Hydrogenation Of Diolefin Or Triple Bond Patents (Class 585/259)
  • Patent number: 6794552
    Abstract: A catalyst composition is provided which can be used for hydrogenating a highly unsaturated hydrocarbon such as an alkyne or a diolefin. The catalyst composition contains palladium, a catalyst component of either silver or an alkali metal compound, or both silver and an alkali metal compound, and a metal aluminate catalyst support. Such metal aluminate catalyst support is prepared by a process of incorporating alumina with a metal component, preferably impregnating alumina with a melted metal component, to thereby provide a metal-incorporated alumina followed by drying and high temperature calcining to thereby provide a metal aluminate catalyst support. The catalyst composition disclosed can be used for hydrogenating a highly unsaturated hydrocarbon to a less unsaturated hydrocarbon. The process involves contacting a highly unsaturated hydrocarbon with a catalyst composition in the presence of hydrogen under a hydrogenation condition sufficient to effect a hydrogenation of the highly unsaturated hydrocarbon.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: September 21, 2004
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack Peter Cheung, Darin B. Tiedtke, Marvin M. Johnson, Gary A. Delzer
  • Publication number: 20040176651
    Abstract: Catalysts have been discovered that are useful in hydrogenation reactions, and particularly for the selective hydrogenation of acetylene and/or methyl acetylene (MA) and/or propadiene (PD) in light olefin-rich feedstreams. These catalysts can selectively hydrogenate acetylene with less selectivity to making oligomers (green oil) as compared with existing commercial catalysts, particularly palladium catalysts. These catalysts are non-palladium catalysts, and have three different constituents that are metal or metal-based components. The metal of the first constituent may be nickel or platinum, the metal of the second constituent may be from Groups 1-10, and the metal of the third constituent may be from Groups 11-12, where the Groups are of the Periodic Table of Elements (new IUPAC notation).
    Type: Application
    Filed: March 4, 2003
    Publication date: September 9, 2004
    Inventors: Michel Molinier, John Di-Yi Ou, Michael A. Risch
  • Patent number: 6781023
    Abstract: Bromine reactive hydrocarbon contaminants are removed from aromatic streams by first providing an aromatic feedstream having a negligible diene level. The feedstream is contacted with an acid active catalyst composition under conditions sufficient to remove mono-olefins. An aromatic stream may be pretreated to remove dienes by contacting the stream with clay, hydrogenation or hydrotreating catalyst under conditions sufficient to substantially remove dienes but not mono-olefins.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: August 24, 2004
    Assignee: ExxonMobil Oil Corporation
    Inventors: Stephen H. Brown, Terry E. Helton, Arthur P. Werner
  • Patent number: 6774274
    Abstract: The cationic iridium carbene complexes [Ir(cod)(N)(L)]X have been synthesized by reaction of [Ir(cod)(py)2]PF6 with L or NL ligands. Complexes of this type are active hydrogenation catalysts capable of hydrogenating simple olefins at room temperature and atmospheric pressure of hydrogen or by transfer hydrogenation.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: August 10, 2004
    Assignee: University of New Orleans Research and Technology Foundation, Inc.
    Inventors: Steven P. Nolan, Hon Man Lee, Anna C. Hillier
  • Patent number: 6759562
    Abstract: Presented is an improvement to a previous invention involving the catalytic hydrogenation of the C2 to C5 and heavier acetylenes and dienes in a thermally cracked feed stream without significantly hydrogenating the C2 and C3 olefins. The improvement involves the use of a fixed bed hydrogenation reactor system in combination with a modified version of the catalytic distillation unit used in the prior art. The modification to the catalytic distillation unit involves improvement of the liquid recycle scheme. The fixed bed reactors combined with the modified catalytic distillation allows for 100% conversion of acetylene and helps to maintain high conversion of the other dienes and acetylenes with no ethylene or propylene conversion under a variety of conditions. These condition variations include but are not limited to the feed diene and acetylene composition, the mol % carbon monoxide in the feed, and catalyst deactivation.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: July 6, 2004
    Assignee: ABB Lummus Global Inc.
    Inventors: Robert J. Gartside, Robert I. Haines, Thomas Skourlis, Charles Sumner
  • Publication number: 20040122274
    Abstract: Disclosed is a method and apparatus for removing highly unsaturated contaminants from an effluent stream produced by an oxygenates to olefins process. The oxygenates to olefins process produces an effluent that contains low concentrations of acetylene, methyl acetylene and propadiene. These contaminants can be removed using a “front-end” scheme, which utilizes internally generated hydrogen, to selectively hydrogenate these highly unsaturated contaminants without significant loss of olefin products.
    Type: Application
    Filed: March 5, 2003
    Publication date: June 24, 2004
    Inventors: Cor F. Van Egmond, John Richard Shutt
  • Patent number: 6747181
    Abstract: The invention relates to a process for the hydrogenation of phenyl acetylene in a styrene-containing medium with the aid of a supported nickel catalyst with a nickel content of 10-25 wt. %. This process is by preference used for the hydrogenation of phenyl acetylene in a styrene-containing medium which contains more that 30 wt. % of styrene.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: June 8, 2004
    Assignee: DSM N.V.
    Inventors: Hubertus J. M. Bosman, Edwin J. Grootendorst, Leonardus H. Postma, Theodorus M. Smeets
  • Publication number: 20040102666
    Abstract: An improved selective hydrogenation process for removing acetylenic impurities such as vinyl acetylene, ethyl acetylene, propyl acetylene and acetylene in a steam cracked crude butadiene stream by selective hydrogenation is carried out in two steps. In the first step, the partial selective hydrogenation is carried out in a fixed bed with a copper based catalyst to have the ratio of vinyl acetylene to ethyl acetylene in a range of from 0 to about 1, preferably from about 0.01 to 0.6, in the product stream. In the second step, the selective hydrogenation of the remaining C4 acetylenic impurities is carried out to completion in the catalytic distillation mode using a palladium promoted copper catalyst, an improved palladium catalyst or a combination of these two.
    Type: Application
    Filed: October 6, 2003
    Publication date: May 27, 2004
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: J. Yong Ryu
  • Patent number: 6740787
    Abstract: A process for treatment of a batch with four carbon atoms that contains diene compounds and a minor portion of acetylene compounds is described. A portion of the fluid that circulates in a distillation zone that is enriched with acetylene compounds is drawn off laterally, preferably in the drainage zone, and a selective hydrogenation stage is carried out in a hydrogenation zone that is outside the distillation zone. The hydrogenation effluent that is produced is recycled in the rectification zone. A C4 fraction that comprises butadiene and that is low in acetylene compounds is recovered at the top, and a C5 fraction that is enriched with oligomers is recovered at the bottom.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: May 25, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Mathieu Pinault, Vincent Coupard, Christophe Boyer
  • Publication number: 20040092783
    Abstract: An improved selective hydrogenation process for removing acetylenic impurities such as vinyl acetylene, ethyl acetylene, propyl acetylene and acetylene in a steam cracked crude butadiene stream by selective hydrogenation is carried out in two steps. In the first step, the partial selective hydrogenation is carried out in a fixed bed with a copper based catalyst to have the ratio of vinyl acetylene to ethyl acetylene in a range of from 0 to about 1, preferably from about 0.01 to 0.6, in the product stream. In the second step, the selective hydrogenation of the remaining C4 acetylenic impurities is carried out to the completion in the catalytic distillation mode using a palladium promoted copper catalyst, an improved palladium catalyst or a combination of these two.
    Type: Application
    Filed: November 8, 2002
    Publication date: May 13, 2004
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: J. Yong Ryu
  • Patent number: 6734328
    Abstract: An improved selective hydrogenation process for removing acetylenic impurities such as vinyl acetylene, ethyl acetylene, propyl acetylene and acetylene in a steam cracked crude butadiene stream by selective hydrogenation is carried out in two steps. In the first step, the partial selective hydrogenation is carried out in a fixed bed with a copper-based catalyst to have the ratio of vinyl acetylene to ethyl acetylene in a range of from 0 to about 1, preferably from about 0.01 to 0.6, in the product stream. In the second step, the selective hydrogenation of the remaining C4 acetylenic impurities is carried out to completion in the catalytic distillation mode using a palladium promoted copper catalyst, an improved palladium catalyst or a combination of these two.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: May 11, 2004
    Assignee: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Patent number: 6709639
    Abstract: An apparatus for the purification of catalytic cracking gasolines containing dienic and/or acetylenic impurities, and mercaptans, said apparatus comprising at least one selective hydrogenation reactor 3 containing at least one fixed catalyst bed, and having at least one line 1 for introducing a feed, at least one effluent outlet line, and a line supplying hydrogen to the reactor, said reactor being followed by at least one stabilization drum 4 connected to said effluent outlet line, the drum having at least one gas outlet line 5 and at least one stabilized effluent outlet line, and said effluent passing into at least one sweetening reactor 8 comprising at least one effluent inlet line 6 and at least one effluent outlet line, said reactor having close thereto at least one oxidizing agent supply line, said apparatus also comprising at least one drum 9 for degassing the effluent from the sweetening reactor 8, said drum 9 having at least one gas outlet line and at least one outlet line 11 for dedienized, stabiliz
    Type: Grant
    Filed: March 9, 2000
    Date of Patent: March 23, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Thierry Chapus, Blaise Didillon, Christian Marcilly, Charles Cameron
  • Patent number: 6693225
    Abstract: Hydrogenation of a liquid cut containing hydrocarbons, in particular unsaturated molecules containing at least two double bonds or at least one triple bond, is described wherein the unsaturated molecules are at least partially hydrogenated to less unsaturated molecules containing at least one double bond, in at least one reactor comprising at least two distinct beds of at least one hydrogenation catalyst, and wherein a gas phase containing hydrogen is introduced, a portion thereof being mixed with said cut upstream of the first catalyst bed and a portion thereof being introduced upstream of the subsequent beds contained in said reactor.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: February 17, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Boyer, Vincent Coupard, Quentin Debuisschert
  • Patent number: 6692635
    Abstract: Process for the production of gasoline with a low sulfur content that comprises at least the following two stages: a) a hydrogenation stage of the unsaturated sulfur containing compounds, b) a decomposition stage of saturated sulfur containing compounds, and optionally a preliminary stage for pretreatment of the feedstock such as selective hydrogenation of dienes.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: February 17, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Blaise Didillon, Denis Uzio, Nathalie Marchal
  • Publication number: 20040030207
    Abstract: A process for removing acetylenic compounds using unsulfided metallic nickel or unsulfided metallic nickel modified with metallic Mo, Re, Bi or mixtures in which the catalyst is used alone or is used in combination with other acetylenic selective catalysts. The unsulfided metallic nickel catalyst or modified catalyst must be the first catalyst to contact the hydrocarbon stream.
    Type: Application
    Filed: August 8, 2002
    Publication date: February 12, 2004
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: J. Yong Ryu, John R. Adams, Willibrord A. Groten
  • Patent number: 6689926
    Abstract: A process is disclosed which provides for the reduction of phenylacetylene levels in styrene monomer feedstreams, which process utilizes a normal styrene inhibitor additive, such as an hydroxylamine, injected into the styrene monomer feedstream immediately upstream of the phenylacetylene reduction reactor.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: February 10, 2004
    Assignee: Fina Technology, Inc.
    Inventor: James T. Merrill
  • Patent number: 6686510
    Abstract: A process for production, from an olefinic C4 fraction, on the one hand, of high-purity isobutene and, on the other hand, of propylene by metathesis is described. The process comprises three successive stages: 1) the selective hydrogenation of butadiene with isomerization of butene-1 into butene-2 up to thermodynamic equilibrium; 2) the separation by isobutene at the column head that integrates the hydroisomerization of n-butenes, allowing a butene-2 fraction at the bottom, and 3) the metathesis of the butene-2 fraction with ethylene. By this process, it is possible to produce in a very selective way high-purity isobutene and polymerization-quality propylene.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: February 3, 2004
    Assignee: Institut Français du Petrole
    Inventors: Dominique Commereuc, Blaise Didillon, Helene Olivier-Bourbigou, Lucien Saussine
  • Publication number: 20040019245
    Abstract: Presented is an improvement to a previous invention involving the catalytic hydrogenation of the C2 to C5 and heavier acetylenes and dienes in a thermally cracked feed stream without significantly hydrogenating the C2 and C3 olefins. The improvement involves the use of a fixed bed hydrogenation reactor system in combination with a modified version of the catalytic distillation unit used in the prior art. The modification to the catalytic distillation unit involves improvement of the liquid recycle scheme. The fixed bed reactors combined with the modified catalytic distillation allows for 100% conversion of acetylene and helps to maintain high conversion of the other dienes and acetylenes with no ethylene or propylene conversion under a variety of conditions. These condition variations include but are not limited to the feed diene and acetylene composition, the mol % carbon monoxide in the feed, and catalyst deactivation.
    Type: Application
    Filed: July 24, 2002
    Publication date: January 29, 2004
    Inventors: Robert J. Gartside, Robert I. Haines, Thomas Skourlis, Charles Sumner
  • Publication number: 20030233017
    Abstract: Acetylenes and dienes in a stream containing hydrogen, methane, C2-C6 olefins and paraffins, C2-C6 acetylenes and dienes, benzene, toluene, xylenes, and other C6+ components are hydrogenated in a downflow boiling point reactor wherein the heat of reaction is absorbed by the liquid in the reactor which produces a vapor. Besides the feed to the reactor there is a recirculating stream which is fed at a rate sufficient to ensure that the catalyst particles within the reactor are wetted. A third stream, which is taken from a downstream distillation column, is fed to provide the make up mass corresponding to the mass evaporated in the reactor. The composition of the this third stream controls the steady state composition of the liquid flowing through the reactor.
    Type: Application
    Filed: March 12, 2003
    Publication date: December 18, 2003
    Applicant: CATALYTIC DISTILLATION TECHOLOGIES
    Inventors: Abraham P. Gelbein, Lawrence A. Smith
  • Publication number: 20030225305
    Abstract: A method for stabilizing pyrolysis gasoline by hydrogenating same over a Group VIII metal catalyst wherein the catalyst is promoted against poisoning by at least one metal from Groups I B, VI B, VII B, and zinc. Poisons preferentially bind with the promoters and not with the active catalytic metals.
    Type: Application
    Filed: May 30, 2002
    Publication date: December 4, 2003
    Inventor: Mark P. Kaminsky
  • Publication number: 20030204120
    Abstract: In a selective hydrogenation process in which highly unsaturated hydrocarbons such as diolefins and/or alkynes are contacted with catalyst compositions containing palladium, an inorganic support and, optionally, a component silver or alkali metal fluoride in the presence of hydrogen to produce less unsaturated hydrocarbons such as monoolefins the catalyst is contacted with a fluid containing sulfur.
    Type: Application
    Filed: April 26, 2002
    Publication date: October 30, 2003
    Inventors: Joseph J. Bergmeister, David A. Young
  • Patent number: 6627778
    Abstract: The present invention provides an improved selective hydrogenation process for removing C10-C16 diolefins in the product from dehydrogenation of C10-C16 paraffins to mono-olefins, which process includes bringing the mixture stream of paraffins and olefins containing C10-C16 mono-olefins and C10-C16 diolefins into contact with a specific hydrogenation catalyst in a plurality of hydrogenation reactors connected in series under the reaction conditions for hydrogenation. Hydrogen is injected into each reactor respectively. To convert the diolefins in the mixture stream of paraffins and olefins into mono-olefins, &ggr;-alumina having a specific surface area of 50-300 m2/g and a pore volume of 0.2-2.0 cm3/g is used as the supporter of the hydrogenation catalyst, palladium is supported on the supporter as the main catalyst element and an element selected from silver, gold, tin, lead or potassium is supported on the supporter as the promoter.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: September 30, 2003
    Assignees: China Petrochemical Corporation, Sinopec, Jinling Petrochemical Corporation
    Inventors: Yi Xu, Peicheng Wu, Yu Wang, Dong Liu, Zhengguo Ling, Xiaolei Huang
  • Publication number: 20030181772
    Abstract: In a process for the work-up of a C4 fraction, comprising the process steps
    Type: Application
    Filed: November 12, 2002
    Publication date: September 25, 2003
    Inventors: Gerald Meyer, Gerd Kaibel, Gerd Bohner, Klaus Kindler, Till Adrian, Karin Pickenaecker, Melanie Pahl, Thomas Hill
  • Publication number: 20030168380
    Abstract: Process for the production of gasoline with a low sulfur content that comprises at least the following two stages:
    Type: Application
    Filed: February 23, 2000
    Publication date: September 11, 2003
    Inventors: Blaise Didillon, Denis Uzio, Nathalie Marchal
  • Publication number: 20030163009
    Abstract: A process is disclosed which provides for the reduction of phenylacetylene levels in styrene monomer feedstreams, which process utilizes a normal styrene inhibitor additive, such as an hydroxylamine, injected into the styrene monomer feedstream immediately upstream of the phenylacetylene reduction reactor.
    Type: Application
    Filed: February 12, 2002
    Publication date: August 28, 2003
    Inventor: James T. Merrill
  • Publication number: 20030134744
    Abstract: A process for preparation of a selective hydrogenation catalyst including preparing a catalyst material containing palladium and preferably additional additive materials, prereducing the palladium material and the additional additive materials, storing the prereduced catalyst under a non-oxidizing material and distributing the prereduced catalyst in a shipping container under the non-oxidizing material to a customer for use in a selective hydrogenation reaction.
    Type: Application
    Filed: December 19, 2001
    Publication date: July 17, 2003
    Applicant: Sud-Chemie Inc.
    Inventors: Steven A. Blankenship, Jennifer A. Perkins, Andrzej Rokicki, James E. Fried
  • Patent number: 6586647
    Abstract: A process for selectively hydrogenating C4-acetylenes in a liquid hydrocarbon stream containing largely butadiene has been developed. Hydrogen and the hydrocarbon stream are contacted with a catalytic composite comprising an inorganic oxide support having dispersed thereon finely divided copper metal and an activator metal of nickel, cobalt, platinum, palladium, manganese, or a combination thereof where 1) the catalytic composite has an average diameter of up to about {fraction (1/32)} inch (800 microns) and/or 2) at least 50 and preferably 70 weight percent of the copper metal and the activator metal are dispersed on the outer 200 micron layer of the support.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: July 1, 2003
    Assignee: UOP LLC
    Inventors: Hayim Abrevaya, Deng Yang Jan, Karl Z. Steigleder
  • Patent number: 6569318
    Abstract: The invention relates to a process for conversion of hydrocarbons in the presence of at least one catalyst with controlled acidity, characterized in that the level of activity of said catalyst in isomerization of the cyclohexane is less than 0.10 and/or in that the ratio of toluene hydrogenation activity to the cyclohexane isomerization activity is greater than 10.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: May 27, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Virginie Harle, Stéphane Kressmann, Isabelle Guibard, Slavik Kasztelan, Frédéric Morel
  • Publication number: 20030094398
    Abstract: A process is provided to produce a dilute ethylene stream and a dilute propylene stream to be used as feedstocks for producing olefin-based derivatives. Specifically, the dilute ethylene stream is used as a feedstock to produce ethylbenzene, and the dilute propylene stream is used as a feedstock to produce cumene, acrylic acid, propylene oxide and other propylene based derivatives.
    Type: Application
    Filed: November 16, 2001
    Publication date: May 22, 2003
    Inventors: Rodney L. Porter, Anne M. Balinsky, Eric P. Weber
  • Publication number: 20030069458
    Abstract: Alkynes, dienes, alkenynes and/or polyenes in an olefin-containing hydrocarbon stream are selectively hydrogenated catalytically in the gas phase in at least two reaction zones connected in series without introduction of part of this hydrocarbon stream between the penultimate reaction zone and the last reaction zone, wherein the hydrogen content in the reaction gas mixture upstream of the penultimate reaction zone and the degree of conversion in the penultimate reaction zone are set so that the reaction gas mixture contains at least 0.7% by volume of hydrogen at the outlet of the penultimate reaction zone.
    Type: Application
    Filed: October 3, 2002
    Publication date: April 10, 2003
    Inventors: Thomas Hill, Mathias Haake, Ekkehard Schwab, Andrea Frenzel, Helmut Worz
  • Publication number: 20030023121
    Abstract: A catalyst for the selective hydrogenation of alkynes and dienes in C2-C5+-olefin mixtures is described.
    Type: Application
    Filed: June 5, 2002
    Publication date: January 30, 2003
    Inventors: Andrea Frenzel, Michael Hesse, Andreas Ansmann, Ekkehard Schwab
  • Patent number: 6512151
    Abstract: A selective acetylene hydrogenation process which is able to produce a high quality diolefin having extremely low levels of acetylene over an extended period of time compared with the prior art. The process of the present invention provides a selective hydrogenation reaction zone wherein the catalyst activity is maintained at a high level while the process unit remains on stream by contacting the selective hydrogenation catalyst with a polymer solvent, diolefin feed and hydrogen in one embodiment and by contacting the selective hydrogenation catalyst off-line with only polymer solvent and hydrogen in a second embodiment. In addition, the quantity of make-up regeneration solvent is significantly reduced.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: January 28, 2003
    Assignee: UOP LLC
    Inventor: Steven P. Lankton
  • Patent number: 6495030
    Abstract: A process for concurrently fractionating and hydrotreating of a full range naphtha stream. The full boiling range naphtha stream is first subjected to simultaneous thioetherification and fractionation to remove the mercaptans the light fraction and then to simultaneous hydrodesulfurization and splitting of the remainder into an intermediate boiling range naphtha and a heavy boiling range naphtha. The three boiling range naphthas are treated separately according to the amount of sulfur in each cut and the end use of each fraction.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: December 17, 2002
    Assignee: Catalytic Distillation Technologies
    Inventor: Gary G. Podrebarac
  • Patent number: 6486369
    Abstract: A process for selective hydrogenation of a C2 and C3 olefinic feed stream containing acetylenic and diolefinic impurities whereby the acetylenes and diolefins impurities are selectively hydrogenated concurrently in a vapor phase process without first separating the C2 and C3 olefinic gases into separate feed stream.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: November 26, 2002
    Assignee: Sud-Chemie Inc.
    Inventors: Richard W. Voight, Steven A. Blankenship
  • Patent number: 6482997
    Abstract: In a catalyst process involving a conversion reaction for organic compounds, e.g. hydrogenations, the catalyst contains at least one support and at least one metal, and is characterized in that it has particles of an average size greater than approximately 1 nm, and more than 80% of particles, the size of which is comprised in the range D±(D.0.2) where D represents the average size of the particles. The catalyst is prepared in a colloidal suspension, in aqueous phase, of the metal oxide or metals to be supported, then depositing this suspension on a support, and optionally reducing the oxide thus supported.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: November 19, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Carine Petit-Clair, Blaise Didillon, Denis Uzio
  • Publication number: 20020166798
    Abstract: The invention relates to a process for the production of gasoline with a low sulfur content that comprises at least one stage for transformation of sulfur-containing compounds consisting of an alkylation or adsorption of sulfur-containing compounds and/or an increasing of the weight of light sulfur-containing compounds, at least one stage for treatment in the presence of an acid catalyst and at least one desulfurization treatment of at least a portion of the gasoline. The process according to the invention can also optionally comprise at least one stage for selective hydrogenation of diolefins and optionally at least one fractionation of the gasoline that is obtained into at least two fractions: light gasoline and heavy gasoline. FIG. 1 to be published.
    Type: Application
    Filed: March 12, 2002
    Publication date: November 14, 2002
    Applicant: Institute Francais du Petrole
    Inventors: Quentin Debuisschert, Denis Uzio, Jean-Luc Nocca, Florent Picard
  • Patent number: 6469223
    Abstract: A process is provided for the selective hydrogenation of dienes from a mixed hydrocarbon stream. The catalyst contains nickel in an amount between approximately 5 and 15 weight percent and, alternatively, may contain nickel oxide and molybdenum oxide in an amount between approximately 3 to 6 and 12 to 25 weight percent, respectively. The catalyst metals are on an aluminum oxide support. The process does not require any activation or pre-treatment of the catalyst. No sulfur is added to the reaction zone and the catalyst is not adversely affected by the presence of up to 0.20% by weight of sulfur in the feed stream. According to the process, conjugated dienes are reduced by at least 80 to 90%.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: October 22, 2002
    Assignee: Fina Technology, Inc.
    Inventors: Kevin Peter Kelly, James Roy Butler
  • Patent number: 6455746
    Abstract: The invention concerns ultrafine polymetallic particles obtained from reducing a mixture of salts dissolved in an organic solvent by an alkali or alkaline earth metal hydride, at a temperature not higher than the solvent reflux temperature, the mixture of dissolved salts comprising at least a salt of a metal having a standard oxidant potential E°Mn+/M at 25° C. higher than −1.18 V. The invention is applicable to the hydrogenation of olefins and the coupling of halogenated aromatic derivatives.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: September 24, 2002
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Jean-Marie Dubois, Yves Fort, Olivier Tillement
  • Publication number: 20020128528
    Abstract: A process for treatment of a batch with four carbon atoms that contains diene compounds and a minor portion of acetylene compounds is described. A portion of the fluid that circulates in a distillation zone that is enriched with acetylene compounds is drawn off laterally, preferably in the drainage zone, and a selective hydrogenation stage is carried out in a hydrogenation zone that is outside the distillation zone. The hydrogenation effluent that is produced is recycled in the rectification zone. A C4 fraction that comprises butadiene and that is low in acetylene compounds is recovered at the top, and a C5 fraction that is enriched with oligomers is recovered at the bottom.
    Type: Application
    Filed: December 21, 2001
    Publication date: September 12, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Mathieu Pinault, Vincent Coupard, Christophe Boyer
  • Patent number: 6444118
    Abstract: A process for concurrently fractionating and treating of a full range naphtha stream. The full boiling range naphtha stream is first subjected to simultaneous thioetherification or selective hydrogenation and splitting into a light boiling range naphtha, an intermediate boiling range naphtha and a heavy boiling range naphtha. The intermediate boiling range naphtha containing thiophene and thiophene boiling range mercaptans, dienes or mixtures may be subjected to a second thioetherification or selective hydrogenation, depending on its make-up, and then passed on to a polishing hydrodesulfurization reactor or the entire intermediate stream may be passed directly to the polishing reactor. The bottoms are subjected to concurrent hydrodesulfurization and fractional distillation and the combined overheads and bottoms are fed to the polishing reactor.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: September 3, 2002
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, Gary R. Gildert
  • Patent number: 6437206
    Abstract: Unsaturated compounds in hydrocarbon streams are hydrogenated over a catalyst which, in the unused state, shows reflections which correspond to the following lattice plane spacings in the X-ray diffraction pattern [in 10−10m]: 4.52, 2.85, 2.73, 2.44, 2.31, 2.26, 2.02, 1.91, 1.80, 1.54, 1.51, 1.49, 1.45 and 1.39 and have specific relative intensities.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: August 20, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerald Meyer, Ekkehard Schwab, Michael Hesse, Peter Trübenbach, Hans-Joachim Müller
  • Patent number: 6417419
    Abstract: A process for selectively hydrogenating C4-acetylenes in a liquid hydrocarbon stream containing largely butadiene has been developed. Hydrogen and the hydrocarbon stream are contacted with a catalytic composite comprising an inorganic oxide support having dispersed thereon finely divided copper metal and an activator metal of nickel, cobalt, platinum, palladium, manganese, or a combination thereof where 1) the catalytic composite has an average diameter of up to about {fraction (1/32)} inch (800 microns) and/or 2) at least 70 weight percent of the copper metal and the activator metal are dispersed on the outer 200 micron layer of the support.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: July 9, 2002
    Assignee: UOP LLC
    Inventors: Hayim Abrevaya, Deng Yang Jan, Karl Z. Steigleder
  • Patent number: 6414205
    Abstract: A process for the selective hydrogenation of the methyl acetylene and propadiene (MAPD) in a propylene rich stream is disclosed wherein the selective hydrogenation is carried out stepwise (a) first in a single pass fixed bed reactor and then (b) in a distillation column reactor containing a supported PdO hydrogenation catalyst which serves as a component of a distillation structure. Conversion and selectivity to propylene in improved over the use of the single pass fixed bed reactor alone.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: July 2, 2002
    Assignee: Catalytic Distillation Technologies
    Inventors: Stephen J. Stanley, Gary R. Gildert
  • Patent number: 6413413
    Abstract: A process for hydrodesulfurization in which gasoline boiling range petroleum feed and hydrogen are contacted in a reactor with a fixed bed hydrodesulfurization catalyst at an WHSV of greater than 6, pressure of less than 300 psig and temperature of 300 to 700° F. wherein the pressure and temperature of the reactor are adjusted to maintain the reaction effluent at its boiling point and below it dew point whereby at least a portion but less than all of the reaction mixture is vaporized.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: July 2, 2002
    Assignee: Catalytic Distillation Technologies
    Inventor: Lawrence A. Smith, Jr.
  • Patent number: 6410811
    Abstract: The process of the invention is a process for selective hydrogenation of a hydrocarbon feed containing hydrogen and C2+ hydrocarbons, characterized in that it comprises at least one step for separating a fraction of the hydrogen contained in the feed by means of a membrane (step a)) and a step for selective hydrogenation of the effluent from step a) in a reactive column (step b)).
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: June 25, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Michel Chau, Michel Derrien, Alain Methivier
  • Patent number: 6407300
    Abstract: An apparatus and process for treating a complex mixture of hydrocarbons containing undesirable olefinic compounds to remove the mono olefins and diolefins in two stages and separate a desirable key component from the mixture, by first treating the key component in a reactive distillation column under mild conditions to hydrogenate diolefins then separating the diolefin-depleted key component and any lighter materials from the heavier components and sending the diolefin-depleted key component and lighter materials to a second reactive distillation column where the lights are removed overhead and the diolefin-depleted key component is hydrogenated under more severe conditions to remove the mono olefins.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: June 18, 2002
    Assignee: Catalytic Distillation Technologies
    Inventor: Mario J. Maraschino
  • Patent number: 6388150
    Abstract: A process of selectively hydrogenating an impurity in a feed containing hydrocarbons, such as, for example, an impurity selected from the group consisting of acetylene compounds, dienes, and mixtures thereof in a feed containing at least one monoolefin and the impurity wherein the impurity is hydrogenated selectively in the presence of a selective hydrogenation catalyst supported on a particulate support. The supported catalyst is supported on a mesh-like structure.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: May 14, 2002
    Assignee: ABB Lummus Global Inc.
    Inventors: Rudolf A. Overbeek, Robert E. Trubac, Chiung Yuan Huang, Marino Rota, Nelleke van der Puil
  • Patent number: 6376735
    Abstract: A process for the rejection of heavy reaction by-products from a selective hydrogenation reaction zone effluent containing butadiene and trace amounts of heavy reaction by-products by introducing the selective hydrogenation reaction zone effluent into a butadiene extraction vaporizer containing a fractionation zone, refluxing the fractionation zone with a raffinate stream from a butadiene extraction zone; removing a vaporized stream containing butadiene and having a reduced concentration of heavy reaction by-products from the vaporizer; removing and recovering a concentrated liquid product stream containing heavy reaction by-products from the vaporizer; and introducing the vaporized stream containing butadiene into the butadiene extraction zone.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: April 23, 2002
    Assignee: UOP LLC
    Inventor: Steven P. Lankton
  • Publication number: 20020038065
    Abstract: A hydrogenation catalyst which is sulfur tolerant and which includes from about 0.1 to about 1 percent platinum by weight and from 0.2 to about 2 percent by weight palladium on a predominantly theta alumina carrier. Also disclosed is a process for the manufacture and use of the hydrogenation catalyst.
    Type: Application
    Filed: October 2, 2001
    Publication date: March 28, 2002
    Applicant: Sud-Chemie Inc.
    Inventors: Dinah C. Huang, William M. Faris, P. Donald Hopkins, Paul Jerus
  • Patent number: 6358399
    Abstract: A process and a device for separating ethane and ethylene from a hydrocarbon steam-cracking effluent is described. Effluent (1) is absorbed in an absorption column (7) by a cooled solvent (9). At the bottom of the column, liquid phase (12) that contains the solvent and the C2+ hydrocarbons is recovered and hydrogenated (15). The hydrogenation effluent that contains the solvent is introduced into a first distillation column (70) where the solvent is regenerated. The solvent is cooled and recycled at the top of absorption column (7). The C2+ hydrocarbons are collected at the top, and a condensed liquid phase is distilled in a second distillation column (77) to recover a C2 fraction that consists of ethane and ethylene.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: March 19, 2002
    Assignee: Institute Francais du Petrole
    Inventors: Ari Minkkinen, Jean-Hervé Le Gal, Pierre Marache