf
  • Publication number: 20040158089
    Abstract: A fuel additive containing ferrous picrate produced by a process involving placing a non-powdered metallic iron, such as wire composed of an alloy of iron or steel wool, in any solution of picric acid in a solvent that is known in the art for reacting with iron to produce ferrous picrate. The wire can be suspended in the solution or placed upon the bottom of a reaction vessel that holds the solution. Preferably the wire is loosely coiled, at least when placed upon the bottom of a reaction vessel.
    Type: Application
    Filed: December 23, 2003
    Publication date: August 12, 2004
    Inventors: Alan F. Elliott, David M. Stewart
  • Publication number: 20040152909
    Abstract: A fuel additive containing ferrous picrate produced by a process comprising placing an enclosed iron containing metallic source in a solution of picric acid in a solvent that reacts with iron to produce ferrous picrate. Enclosure of the iron containing metallic source is accomplished with an isolating material. Enclosure may be achieved by completely surrounding the iron containing metallic source with the isolating material or by installing a filter comprising the isolating material on the downstream or the upstream side of a vessel holding the iron containing metallic source and through which the picric acid and liquid containing the picric acid are circulated. If the iron containing metallic source has been completely surrounded, it is placed into the solution. The solution may be agitated. If a filter or filters are utilized, the solution is circulated through the vessel holding the iron containing metallic source.
    Type: Application
    Filed: December 23, 2003
    Publication date: August 5, 2004
    Inventors: Alan Frederick Elliott, David M. Stewart, George Riegel
  • Patent number: 6770773
    Abstract: The present invention relates to ferroxanes and a method of making wherein a ferroxane may be defined by the general formula [Fe(O)x(OH)y(O2CR)z]n wherein x, y and z may be any integer or fraction such that 2x+y+z=3 and n may be any integer. The ferroxanes may be doped with at least one other element other than iron. The present invention further relates to a ceramic made from the ferroxanes of the present invention and a method of making. The present invention still further relates to supported and unsupported membranes made from the ceramic of the present invention.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: August 3, 2004
    Assignee: William Marsh Rice University
    Inventors: Jerome Rose, Mark Wiesner, Andrew Barron
  • Patent number: 6693211
    Abstract: This invention provides a process for preparing sodium ferric gluconate complex in sucrose using the following steps: a) combining a ferric salt solution with a weak alkali chosen from the group consisting of alkaline earth metal and ammonium salts, such as sodium carbonate, sodium bicarbonate, lithium carbonate, potassium carbonate, potassium bicarbonate, ammonium carbonate, ammonium bicarbonate and mixtures thereof, to form the ferric oxyhydroxide; b) combining ferric oxyhydroxide and sodium gluconate in solution to yield the sodium ferric gluconate complex; c) isolating the sodium ferric gluconate complex; and d) combining the sodium ferric gluconate with sucrose in solution to yield the desired sodium ferric gluconate complex in sucrose.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: February 17, 2004
    Assignee: Geneva Pharmaceuticals, Inc.
    Inventors: Durga Kumari, Mahendra R. Patel
  • Publication number: 20040010165
    Abstract: The present invention provides new coordinative catalysts for the polymerization of alkylene oxides.
    Type: Application
    Filed: April 21, 2003
    Publication date: January 15, 2004
    Inventors: Gerhard Erker, Alexander Snell
  • Publication number: 20030225296
    Abstract: Described herein are metal complexes having the formula 1
    Type: Application
    Filed: May 2, 2003
    Publication date: December 4, 2003
    Inventors: Ulrich T. Mueller-Westerhoff, Richard W. Sanders
  • Publication number: 20030213166
    Abstract: A fuel additive containing ferrous picrate produced by a process involving placing wire composed of an alloy of iron in any solution of picric acid in a solvent that is known in the art for reacting with iron to produce ferrous picrate. The wire can be suspended in the solution or placed upon the bottom of a reaction vessel that holds the solution. Preferably the wire is loosely coiled, at least when placed upon the bottom of a reaction vessel. Also preferably, after a concentrated fuel additive has been prepared, to the concentrate is added so much of a pre-mix solution produced by the steps of (a) dissolving picric acid in the same kind of solvent that was utilized to produce the solution into which the steel wool was placed and (b) removing water from the precursor to the pre-mix solution thus produced and so much of the same kind of alcohol that was utilized to produce the solution into which the steel wool was placed that the final product produced thereby contains approximately 1.
    Type: Application
    Filed: May 16, 2002
    Publication date: November 20, 2003
    Inventor: David M. Stewart
  • Publication number: 20030213167
    Abstract: A process for producing ferrous picrate and a fuel additive containing ferrous picrate involving placing wire composed of an alloy of iron in any solution of picric acid in a solvent that is known in the art for reacting with iron to produce ferrous picrate. The wire can be suspended in the solution or placed upon the bottom of a reaction vessel that holds the solution. Preferably the wire is loosely coiled, at least when placed upon the bottom of a reaction vessel. Also preferably, after a concentrated fuel additive has been prepared, to the concentrate is added so much of a pre-mix solution produced by the steps of (a) dissolving picric acid in the same kind of solvent that was utilized to produce the solution into which the steel wool was placed and (b) removing water from the precursor to the pre-mix solution thus produced and so much of the same kind of alcohol that was utilized to produce the solution into which the steel wool was placed that the final product produced thereby contains approximately 1.
    Type: Application
    Filed: May 16, 2002
    Publication date: November 20, 2003
    Inventor: David M. Stewart
  • Patent number: 6649783
    Abstract: Compositions comprising (±)-2-((dimethylamino)methyl)cyclohexanone, a transition-metal salt, and an organic solvent and methods of preparing (±)-cis-2-((dimethylamino)methyl)-1-(aryl)cyclohexanols, in particular (±)-cis-2-((dimethylamino)methyl)-1-(3-methoxyphenyl)cyclohexanol, are disclosed herein. In one embodiment, the (±)-2-((dimethylamino)methyl)cyclohexanone and transition-metal salt are in the form of a (±)-2-((dimethylamino)methyl)cyclohexanone:transition-metal salt complex. In another embodimemt, aryl is 3-methoxyphenyl.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: November 18, 2003
    Assignee: Euro-Celtique, S.A.
    Inventors: Robert J. Kupper, Andreas Stumpf
  • Publication number: 20030181320
    Abstract: The present invention relates to ferroxanes and a method of making wherein a ferroxane may be defined by the general formula [Fe(O)x(OH)y(O2CR)z]n wherein x, y and z may be any integer or fraction such that 2x+y+z=3 and n may be any integer. The ferroxanes may be doped with at least one other element other than iron. The present invention further relates to a ceramic made from the ferroxanes of the present invention and a method of making. The present invention still further relates to supported and unsupported membranes made from the ceramic of the present invention.
    Type: Application
    Filed: January 24, 2003
    Publication date: September 25, 2003
    Inventors: Jerome Rose, Mark Wiesner, Andrew Barron
  • Publication number: 20030175596
    Abstract: The present invention relates to a non-aqueous electrolyte additive for improving safety and a lithium secondary battery comprising the same, and more particularly to a non-aqueous electrolyte additive that can improve cycle life and safety properties of a lithium ion secondary battery.
    Type: Application
    Filed: December 31, 2002
    Publication date: September 18, 2003
    Inventors: Hong-Kyu Park, Jeh-Won Choi, Yeon-hee Lee, Young-Tack An, Hyeong-Jin Kim
  • Patent number: 6599587
    Abstract: Disclosed is an organometallic precursor for forming a metal pattern, having a structure defined by the following Formula 1, and a method of forming the metal pattern using the same, in which the conductive metal pattern is readily formed through an exposing step without using a photo-resist.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: July 29, 2003
    Assignee: Samsung Eleectronics Co., Ltd.
    Inventors: Min Chul Chung, Soon Taik Hwang, Young Hun Byun, Euk Che Hwang
  • Publication number: 20030055276
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and a complex that incorporates a Group 3 to 10 transition metal and at least one chelating dianionic bis(allyl) or bis(benzyl) ligand. The ligands are often easy to make, and they are readily incorporated into transition metal complexes. By modifying the structure of the dianionic ligand, polyolefin makers can control comonomer incorporation, catalyst activity, and polymer properties.
    Type: Application
    Filed: July 17, 2001
    Publication date: March 20, 2003
    Inventors: Sandor Nagy, Karen L. Neal-Hawkins, Jonathan L. Schuchardt
  • Publication number: 20020128502
    Abstract: Enclosed are high refractive index and low birefringence organic/inorganic hybrid materials useful for optical applications. They are prepared from solventless metal aliphatic acryl alkoxides. The metal acryl alkoxides are synthesized from exchanging acryl alcohol with metal alkoxides, and are hydrolyzed into metal oxide nanoparticles and are well dispersed in the acrylate matrix. Then they are polymerized into organic/inorganic hybrid materials containing metal oxide in polyacrylate.
    Type: Application
    Filed: January 30, 2002
    Publication date: September 12, 2002
    Applicant: POLE-CHIC CORPORATION
    Inventors: Wei-Fang Su, Hsiao-Kuan Yuan
  • Patent number: 6441164
    Abstract: Wurster's crown ligands comprise a macrocyclic ligand such as a crown ether in which a hetero atom is substituted with a 1,4-phenylenediamine group. The phenylenediamine group is covalently bound to the macrocyclic ligand by one or both of the amine nitrogens, the amine nitrogen thereby substituting for the hetero atom of the macrocyclic ligand. The resulting compounds are redox active. Methods of making and using the compounds are also disclosed.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: August 27, 2002
    Assignee: East Carolina University
    Inventor: John W. Sibert
  • Patent number: 6433270
    Abstract: ORGANOMETALLIC COORDINATION complexes exhibiting two separate, stable forms are described. Conversion from one form to the other is intramolecular, reversible, light-activated (a molecular switch) and occurs both in the solid and in solution. The two forms differ in photochemical and electrochemical characteristics (different colors and reduction potentials). The complexes can be used in information storage and for light-gathering, light-emitting, sensing and detecting applications.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: August 13, 2002
    Assignee: California Institute of Technology
    Inventor: Jeffrey J. Rack
  • Patent number: 6359159
    Abstract: Chemical vapor deposition processes utilize as precursors volatile metal complexes with ligands containing metalloid elements silicon, germanium, tin or lead.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: March 19, 2002
    Assignee: Research Foundation of State University of New York
    Inventors: John T. Welch, Paul J. Toscano, Rolf Claessen, Andrei Kornilov, Kulbinder Kumar Banger
  • Patent number: 6355821
    Abstract: Methods of forming metal alkoxides and methods of forming precursor solutions of metal alkoxides suitable for the coating of glass in the manufacture of electrochromic devices are disclosed. The method of forming metal alkoxides involves dissolving the metal halide in an anhydrous solvent and reacting it with an alcohol and (together with the addition of the alcohol or subsequently) adding an epoxide, and then evaporating-off the volatile components of the reaction product to leave a solid metal alkoxide that is substantially free of halide. The alkoxide may then be dissolved in a solvent including an alcohol (preferably ethanol) containing a small proportion of water to produce a precursor solution suitable for coating glass, the coating then being hydrolyzed to form a sol-gel and then baked to remove volatile components and to yield a thin layer of metal oxide.
    Type: Grant
    Filed: July 5, 2000
    Date of Patent: March 12, 2002
    Assignee: Sustainable Technologies Australia Limited
    Inventors: Andrew Joseph Koplick, Susan Marie Jenkins
  • Patent number: 6340768
    Abstract: Volatile metal complexes with &agr;-sila-&bgr;-diketonate ligands containing haloalkyl, and particularly, perfluoroalkyl, substitutents are useful as metal precursors for chemical vapor deposition processes and as nanostructured materials containing fluorous domains.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: January 22, 2002
    Assignee: Research Foundation of State University of New York
    Inventors: John T. Welch, Kulbinder Kumar Banger, Seiichiro Higashiya, Silvana C. Ngo
  • Publication number: 20020006867
    Abstract: The disclosed invention relates to a composite material for use in recovery of radionuclides, metals, and halogenated hydrocarbons from aqueous media. The material has very high surface area, and includes nanometer sized, zero-valent iron on a support. The material can be used to remediate aqueous media which have contaminants such as radionuclides, metals and halogenated hydrocarbons from aqueous media.
    Type: Application
    Filed: April 13, 2001
    Publication date: January 17, 2002
    Applicant: The Penn State Research Foundation
    Inventors: Sherman M. Ponder, Thomas F. Mallouk
  • Patent number: 6303805
    Abstract: The metallocene complexes according to the present invention are prepared by reacting a transition metal complex of Group III-X of the Periodic Table, having at least one cycloalkanedienyl group, with a compound having at least two functional groups. The transition metal complex has a main ligand such as a cycloalkanedienyl group and at least one ancillary ligand which coordinated to a transition metal of Group III-X. The functional groups in the compound having at least two functional group are selected from the group consisting of a hydroxyl group (—OH), a thiol group (—SH), a primary amine group (—NH2), a secondary amine group (RNH—), a tertiary amine group (RR′N) a primary phosphorous group (—PH2), a secondary phosphorous group (RPH—), a tertiary phosphorous group (RR′P), a thiirane group etc.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: October 16, 2001
    Assignee: Samsung General Chemical Co., Ltd.
    Inventors: Yi-Yeol Lyu, Duck-Joo Yang, Keun-Byoung Yoon, Seok Chang, Won-Cheol Jung
  • Patent number: 6278056
    Abstract: A metal complex represented by the formula: (X)nML1L2, (X)2M(L1)2 or (L1)2ML2 wherein M represents a Group VIII metal, X represents a polar group, L1 represents a phenanthroline containing at least one carboxyl group which may be neutralized, L2 represents a nitrogen-containing polycyclic compound which may contain one or more substituents, and n is an integer of 1 or 2. A dye-sensitized oxide semiconductor electrode includes an electrically conductive body, an oxide semiconductor film provided on a surface of the electrically conductive body, and the above metal complex. A solar cell may be constructed from the above dye-sensitized oxide semiconductor electrode, a counter electrode, and a redox electrolyte contacting with both electrodes.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: August 21, 2001
    Assignee: Director-General of Agency of Industrial Science and Technology
    Inventors: Hideki Sugihara, Hironori Arakawa, Kazuhiro Sayama, Lok Pratap Singh, Mohammad Khaja Nazeeruddin, Michael Graetzel