Adding Hydrogen To Unsaturated Bond Of Hydrocarbon, I.e., Hydrogenation Patents (Class 585/250)
  • Patent number: 7074971
    Abstract: The present invention provides new highly-efficient separation processes and systems for separating polymerization-grade ethylene and propylene from an initial effluent stream comprising ethane, ethylene, propylene, dimethyl ether, and one or more of propane, acetylene, methyl acetylene, propadiene, methane, hydrogen, carbon monoxide, carbon dioxide and C4+ components. In one embodiment, the initial effluent stream is provided from a methanol-to-olefin reaction system. It has been discovered that the best separation of these components is realized when DME is selectively removed in a first separation step, followed by separation of the remaining components in additional separation steps.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: July 11, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Van Egmond, Jeffrey L. Brinen
  • Patent number: 7056485
    Abstract: The invention is directed to a continuous hydrogenation process in which a hydrogenable compound is dissolved in a working solution with hydrogen and a heterogeneous catalyst. At least part of the hydrogen-containing waste hydrogenation gas generated in the reaction is compressed and then recycled into the hydrogenation reactor. A jet pump is used for the compression of the waste hydrogenation gas and a liquid or gaseous feedstock of the hydrogenation process is used as the motive agent. Preferred motive agents are the hydrogenation gas or a working solution recycled into the process. The process is particularly suitable for performing the hydrogenation step in the anthraquinone process for the production of hydrogen peroxide.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: June 6, 2006
    Assignee: Degussa AG
    Inventors: Matthias Creutz, Hubertus Eickhoff, Bernhard Maurer
  • Patent number: 7053256
    Abstract: A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form ?-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by ?-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: May 30, 2006
    Assignee: The Regents of the University of Michigan
    Inventors: Ralph T. Yang, Frances H. Yang, Akira Takahashi, Arturo J. Hernandez-Maldonado
  • Patent number: 7041847
    Abstract: The invention relates to a method for cleaning crude terephthalic acid by means of catalytic, hydrogenating aftertreatment using a catalyst material containing at least one hydrogenation metal applied to a carbon carrier consisting of carbon fibres. The invention also relates to a catalyst consisting of the at least one catalyst material containing the at least one hydrogenation metal applied to the carbon fibres, the BET surface of the carbon carrier being <500 m2/g, and a monolithic catalyst consisting of said at least one catalyst material containing the at least one hydrogenation material applied to the carbon fibres, and at least one support element or skeleton element which differs from the catalyst material and is connected to the same, said element mechanically supporting the catalyst material and maintaining the same in a monolithic form.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: May 9, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Mathias Haake, Ekkehard Schwab, Michael Koch, Hans-Joachim Müller, Manfred Stroezel, Hermann Petersen, Peter Schreyer
  • Patent number: 7038096
    Abstract: A process of treating a catalyst composition containing palladium, an inorganic support, and a catalyst component, such as silver and/or a modifier such as alkali metal fluoride, is provided. The process involves contacting a catalyst composition with a first treating agent comprising carbon monoxide under a first treating condition to provide a treated catalyst composition. As an option, such treated catalyst composition can then be contacted with a second treating agent comprising a hydrogen-containing fluid under a second treating condition. The treated catalyst composition can be used in a selective hydrogenation process in which highly unsaturated hydrocarbons such as diolefins and/or alkynes are contacted with such treated catalyst composition in the presence of hydrogen to produce less unsaturated hydrocarbons such as monoolefins.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: May 2, 2006
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Joseph J. Bergmeister, Marvin M. Johnson
  • Patent number: 7014750
    Abstract: Systems and processes for the hydrotreatment of pyrolysis gasoline comprising reactors, monolithic catalyst beds and hydrogen-containing treatment gases that allow for improved efficiency and productivity over conventional trickle bed processes and systems for such hydrotreatment.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: March 21, 2006
    Assignee: Corning Incorporated
    Inventors: Thorsten R. Boger, Shantanu Roy, Charles M. Sorensen, Jr.
  • Patent number: 7011807
    Abstract: Supported reactive catalysts having a controlled coordination structure and methods for their production are disclosed. The supported catalysts of the present invention are useful for the preparation of hydrogen peroxide with high selectivity in addition to other chemical conversion reactions. The supported catalyst comprises catalyst particles having top or outer layer of atoms in which at least a portion of the atoms exhibit a controlled coordination number of 2. The catalyst and methods may be used for the concurrent in situ and ex situ conversion of organic compounds. In addition, a process is provided for catalytically producing hydrogen peroxide from hydrogen and oxygen feeds by contacting them with the catalysts of the invention and a suitable organic liquid solvent having a Solvent Selection Parameter (SSP) between 0.14×10?4 and 5.0×10?4.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: March 14, 2006
    Assignee: Headwaters Nanokinetix, Inc.
    Inventors: Bing Zhou, Michael Rueter, Sukesh Parasher
  • Patent number: 6937940
    Abstract: With compounds for drugs, agricultural chemicals, etc., the invention provides a novel method for superposing molecular structures of those compounds.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: August 30, 2005
    Assignee: Kyorin Pharmaceutical Co., Ltd.
    Inventors: Shuichi Hirono, Kazuhiko Iwase
  • Patent number: 6869917
    Abstract: The present invention relates to a fully formulated lubicants comprising poly ?-olefins (PAOs), prepared from a mixed ?-olefin feed, which exhibit superior Noack volatility at low pour points, and methods for preparing the fully formulated lubricants. The fully formulated lubricants include PAOs that include mixtures of 1-decene and 1-dodecene. The PAOs may be prepared by polymerization/oligomerization using an alcohol promoted BF3 in conjunction with a combination of co-catalysts.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: March 22, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Douglas E. Deckman, Mark D. Winemiller, William L. Maxwell, David J. Baillargeon, Norman Yang, Maria Caridad B. Goze
  • Patent number: 6861042
    Abstract: A continuous catalytic hydrogenation process, in which a reaction mixture containing the substance to be hydrogenated, the hydrogenation product, hydrogen and the hydrogenation catalyst suspended in the reaction mixture is recirculated in a reactor. Part of the hydrogenation product is removed from the reactor and the substance to be hydrogenated and hydrogen are fed into the reaction. In this process the substance to be hydrogenated and the hydrogen are mixed before entering the reactor. A venturi nozzle is particularly suitable as the mixing device.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: March 1, 2005
    Assignee: Degussa AG
    Inventors: Peter Korl, Bernhard Maurer
  • Patent number: 6858769
    Abstract: A catalyst for the selective oxidation of hydrogen has been developed. It comprises an inert core such as cordierite and an outer layer comprising a lithium aluminate support. The support has dispersed thereon a platinum group metal and a promoter metal, e.g. platinum and tin respectively. This catalyst is particularly effective in the selective oxidation of hydrogen in a dehydrogenation process.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: February 22, 2005
    Assignee: UOP LLC
    Inventors: Guy B. Woodle, Andrew S. Zarchy, Jeffery C. Bricker, Andrzej Z. Ringwelski
  • Patent number: 6849664
    Abstract: The present invention relates to the use of deactivatable biocides in cooling water systems of industrial processes that require dissipation of heat. The present invention relates to methods of inhibiting growth and reproduction of microorganisms in the cooling water comprising adding the deactivatable biocides to the cooling water and irreversibly deactivating the deactivatable biocides before or upon disposal of the cooling water.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: February 1, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kirk T. O'Reilly, Michael E. Moir, Dennis J. O'Rear, Richard O. Moore, Jr.
  • Publication number: 20040260130
    Abstract: A process for total hydrogenation of polyunsaturated compounds that have n nonsaturations that are contained in a hydrocarbon feedstock in the presence of a catalytic reactor with a hydrogen-selective membrane is described. This process comprises the introduction of said feedstock that is co-mixed with hydrogen into a reaction zone of said reactor, the contact of hydrogen with the face that is upstream from said membrane, which is inorganic and porous, then the catalytic reaction of said feedstock with hydrogen that has selectively traversed the membrane.
    Type: Application
    Filed: February 2, 2004
    Publication date: December 23, 2004
    Inventors: Christope Chau, Denis Uzio
  • Publication number: 20040249227
    Abstract: The present invention concerns in general a biosensor in the form of a microchip for the optical detection of analytes and a method using this biosensor. In particular the invention concerns biosensors for detecting an analyte by time-resolved luminescence measurement and a corresponding method.
    Type: Application
    Filed: July 9, 2004
    Publication date: December 9, 2004
    Inventors: Holger Klapproth, Mirko Lehmann
  • Patent number: 6824675
    Abstract: A device for producing and distributing a polyphase mixture between two fluids comprises a chamber for the passage of a first fluid, said chamber being pierced by perforated tubes or conduits to pass a second fluid in a different physical state than the first fluid or not miscible with the first fluid through the chamber, said tubes being pierced by at least one orifice allowing passage of the first fluid and mixing between the fluids via the tubes. The second fluid is injected upstream of said device and the first fluid is injected into said device.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: November 30, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Boyer, Vincent Coupard, Bertrand Fanget
  • Patent number: 6794525
    Abstract: An (R) or (S) chiral diphosphine of formula (I): wherein R and R1, which can be identical or different, represent an optionally saturated C1-10 alkyl group, an optionally saturated C3-9 cycloalkyl group, a C5-10 aryl group, the groups being optionally substituted by a halogen, a hydroxy, a C1-5 alkoxy, an amino, a sulfino, a sulonfyl, with R4 representing an alkyl, an alkoxy or an alkylcarbonyl, the alkyl, cycloalkyl, aryl groups optionally including one or more heteroatoms, or R and R1 together represent an optionally saturated C2-6 substituted alkyl group, an optionally saturated C3-9 cycloalkyl group, a C5-10 aryl group, the cycloalkyl or aryl groups being optionally substituted by a C1-5 alkyl, a halogen, a hydroxy, a C1-5 alkoxy, an amino, a sulfino, a sulonfyl, with R4 representing an alkyl, an alkoxy or an alkylcarbonyl, the alkyl, cycloalkyl, aryl groups optionally including one or more heteroatoms, R2 and R3, which can be identical or different, represent an optionally saturated C3-
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: September 21, 2004
    Assignee: PPG-SIPSY
    Inventors: Michel Bulliard, Blandine Laboue, Sonia Roussiasse
  • Patent number: 6747179
    Abstract: A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: June 8, 2004
    Assignees: North Carolina State University, The University of North Carolina at Chapel Hill, Regents of University of California
    Inventors: Joseph M. DeSimone, Eva Birnbaum, Ruben G. Carbonell, Stephanie Crette, James B. McClain, T. Mark McCleskey, Kimberly R. Powell, Timothy J. Romack, William Tumas
  • Patent number: 6747180
    Abstract: Metal catalysts comprising hollow forms or spheres are made of metal alloy and optionally activated. The metal catalysts can be used for the hydrogenation, dehydrogenation, isomerization reductive alkylation, reductive amination, and/or hydration reaction of organic compounds.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: June 8, 2004
    Assignees: Degussa AG, Fraunhofer-Gesellschaft zur Föderung der Angewandten Forschung E.V.
    Inventors: Daniel Ostgard, Peter Panster, Claus Rehren, Monika Berweiler, Günter Stephani, Lothar Schneider
  • Publication number: 20040097761
    Abstract: A microemulsion containing water, a densified fluid, a surfactant, and an organometallic catalyst is used to catalyze chemical reactions. The organometallic catalyst preferably has substantial solubility in the water phase of the microemulsion. Separation of reaction products from the microemulsion is facilitated by removal of the densified fluid.
    Type: Application
    Filed: August 15, 2003
    Publication date: May 20, 2004
    Inventors: Can Erkey, Xing Dong
  • Patent number: 6726850
    Abstract: A multistage catalytic partial oxidation (CPO) process for oxidizing a hydrocarbon feedstream comprising C1-C4 hydrocarbons, with an oxygen-containing feedstream to produce a product comprising CO and H2, also known as synthesis gas or syngas.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: April 27, 2004
    Inventors: Sebastian C. Reyes, Jennifer S. Feeley, Frank Hershkowitz, Harry W. Deckman, Ioannis P. Androulakis
  • Publication number: 20040068149
    Abstract: The invention concerns a hydrogen generating system, characterised in that it combines a water-corrodible metal, an inorganic material, said material having a specific surface capable of fixing the oxide and/or hydroxide form(s) of said metals generated during corrosion. The invention also concerns a method for generating hydrogen and its uses, in particular in a hydrodehalogenation process of halogenated organic compounds present in aqueous media to be purified.
    Type: Application
    Filed: November 6, 2003
    Publication date: April 8, 2004
    Inventors: Philippe Marion, Cecile Rosier
  • Patent number: 6700030
    Abstract: A process for converting hydrocarbons in the presence of a catalyst is described that is carried out in a three-phase reactor in which the liquid Peclet number is in the range 0 (excluded) to about 10, with a superficial gas velocity Ug that is preferably less than 35 cm.s−1, to encourage gas transfer into the liquid phase and avoid too much attrition of the catalyst grains.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: March 2, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Marc Schweitzer, Pierre Galtier, Francois Hugues, Cristina Maretto
  • Publication number: 20040033908
    Abstract: The present invention relates to a fully formulated lubicants comprising poly &agr;-olefins (PAOs), prepared from a mixed &agr;-olefin feed, which exhibit superior Noack volatility at low pour points, and methods for preparing the fully formulated lubricants. The fully formulated lubricants include PAOs that include mixtures of 1-decene and 1-dodecene. The PAOs may be prepared by polymerization/oligomerization using an alcohol promoted BF3 in conjunction with a combination of co-catalysts.
    Type: Application
    Filed: August 16, 2002
    Publication date: February 19, 2004
    Inventors: Douglas E. Deckman, Mark D. Winemiller, William L. Maxwell, David J. Baillargeon, Norman Yang, Maria Caridad B. Goze
  • Publication number: 20040014826
    Abstract: Embodiments include methods and apparatus for arranging multiple reaction zones such that at least one hot spot in one of the reaction zones is moderated by a cooler spot in an adjacent reaction zone.
    Type: Application
    Filed: July 16, 2002
    Publication date: January 22, 2004
    Applicant: Conoco Inc.
    Inventors: Daxiang Wang, Bang Cheng Xu, Yi Jiang
  • Patent number: 6656439
    Abstract: Pillared trioctahedral micas and/or vermiculites are prepared. The process includes a conditioning operation for the partial reduction of the layer charge through an accelerated weathering process, and also includes a pillaring operation.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: December 2, 2003
    Assignee: Université Catholique de Louvain
    Inventors: Georges Poncelet, Francisco Del Rey
  • Publication number: 20030220187
    Abstract: The present invention relates to a composite for catalytic distillation, comprising a substrate material, and a modifying material and an active material, wherein said substrate material is made of porous materials, said modified material comprises at least one metal oxide, and said active material comprises an active component for a catalytic reaction. The catalytic distillation composite according to the present invention serves as both distillation packings and catalysts, and can allow catalysts to make the best of its effenciency, provide sufficient contact areas between gas and liquid phases, which facilitates mass transfer between gas and liquid phases, boosts effects in both reaction and separation and is liable for filling, removing and utilizing in industries.
    Type: Application
    Filed: February 6, 2003
    Publication date: November 27, 2003
    Inventors: Yuanyi Yang, Dongfeng Li, Wei Dai, Shuo Chen, Guoqing Wang, Lihua Liao, Jianmin Cheng, Yanlai Guo, Hui Peng
  • Patent number: 6653509
    Abstract: A catalyst which consists of amorphous carbon with molecular planes that have curved surfaces and contain six-membered and non-six-membered carbon rings, optionally having at least one catalytically active, low-valency metal covalently bound thereto. Methods of producing the catalyst and applications thereof are included.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: November 25, 2003
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Robert Schlögl, Michael Wohlers, Thilo Belz, Thomas Braun
  • Publication number: 20030201206
    Abstract: Pillared trioctahedral micas and/or vermiculites are prepared. The process includes a conditioning operation for the partial reduction of the layer charge through an accelerated weathering process, and also includes a pillaring operation.
    Type: Application
    Filed: March 8, 2001
    Publication date: October 30, 2003
    Inventors: Georges Poncelet, Francisco Del Rey
  • Patent number: 6616909
    Abstract: Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: September 9, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Robert S. Wegeng, Yufei Gao
  • Patent number: 6617064
    Abstract: The present invention features methods for preparing stabilized &agr;-AlH3 and &agr;′-AlH3, compositions containing these alane polymorphs, e.g., energetic compositions such as rocket propellants, and methods for using the novel polymorphs as chemical reducing agents, polymerization catalysts, and as a hydrogen source in fuel cells and batteries. The method produces stabilized alane by treating &agr;-AlH3 with an acidic solution that optionally contains a stabilizing agent such as an electron donor, an electron acceptor, or a compound which coordinates the Al3+ ion.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: September 9, 2003
    Assignee: SRI International
    Inventors: Mark A. Petrie, Jeffrey C. Bottaro, Robert J. Schmitt, Paul E. Penwell, David C. Bomberger
  • Publication number: 20030149318
    Abstract: Process to prepare a water-white lubricating base oil having a saturates content of more than 90 wt %, a sulphur content of less than 0.03 wt % and a viscosity index of between 80-120 by subjecting a non-water-white hydrocarbon feed having a lower saturates content than the desired saturates content to a hydrogenation step, the hydrogenation step comprising contacting the feed with hydrogen in the presence of a hydrogenation catalyst, wherein the contacting is performed in two steps: (a) contacting the hydrocarbon feed with hydrogen in the presence of a hydrogenation catalyst at a temperature of above 300° C. and at a WSHV of between 0.3 and 2 kg of oil per litre of catalyst per hour, and (b) contacting the intermediate product obtained in step (a) with hydrogen in the presence of a hydrogenation catalyst at a temperature of below 280° C.
    Type: Application
    Filed: January 17, 2003
    Publication date: August 7, 2003
    Inventors: Gerard Benard, Patrick Moureaux
  • Publication number: 20030149317
    Abstract: Catalysts and composite materials comprised of catalytically active materials intercalated with alkali metals and/or optionally coated on alkali metals or combinations of alkali and alkali earth metals are disclosed. Also disclosed are methods for enhancing reactions between hydrogen and organic materials by reacting said catalysts with solvents where such reactions generate a portion of the hydrogen and heat necessary to cause the desired reaction between an organic material and hydrogen and also act to fracture said catalytically active material into higher surface area particles with enhanced catalytic ability. Said catalysts may be dispersed in immiscible aprotic solvents to enhance transportation and safety considerations prior to use.
    Type: Application
    Filed: February 4, 2003
    Publication date: August 7, 2003
    Inventor: David Deck Rendina
  • Publication number: 20030106837
    Abstract: A fixed-bed reactor is described for carrying out reactions of fluid reaction mixtures in the presence of a particulate heterogeneous catalyst having a structured packing which forms interstices in the reactor interior, in which the quotient of the hydraulic diameter for the fluid flow through the structured packing and the equivalent diameter of the catalyst particles is in the range from 2 to 20, preferably in the range from 5 to 10, to such an extent that the catalyst particles are introduced into the interstices, loosely distributed and discharged under the action of gravity.
    Type: Application
    Filed: December 4, 2002
    Publication date: June 12, 2003
    Inventors: Gerd Kaibel, Christian Miller, Helmut Jansen, Bjorn Kaibel
  • Publication number: 20030105371
    Abstract: The invention concerns a method for converting hydrocarbons in the presence of a catalyst carried out in a three-phase reactor and wherein the liquid Peclet number ranges between 0 (excluded) and about 10, and the gas surface speed Ug is preferably less than 35 sm.s−1, so as to promote the transfer, of gas into the liquid phase and avoid too much attrition of the catalyst grains.
    Type: Application
    Filed: September 26, 2002
    Publication date: June 5, 2003
    Inventors: Jean-Marc Schweitzer, Pierre Galtier, Francois Hugues, Cristina Maretto
  • Patent number: 6541676
    Abstract: The present invention relates to gas separation membranes including a metal-based layer having sub-micron scale thicknesses. The metal-based layer can be a palladium alloy supported by ceramic layers such as a silicon oxide layer and a silicon nitride layer. By using MEMS, a series of perforations (holes) can be patterned to allow chemical components to access both sides of the metal-based layer. Heaters and temperature sensing devices can also be patterned on the membrane. The present invention also relates to a portable power generation system at a chemical microreactor comprising the gas separation membrane. The invention is also directed to a method for fabricating a gas separation membrane. Due to the ability to make chemical microreactors of very small sizes, a series of reactors can be used in combination on a silicon surface to produce an integrated gas membrane device.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: April 1, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Aleksander J. Franz, Klavs F. Jensen, Martin A. Schmidt, Samara Firebaugh
  • Patent number: 6534436
    Abstract: The invention relates to catalysts comprising cobalt supported on a solid silica support and, in particular, to a method for manufacturing such catalysts. The catalysts may be prepared by slurrying a silica powder or impregnating a silica particle with a solution of a cobalt compound, cobalt amine carbonate, and aging the resulting slurry or solid at elevated temperature; the cobalt amine carbonate is decomposed and precipitated as basic cobalt carbonate onto the silica support. Preferably, the catalysts have a cobalt surface area in the range of 25 to >100 m2 per gram total cobalt. The catalyst may be used in hydrogenation reactions, Fischer-Tropsch reactions and oxidation reactions.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: March 18, 2003
    Assignee: Imperial Chemical Industries PLC
    Inventors: Cornelis M Lok, Stephen Bailey, Gavin Gray
  • Publication number: 20030050523
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component of at least one lanthanide element or yttrium component, which is preferably ytterbium, and at least one platinum-group metal component which is preferably platinum.
    Type: Application
    Filed: August 29, 2001
    Publication date: March 13, 2003
    Inventors: Ralph D. Gillespie, Michelle J. Cohn
  • Patent number: 6515157
    Abstract: Ferrocenyldiphosphin-ruthenium complexes are new and good catalysts for the hydrogenation of exocyclic double bond of d-Thiophene 3 to d-Thiophane 4, both of which are intermediates of D-Biotin 1 synthesis. in which R signifies —OCH3(3a), —OCH2CH3(3b), —CH2COOH(3c), CH2COOCH3(3d) or —CH2COOEt(3e) and Bz signifies benzyl group.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: February 4, 2003
    Inventors: Hong-Sun Uh, Jeong-Ho Song, Myung-Jin Lee
  • Patent number: 6508931
    Abstract: A process for the production of white oil includes adding a supercritical fluid (propane, butane or carbon dioxide) to the base oil and hydrogen injected into a reactor for hydrogenation. The base oil and supercritical fluid use high-pressure injector pumps as the feed system. The feed system for hydrogen uses a high-pressure compressor to compress hydrogen from a hydrogen tank to a storage tank, then a mass flow controller is used to steadily feed the hydrogen. A static mixer mounted in line, upstream from the inlet of the reactor mixes the reactant well. Several thermocouples are connected to the reactor, inlet and outlet of said reactor to measure the temperatures of the reaction. The detected data from the thermocouples are transferred to a six-point thermograph. The pressure of the reaction is maintained by a back pressure regulator that is mounted downstream from the outlet of said reactor. After the hydrogenation reaction is complete, the pressure of the fluid in the outlet of the reactor is reduced.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: January 21, 2003
    Assignee: Chinese Petroleum Corporation
    Inventors: Wen-Fa Lin, Jen-Min Chen, Jun-Yi Chen, Kuang-Hua Tsai
  • Patent number: 6492570
    Abstract: The invention provides a polynuclear compound comprising two or more metal-hapto-3-capped nidocarborane groups. Also provided is the use of such a compound as a catalyst in a chemical reaction such as a hydrogenation or oxidation reaction.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: December 10, 2002
    Assignee: British Nuclear Fuels PLC
    Inventors: Nigel Dennis Tinker, Kenneth Wade, Thomas Gibson Hibbert
  • Patent number: 6492525
    Abstract: The invention concerns novel organometallic complexes comprising cationic heterocyclic carbenes. It also concerns a method for preparing said complexes from dicationic heterocyclic precursor compounds. It further concerns the use as catalysts of said organometallic complexes for a certain number of chemical reactions.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: December 10, 2002
    Assignee: Rhodia Fiber & Resin Intermediates
    Inventors: Guy Bertrand, Lutz Stelzig, Olivier Guerret, Christophe Buron, Heinz Gornitzka, Paolo Burattin
  • Patent number: 6488838
    Abstract: The present invention is a chemical reactor and method for catalytic chemical reactions having gas phase reactants. The chemical reactor has reactor microchannels for flow of at least one reactant and at least one product, and a catalyst material wherein the at least one reactant contacts the catalyst material and reacts to form the at least one product. The improvement, according to the present invention is: the catalyst material is on a porous material having a porosity that resists bulk flow therethrough and permits molecular diffusion therein. The porous material further has a length, a width and a thickness, the porous material defining at least a portion of one wall of a bulk flow path through which the at least one reactant passes.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: December 3, 2002
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Sean P. Fitzgerald, Jennifer L. Marco, Gary L. Roberts, David P. Vanderwiel, Robert S. Wegeng
  • Publication number: 20020173683
    Abstract: Improved hydrogenation catalysts, catalyst formulations and methods employing them. Activity of Ru(II) complexes as hydrogenation catalysts is enhanced by addition of Lewis base as a cocatalyst.
    Type: Application
    Filed: January 16, 2002
    Publication date: November 21, 2002
    Inventor: Peter Chen
  • Patent number: 6482997
    Abstract: In a catalyst process involving a conversion reaction for organic compounds, e.g. hydrogenations, the catalyst contains at least one support and at least one metal, and is characterized in that it has particles of an average size greater than approximately 1 nm, and more than 80% of particles, the size of which is comprised in the range D±(D.0.2) where D represents the average size of the particles. The catalyst is prepared in a colloidal suspension, in aqueous phase, of the metal oxide or metals to be supported, then depositing this suspension on a support, and optionally reducing the oxide thus supported.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: November 19, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Carine Petit-Clair, Blaise Didillon, Denis Uzio
  • Patent number: 6476283
    Abstract: Organic compounds are hydrogenated in the presence of certain bis(pentadienyl) divalent Group IV metal complexes having &pgr;-bound, neutral, conjugated diene ligands. These complexes are effective hydrogenation catalysts for polymers containing ethylenic unsaturation. They further provide for selective hydrogenation of ethylenic unsaturation sites in the presence of aromatic groups.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: November 5, 2002
    Assignee: The Dow Chemical Company
    Inventors: David D. Devore, James C. Stevens, Stephen F. Hahn, Francis J. Timmers, David R. Wilson
  • Patent number: 6455746
    Abstract: The invention concerns ultrafine polymetallic particles obtained from reducing a mixture of salts dissolved in an organic solvent by an alkali or alkaline earth metal hydride, at a temperature not higher than the solvent reflux temperature, the mixture of dissolved salts comprising at least a salt of a metal having a standard oxidant potential E°Mn+/M at 25° C. higher than −1.18 V. The invention is applicable to the hydrogenation of olefins and the coupling of halogenated aromatic derivatives.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: September 24, 2002
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Jean-Marie Dubois, Yves Fort, Olivier Tillement
  • Patent number: 6455023
    Abstract: Carbon monolith-supported catalysts with high leach resistance used in catalytic applications involving strong acidic and basic conditions in a pH range of from 0 to 6.5 and from 7.5 to 14, are respectively described. The leach resistance of the catalyst system originates from strong interaction between the catalyst and the unsaturated valence of the carbon surface. In addition to surprisingly high resistance to leach out, the catalysts also have substantial differential advantages in catalyst performance: catalyst activity, selectivity, and stability.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: September 24, 2002
    Assignee: Corning Incorporated
    Inventors: Kishor P. Gadkaree, Tinghong Tao
  • Patent number: 6433242
    Abstract: The invention relates to a process for separating dibutenes into an n-octene-containing fraction and a dimethylhexene-containing fraction. The fractions can be processed further separately to the corresponding C9 carboxylic acids and C9 alcohols (isononanols). Successor products of the C9 carboxylic acids include, for example, vinyl esters. Successor products of the C9 alcohols include plasticizers.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: August 13, 2002
    Assignee: OXENO Olefinchemie GmbH
    Inventor: Klaus-Diether Wiese
  • Publication number: 20020107423
    Abstract: A process for hydrogenating a polymer, which process comprises contacting a polymer containing an olefinic unsaturated group with hydrogen in the presence of a hydrogenation catalyst to hydrogenate the olefinic unsaturated group of the polymer, and recycling at least one part of the hydrogenated polymer for hydrogenation. According to the process of the present invention, there can be provided a polymer having a desirable degree of hydrogenation steadily for a long period.
    Type: Application
    Filed: February 19, 2002
    Publication date: August 8, 2002
    Inventors: Koichi Miyamoto, Yasumasa Yamakoshi, Toshinori Shiraki
  • Publication number: 20020052532
    Abstract: A continuous catalytic hydrogenation process, in which a reaction mixture containing the substance to be hydrogenated, the hydrogenation product, hydrogen and the hydrogenation catalyst suspended in the reaction mixture is recirculated in a reactor. Part of the hydrogenation product is removed from the reactor and the substance to be hydrogenated and hydrogen are fed into the reaction. In this process the substance to be hydrogenated and the hydrogen are mixed before entering the reactor. A venturi nozzle is particularly suitable as the mixing device.
    Type: Application
    Filed: October 19, 2001
    Publication date: May 2, 2002
    Inventors: Peter Korl, Bernhard Maurer