Hydrogenation Of Diolefin Or Triple Bond Patents (Class 585/259)
  • Patent number: 5847249
    Abstract: A process for selectively treating the components in a multi-component stream in a distillation column reactor. Additional catalytic distillation structures are placed as a secondary bed in the distillation column, either above or below the primary bed, and the selected component withdrawn after reaction in the primary bed to prevent its entry into the secondary bed.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: December 8, 1998
    Assignee: Catalytic Distillation Technologies
    Inventor: Mario J. Maraschino
  • Patent number: 5821397
    Abstract: A process is described for the high-efficiency selective hydrogenation of an aromatic hydrocarbon cut which also contains monoolefinic hydrocarbons and polyolefinic and/or acetylenic hydrocarbons with a bromine number of 10000 to 100 mg per 100 g of product with an aromatic degree of conversion which is limited to a maximum of 0.15% by weight, the process being characterized in that the cut, which is at least partially in the liquid phase, is passed with hydrogen into a hydrogenation zone in contact with a catalyst containing 0.1% to 1% by weight (with respect to the support) of palladium, the catalyst having been treated before activation with at least one organic sulphur-containing compound to introduce 0.05% to 1% of sulphur (by weight with respect to the weight of the catalyst), the process being carried out at a temperature in the range 20.degree. C. to 25.degree. C., at a pressure of 4-50 bar, a GHSV of 0.2-25 h.sup.-1 and with a H.sub.2 /monoolefin +polyolefin and/or acetylenes ratio in the range 0.
    Type: Grant
    Filed: January 29, 1996
    Date of Patent: October 13, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Fran.cedilla.ois Joly, Charles Cameron, Jean Cosyns, Gerard Leger, Pierre Renard, Fran.cedilla.oise Montecot
  • Patent number: 5817901
    Abstract: A process for the selective hydrogenation of a fraction of hydrocarbons containing 2 to 20 carbon atoms and comprising monounsaturated olefinic hydrocarbons and/or aromatic compounds and at least one polyunsaturated hydrocarbon from the group formed by acetylenic compounds and dienes, in which the hydrocarbon fraction, which is at least partially in the liquid phase, circulates with hydrogen in a given direction in a reactor containing at least one fixed bed of a hydrogenation catalyst in the form of a divided solid, characterized in that said reactor is provided with at least one inlet conduit for a fluid mixture comprising said hydrocarbon fraction and hydrogen and at least one outlet conduit for the hydrogenated hydrocarbon fraction, and in that it comprises at least one static mixer upstream of said outlet for the hydrogenated hydrocarbon fraction.
    Type: Grant
    Filed: September 7, 1995
    Date of Patent: October 6, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Pierre Trambouze, Jean-Paul Euzen, Gerard Leger, Henri Delhomme
  • Patent number: 5807477
    Abstract: A process for treating a light cracked naphtha to be used as an etherification or alkylation feedstock in which the mercaptans and diolefins reacted in a single pass fixed bed reactor and are removed in a distillation column reactor which hydrogenate the unreacted diolefins. The mercaptans are reacted with the diolefins to form sulfides which are higher boiling than that portion of the naphtha which is used as feed to the etherification or alkylation unit. The higher boiling sulfides are removed as bottoms along with any C.sub.6 and heavier materials. Any diolefins not converted to sulfides are selectively hydrogenated to mono-olefins for use in the etherification process. Certain C.sub.5 olefins, for example pentene-1 and 3-methyl butene-1 are isomerized during the process to more beneficial isomers.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: September 15, 1998
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Gary R. Gildert
  • Patent number: 5763715
    Abstract: The present invention provides a process and system for the removal of butadiene from a cracked gas stream prior to entering a front end hydrogenation reactor in an olefin production facility.
    Type: Grant
    Filed: October 8, 1996
    Date of Patent: June 9, 1998
    Assignee: Stone & Webster Engineering Corp.
    Inventor: Mark Whitney
  • Patent number: 5759386
    Abstract: A light hydrocarbon stream, such as a C.sub.3 -C.sub.5 stream recovered from an FCC unit, is catalytically treated for the selective hydrogenation of dienes and for the removal of mercaptans by thioetherification. The effluent of the reaction zone is fractionated to remove light ends and thioethers in a dual section fractionation zone, with the interconnection of the sections facilitating a reduction in capital and operating costs.
    Type: Grant
    Filed: January 9, 1997
    Date of Patent: June 2, 1998
    Assignee: UOP
    Inventor: Stanley J. Frey
  • Patent number: 5698752
    Abstract: A selective hydrogenation of an alkyne in an olefin-containing fluid is provided which comprises contacting the fluid and hydrogen gas with a catalyst in the presence of at least one sulfur compound, under reaction conditions effective to produce at least one alkene wherein the catalyst comprises at least one alkali metal, fluorine and an inorganic support material.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: December 16, 1997
    Assignee: Phillips Petroleum Company
    Inventors: Scott H. Brown, James B. Kimble, Stan A. Zisman
  • Patent number: 5675045
    Abstract: The present invention relates to a process for the catalytic selective hydrogenation of a polyunsaturated organic compound, wherein the hydrogenation is carried out in a plurality of two or more series-connected loops, wherein each loop involves the use of one reactor, which comprises:(a) feeding the polyunsaturated organic compound and hydrogen to an upper part of a reactor to catalytically hydrogenate said the polyunsaturated organic compound to produce a hydrogenation product,(b) recycling a portion of said hydrogenation product back into said upper part of said reactor,(c) feeding the remainder of said hydrogenation product from said reactor to an upper part of a subsequent reactor wherein the polyunsaturated organic compound is catalytically hydrogenated to produce a subsequent hydrogenation product, and wherein a portion of said subsequent hydrogenation product has been recycled and is fed with said remainder of said hydrogenation product to said upper part of said subsequent reactor,(d) repeating step
    Type: Grant
    Filed: June 26, 1996
    Date of Patent: October 7, 1997
    Assignee: Huels Aktiengesellschaft
    Inventors: Wilfried Bueschken, Juergen Hummel
  • Patent number: 5648576
    Abstract: A process for the selective hydrogenation in the gas phase of acetylene compounds containing 2 or 3 carbon atoms to the corresponding ethylene compounds in the presence of a catalyst in the form of spherules or extradates containing an alumina support, 0.01-0.5% by weight palladium, 0.001 to 0.5% by weight of at least one group IB metal, preferably silver, and optionally at least one alkaline or alkaline-earth metal, the weight ratio of the group IB metal to palladium being 0.05:1 to 0.25:1, in which catalyst at least 80% of the palladium and at least 80% of the group IB element are present in a volume at a periphery of the catalyst defined between a spherical or cylindrical surface of radius r.sub.1 corresponding to the average spherule or extradate diameter and a spherical or cylindrical surface of radius r.sub.2 at least equal to 0.8r.sub.1.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: July 15, 1997
    Assignee: Institut Francais du Petrole
    Inventors: Canh Nguyen Than, Blaise Didillon, Patrick Sarrazin, Charles Cameron
  • Patent number: 5639926
    Abstract: A process for producing a branched chain olefin which comprises isomerising and transhydrogenating a hydrocarbon stream containing at least one straight chain paraffin of 4 or more carbon atoms by contacting the same at elevated temperature with a stream containing a hydrogen acceptor that is more highly unsaturated than a mono-olefin to produce a stream containing at least one branched chain olefin product. The product is separated to give a stream depleted of the product. The thus depleted stream is recycled to the isomerising and transhydrogenating stages. The hydrogen acceptor stream may comprise a diene and/or acetylene.
    Type: Grant
    Filed: January 4, 1995
    Date of Patent: June 17, 1997
    Assignee: Institut Francais Du Petrole
    Inventors: Stephen Keith Turner, Arthur Gough
  • Patent number: 5609654
    Abstract: A process for production of alkyl tertiary alkyl ethers in C.sub.4 + hydrocarbon streams rich in isoolefins, typically containing catalyst deactivating amounts of dienes and/or compounds containing heteroatoms. The process is especially advantageous in extending the cycle length for the zeolite catalyzed etherification of isoolefins in C.sub.4 + FCC gasoline by reducing catalyst aging. It has been discovered that if hydrogen is cofed with the alkanol and C.sub.4 + isoolefin rich feedstreams to an etherification reaction catalyzed by acidic zeolite wherein the zeolite has been impregnated with a noble metal the rate of catalyst aging or deactivation is substantially lowered. The process is especially effective, i.e., catalyst aging is particularly reduced, when hydrogen is cofed to an etherification reaction using acidic zeolite Beta catalyst containing palladium.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: March 11, 1997
    Assignee: Mobil Oil Corporation
    Inventors: Quang N. Le, Robert T. Thomson
  • Patent number: 5600045
    Abstract: A process for conversion of crude hydrocarbon mixtures comprising tertiary olefins and gum-forming constituents with an alcohol in the presence of hydrogen, which process comprises contacting the crude hydrocarbon mixture, the alcohol, and hydrogen with a catalyst comprising an acidic molecular sieve containing an active hydrogenation metal component, as well as a stabilized crude hydrocarbon mixture containing alkyl tertiary alkyl ethers. A process for conversion of a tertiary olefin which contains one or more additional ethylenically or acetylenically unsaturated bonds.
    Type: Grant
    Filed: December 2, 1993
    Date of Patent: February 4, 1997
    Assignee: The Dow Chemical Company
    Inventors: Matheus J. Van Der Aalst, Levien J. Everaert, Juan M. Garces
  • Patent number: 5587348
    Abstract: A catalyst composition comprises palladium, at least one chemically bound alkali metal (preferably potassium), chemically bound fluorine and an inorganic support material (preferably alumina), wherein the atomic ratio of fluorine to alkali metals about 1.3:1 to about 4:1. Preferably, silver is also present in the catalyst composition. The above-described catalyst is employed as a catalyst in the selective hydrogenation of C.sub.2 -C.sub.10 alkynes (preferably acetylene) to the corresponding alkenes in the presence of sulfur impurities.
    Type: Grant
    Filed: April 19, 1995
    Date of Patent: December 24, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Scott H. Brown, Stan A. Zisman, James B. Kimble
  • Patent number: 5583274
    Abstract: C.sub.2 -C.sub.6 alkynes (preferably acetylene) contained in feeds which also contain sulfur impurities are hydrogenated to the corresponding alkenes in the presence of a supported palladium catalyst which has been promoted with alkali metal fluoride (preferably potassium fluoride).
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: December 10, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack P. Cheung, Marvin M. Johnson
  • Patent number: 5574198
    Abstract: The present invention relates to an improved process for preparing linear alkylbenzenes falling within such range as used in detergency (C.sub.10 -C.sub.14), which process consists of alkylating aromatic hydrocarbons (above all, benzene) with n-olefins in the presence of AlCl.sub.3, wherein said n-olefins are obtained by dehydrogenating n-paraffins.
    Type: Grant
    Filed: April 10, 1995
    Date of Patent: November 12, 1996
    Assignee: Enichem Augusta S.p.A.
    Inventors: Pierino Radici, Pierluigi Cozzi, Giuseppe Giuffrida, Agostino Zatta
  • Patent number: 5510550
    Abstract: A catalyst composition comprising palladium, silver and a support material (preferably alumina) is contacted at a relatively low temperature (of up to about 60.degree. C.) with a liquid composition comprising an effective reducing agent (preferably an alkali metal borohydride, hydrazinc, formaldehyde, formic acid, ascorbic acid, dextrose, aluminum powder). Preferably, at least one alkali metal compound (more preferably KOH, RbOH, CsOH, KF) is also present in the liquid composition. An improved process for selectively hydrogenating acetylene (to ethylene) employs this wet-reduced catalyst composition.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: April 23, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack P. Cheung, Marvin M. Johnson, Scott H. Brown, Stan A. Zisman, James B. Kimble
  • Patent number: 5504268
    Abstract: A process for the selective hydrogenation of aromatic acetylene compounds present as impurities in vinyl-aromatic compounds without substantial loss of vinyl-aromatic compound comprises adding hydrogen and an inert gas to a liquid phase vinyl-aromatic compound containing aromatic acetylene compounds and contacting the aromatic acetylene compound with hydrogen in the presence of a selective hydrogenation catalyst, wherein the partial hydrogen pressure is from about 0.001 to about 0.05 bar.
    Type: Grant
    Filed: April 8, 1994
    Date of Patent: April 2, 1996
    Assignee: The Dow Chemical Company
    Inventors: Matheus J. M. van der Aalst, Fernando A. de Benito
  • Patent number: 5489565
    Abstract: A supported catalyst composition, which is effective as a diolefin hydrogenation catalyst, comprises palladium, silver and alkali metal fluoride. This catalyst composition is employed in the selective hydrogenation of C.sub.4 -C.sub.10 diolefins (preferably 1,3-butadiene) with hydrogen gas to the corresponding monoolefins.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: February 6, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack P. Cheung, Marvin M. Johnson
  • Patent number: 5489719
    Abstract: A process is disclosed for the production of alkyl tertiary alkyl ethers in C.sub.4 + hydrocarbon streams rich in isoolefins, typically containing catalyst deactivating amounts of dienes and/or compounds containing heteroatoms. The process is especially advantageous in extending the cycle length for the zeolite catalyzed etherification of isoolefins in C.sub.4 + FCC gasoline by reducing catalyst aging. It has been discovered that if hydrogen is cofed with the alkanol and C.sub.4 + isoolefin rich feedstreams to an etherification reaction catalyzed by acidic zeolite wherein the zeolite has been impregnated with a noble metal the rate of catalyst aging or deactivation is substantially lowered. The process is especially effective, i.e., catalyst aging is particularly reduced, when hydrogen is cofed to an etherification reaction using acidic zeolite Beta catalyst containing palladium.
    Type: Grant
    Filed: June 6, 1994
    Date of Patent: February 6, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Quang N. Le, Robert T. Thomson
  • Patent number: 5475173
    Abstract: A supported catalyst composition, which is effective as a diolefin hydrogenation catalyst, comprises palladium, silver and alkali metal fluoride. This catalyst composition is employed in the selective hydrogenation of C.sub.4 -C.sub.10 diolefins (preferably 1,3-butadiene) with hydrogen gas to the corresponding monoolefins.
    Type: Grant
    Filed: July 19, 1994
    Date of Patent: December 12, 1995
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack P. Cheung, Marvin M. Johnson
  • Patent number: 5463154
    Abstract: A method for acetylene hydrogenation which involves adding a member selected from the group consisting of arsine and phosphine to moderate the activity of acetylene hydrogenation catalysts while maintaining acceptable catalyst activity and avoiding the risk of product quality contamination by the acetylene converter moderator. The acetylene hydrogenation process involves adding arsine at a concentration level within the range of about 1 wppb-3 wppb to the gas, such as ethylene, containing acetylene to prevent temperature runaway during the exothermic acetylene hydrogenation reaction. By controlling the presence of arsine levels to such a relatively low level, temperature runaway during the highly exothermic acetylene hydrogenation reaction is prevented while maintaining acceptable catalyst activity levels for purposes of the acetylene hydrogenation reaction.
    Type: Grant
    Filed: June 22, 1994
    Date of Patent: October 31, 1995
    Assignee: Exxon Chemical Patents Inc.
    Inventors: David R. Slim, Edgar L. Mohundro, Stephen M. Mayo
  • Patent number: 5461178
    Abstract: A method and operating technique for treating diene-containing aliphatic streams by introducing the light hydrocarbon stream at a top portion of a vertical stripping tower having an upper catalytic contact zone containing a bed of solid hydrogenation catalyst particles and a lower contact zone, and introducing a light gas stream containing hydrogen at a lower portion of said stripping tower. Selective hydrogenation is effected by flowing the light hydrocarbon stream and light gas stream countercurrently in contact with the solid hydrogenation catalyst particles under hydrogenation and stripping conditions, thereby converting said diene to mono-alkene in the upper contact zone.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: October 24, 1995
    Assignee: Mobil Oil Corporation
    Inventor: Mohsen N. Harandi
  • Patent number: 5430221
    Abstract: An improved process is disclosed for the isomerization of olefins in gasoline-range streams using a medium-pore molecular-sieve catalyst. The process features high yields of C.sub.5 + isomerized product and avoids conversion of paraffin isomers to equilibrium values.
    Type: Grant
    Filed: October 19, 1993
    Date of Patent: July 4, 1995
    Assignee: UOP
    Inventor: Gregory J. Gajda
  • Patent number: 5420371
    Abstract: A process is described for carrying out the dehydrogenation or hydrogenation, including hydrogenolysis, of a hydrocarbon in the presence of one or more soluble fullerene catalysts which have been dissolved in the hydrocarbon (when the hydrocarbon is a liquid capable of dissolving the fullerene catalyst) or dissolved in a solvent which is also a solvent for the hydrocarbon (when the hydrocarbon either is not a liquid or is not a liquid which is a solvent for the fullerene catalyst). The use of a liquid catalyst, i.e., a dissolved fullerene catalyst, inhibits coking reactions to thereby inhibit formation of coke on a solid catalyst or catalyst support by elimination of nucleation points or growth regions for such coke formation.
    Type: Grant
    Filed: March 18, 1994
    Date of Patent: May 30, 1995
    Assignee: SRI International
    Inventors: Ripudaman Malhotra, Doris S. Tse, Donald F. McMillen
  • Patent number: 5414170
    Abstract: The present invention provides an improved process for selectively hydrogenating acetylenes in an olefin plant process stream by selectively hydrogenating the acetylenes downstream of a front end depropanizer and upstream of further separation zones such as a demethanizer and/or de-ethanizer.
    Type: Grant
    Filed: May 12, 1993
    Date of Patent: May 9, 1995
    Assignee: Stone & Webster Engineering Corporation
    Inventors: Richard H. McCue, Edna B. Hicks
  • Patent number: 5387731
    Abstract: Disclosed is a process for removing hydrogenation by-products which comprises the use of an extractive distillation tower operated in combination with a solvent stripper, hydrocarbon purge and a water wash column. By the arrangement of the various feeds to and between the above mentioned, the green oil may be extracted away from desirable hydrocarbons.
    Type: Grant
    Filed: July 15, 1993
    Date of Patent: February 7, 1995
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Christopher D. W. Jenkins, Michel H. Masson, Richard A. Reitz
  • Patent number: 5382743
    Abstract: A method for conversion of linear C5 olefins in the presence of contaminant diolefins to corresponding iso-olefins of the same carbon number which comprises contacting a linear C5 olefin-containing organic feedstock with a catalyst comprising material having the structure of ZSM-35 under skeletal isomerization conditions, wherein said conversion is carried out at temperatures between about 100.degree. and 750.degree. C., weight hourly space velocities (WHSV) based on linear C5 olefins in said feedstock between 0.1 and 500 WHSV, C5 linear olefin partial pressures between 2 and 2000 kPa, and in the presence of hydrogen added in an amount sufficient to enhance linear C5 olefin conversion activity and extend the catalyst life of the catalyst relative to operation without any hydrogen added.
    Type: Grant
    Filed: April 26, 1993
    Date of Patent: January 17, 1995
    Assignee: Mobil Oil Corporation
    Inventors: James H. Beech, Jr., Roland B. Saeger, Robert A. Ware
  • Patent number: 5364998
    Abstract: A process for the selective hydrogenation of unsaturated hydrocarbons is characterized in that the catalyst contains a group VIII metal and an element chosen from within the group constituted by gallium and indium.
    Type: Grant
    Filed: April 2, 1993
    Date of Patent: November 15, 1994
    Assignee: Institut Francais Du Petrole
    Inventors: Patrick Sarrazin, Jean-Paul Boitiaux
  • Patent number: 5344582
    Abstract: A traction fluid lubricant is disclosed which contains a naphthenic ingredient having a weight average molecular weight of 200-300 and obtained by hydrogenating oligomers of cyclopentadiene having a ratio of the number of norbornenic double bond to that of cyclopentenic double bond of smaller than 0.9 but not smaller than 0.1. The naphthenic ingredient is suitably used in conjunction with an auxiliary ingredient selected from a polybutene having a viscosity of 5-60 cSt at 40.degree. C. and a bicyclohexyl compound.
    Type: Grant
    Filed: July 29, 1992
    Date of Patent: September 6, 1994
    Assignee: Tonen Corporation
    Inventors: Noboru Umemoto, Takeshi Nomura, Toshiaki Kuribayashi, Takehisa Sato, Hirotaka Tomizawa
  • Patent number: 5332705
    Abstract: An improved method for regenerating acetylene hydrogenation catalysts which does not require an oxygenation step is provided. The method may be used to regenerate any acetylene hydrogenation catalyst; however, the method is particularly advantageous when used with a palladium based catalyst which has been used to remove acetylenic contaminants from ethylene.
    Type: Grant
    Filed: June 19, 1992
    Date of Patent: July 26, 1994
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Yao-Jyh Huang, Chong F. Shun, Lawrence G. Daniel, Edgar L. Mohundro, John E. Hartgerink
  • Patent number: 5306852
    Abstract: The invention concerns a hydrogenation process, in particular for the selective hydrogenation of diolefins in volatiles produced by steam cracking or other cracking processes, in which the catalyst is distributed in a plurality of beds. It is characterized in that the different catalyst beds are not used at the same time, but successively and in accordance with a given order.
    Type: Grant
    Filed: January 28, 1993
    Date of Patent: April 26, 1994
    Assignee: Institut Francais du Petrole
    Inventors: Jean Cosyns, Patrick Sarrazin, Jean-Paul Boitiaux, Charles Cameron
  • Patent number: 5281753
    Abstract: A process for the selective hydrogenation and simultaneous isomerization of hydrocarbons in a feed stream (12) containing a mixture of hydrocarbons of varying degrees of unsaturation and having 4 or more carbon atoms. The process comprises contacting the mixture with hydrogen gas under hydrogenating and isomerizing conditions in the presence of a suitable catalyst (2, 3, and 4) in a multistage packed bed catalytic reactor (1). The process comprises supplying the hydrogen gas (20) in increasing molar ratio amounts relative to the remaining unreacted diolefin concentration in at least three points (24, 26 and 28) spaced apart along the flow direction of the feed stream through the reactor.
    Type: Grant
    Filed: April 21, 1992
    Date of Patent: January 25, 1994
    Assignee: Engelhard Corporation
    Inventors: Bruce A. Olson, Asmund A. Boyum
  • Patent number: 5276231
    Abstract: An improved process for the production of alkylated aromatic compounds by paraffin dehydrogenation and aromatic alkylation is disclosed. Aromatic by-products normally formed in paraffin dehydrogenation are selectively removed using at least one aromatics removal zone. Removal of these aromatic by-products significantly reduces the deactivation rate of solid alkylation catalysts. The improved process produces a detergent alkylate product that is significantly more linear than that produced by the prior art process.
    Type: Grant
    Filed: July 27, 1992
    Date of Patent: January 4, 1994
    Assignee: UOP
    Inventors: Joseph A. Kocal, Donald J. Korous
  • Patent number: 5254790
    Abstract: An integrated process for converting C.sub.4 /C.sub.5 hydrocarbons contained in a gasoline feedstock to more valuable motor fuel components includes various distillation steps, a hydroisomerization step, an etherification step (for producing t-amyl methyl ether), and an alkylation step. In a preferred embodiment, this process additionally includes a dehydrogenation step and a step of using formed debydrogenated hydrocarbons in the etherification step.
    Type: Grant
    Filed: July 1, 1992
    Date of Patent: October 19, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Gregory D. Thomas, Vernon A. Cawi
  • Patent number: 5254789
    Abstract: An improved process is disclosed for the isomerization of olefins in gasoline-range streams using a medium-pore molecular-sieve catalyst. The process features high yields of C.sub.5 + isomerized product and avoids conversion of paraffin isomers to equilibrium values.
    Type: Grant
    Filed: August 28, 1992
    Date of Patent: October 19, 1993
    Assignee: UOP
    Inventor: Gregory J. Gajda
  • Patent number: 5227553
    Abstract: A process for the selective hydrogenation of butadiene to butenes in the liquid phase or trickle phase in contact with a fixed-bed supported noble metal catalyst, wherein a high-butadiene C.sub.4 stream having a butadiene content of from 20 to 80% w/w, based on the weight of the C.sub.4 stream, is hydrogenated in a cascade of two reaction zones such that the hydrogenation product from the first reaction zone has a butadiene content of from 0.1 to 20% w/w and the hydrogenation product from the second reaction zone has a butadiene content of from 0.005 to 1% w/w, based in both cases on the weight of the C.sub.4 stream, provided that the butadiene content of the hydrogenation product from the second reaction zone is at least 5 times smaller than that of the hydrogenation product from the first reaction zone.
    Type: Grant
    Filed: May 22, 1992
    Date of Patent: July 13, 1993
    Assignee: BAST Aktiengesellschaft
    Inventors: Peter Polanek, Dietmar Posselt, Peter Schreyer
  • Patent number: 5220097
    Abstract: A continuous process is described for contacting an olefins-containing feed gas stream, freed of CO.sub.2 and sulfur compounds, in a front-end heat-pumped depropanizer to remove the C.sub.
    Type: Grant
    Filed: February 19, 1992
    Date of Patent: June 15, 1993
    Assignees: Advanced Extraction Technologies, Inc., Kinetic Technology International Corp.
    Inventors: Wilfred K. Lam, Yuv R. Mehra, Don W. Mullins
  • Patent number: 5157178
    Abstract: An improved process combination is disclosed for the production of an oxygenated gasoline component from an FCC gasoline feed. Olefins in the cracked gasoline are isomerized using a medium-pore molecular-sieve catalyst to achieve high yields of C.sub.5 + isomerized gasoline and avoid conversion of highly branched paraffins to equilibrium values. The isomerized gasoline is etherified to obtain oxygenated gasoline.
    Type: Grant
    Filed: May 20, 1991
    Date of Patent: October 20, 1992
    Assignee: UOP
    Inventors: Gregory J. Gajda, Jule A. Rabo
  • Patent number: 5113023
    Abstract: A process in which isobutane (isoparaffins), containing normal butane (normal paraffins), is dehydrogenated, and the principal product, isobutene, (isoolefin) contains some butene-1 and butene-2 (1-olefins and linear internal olefins). This mixture is subjected to a catalyzed etherification reaction with an alcohol to yield tertiaryalkyl ether. Some unreacted butene-1 and butene-2 (linear olefins) appear in the effluent from the ether reacton zone. These detrimentally affect the advantage of recycling that part of the effluent constituted by isobutane (isoparaffin) to the dehydrogenation reactor, because, as they build up in the closed system, undesirable coke lay down on the dehydrogenating catalyst occurs. The undesirable butene-1 is hydroisomerized to butene-2 which is removed from the recycle stream by fractionation.
    Type: Grant
    Filed: July 16, 1990
    Date of Patent: May 12, 1992
    Assignee: Phillips Petroleum Company
    Inventor: Richard L. Anderson
  • Patent number: 5103065
    Abstract: Transition metal complexes of the general formula I[A].sup.x- [Q].sup.+ x Iwhere Q is one equivalent of a cation, x is from 0 to 2 and A is a transition metal complex of the general formula ##STR1## where n is from 1 to 3, M is positively charged cobalt, rhodium, iridium or ruthenium, the ligands B are phosphonic, arsonic, phosphinic and/or arsinic acid ligands which are esterified with identical or different alcohols, one or more of these alcohol components carrying a functional group, L is ##STR2## the radicals R.sup.5 are identical or different radicals from the group consisting of C.sub.1 -C.sub.4 -alkyl and phenyl, p is an integer from 0 to 6, q is an integer from 0 to 5, and R.sup.1 is fluorine, chlorine, bromine, iodine, cyanide, isocyanide, cyanate, isocyanate, thiocyanate, isothiocyanate, C.sub.1 -C.sub.4 -alkyl, C.sub.1 -C.sub.
    Type: Grant
    Filed: December 19, 1990
    Date of Patent: April 7, 1992
    Assignee: BASF Aktiengesellschaft
    Inventors: Werner Bertleff, Dieter Koeffer, Wolfgang Klaeui, Choong-Eui Song
  • Patent number: 5087780
    Abstract: A process for the isomerization of butenes in a mixed hydrocarbon stream containing butene-1, butene-2 and small amounts of butadiene in which the mixed hydrocarbon stream is fed to distillation column reactor containing an alumina supported palladium oxide catalyst as a distillation structure. As butene-1 is produced it is distilled off upsetting the equilibrium and allowing for a greater than equilibrium amount of butene-1 to be produced. Additionally, any butadiene in the feed is hydrogenated to butenes. The bottoms, which is rich in butene-2 may be recycled to the reactor column for more complete conversion of butene-2 to butene-1. Alternatively, a portion or essentially all of the bottoms, substantially free of butadiene, may be used for feed to an HF alkylation unit.
    Type: Grant
    Filed: May 14, 1991
    Date of Patent: February 11, 1992
    Assignee: Chemical Research & Licensing Company
    Inventor: Robert P. Arganbright
  • Patent number: 5059732
    Abstract: Disclosed is a process for selective hydrogenation in liquid phase of an effluent originating from an ethane steam cracker in which said effluent is contacted with a catalyst consisting of at least supported palladium characterized in that it is carried out in the presence of a liquid phase containing at least part of the hydrogenated gasoline cut, condensed and recycled, of said effluent.Said effluent (1), said liquid phase (8) and possibly hydrogen (13) pass through the hydrogenation reactor (4). The product obtained is fractionated (5) into a gaseous cut at the top (7) containing ethylene and a liquid gasoline cut at the bottom which is partially recycled (8).The process may be used for production of ethylene and for production of gasoline.
    Type: Grant
    Filed: April 22, 1991
    Date of Patent: October 22, 1991
    Assignee: Institut Francais du Petrol
    Inventors: Jean Cosyns, Jean-Paul Boitiaux
  • Patent number: 5059731
    Abstract: The invention relates to a process of reduction of a refining catalyst before its use, the catalyst containing a support and an active phase with a base of at least one noble or nonnoble metal of Group VIII or Group Ib of the periodic table, the process consisting in:a) impregnating the catalyst with an aqueous or organic solution of a reducing agent compound,b) breaking down the reducing agent compound by heating the catalyst;c) drying the catalyst thus obtained.The invention is characterized in that a halogen additive is added with the reducing agent.The catalyst thus treated is particularly suitable, for example, for selective hydrogenation of unsaturated hydrocarbons.
    Type: Grant
    Filed: February 6, 1990
    Date of Patent: October 22, 1991
    Assignee: Europeane de Retraitement de Catalyseurs Eurecat
    Inventor: Georges Berrebi
  • Patent number: 5057635
    Abstract: An improved process is disclosed for the isomerization of olefins in gasoline streams using a medium-pore molecular-sieve catalyst. The process features high yields of C.sub.5 + isomerized product and avoids conversion of highly branched paraffins to equilibrium values.
    Type: Grant
    Filed: February 8, 1990
    Date of Patent: October 15, 1991
    Assignee: UOP
    Inventor: Gregory J. Gajda
  • Patent number: 5004851
    Abstract: Nitration Grade benzene is made from a benzene stream with impurities including olefins by first fractionally distilling the benzene to a purity of at least 99 mole percent and subsequently passing the stream in a liquid phase in the presence of hydrogen through a hydrogenation step with a palladium catalyst under conditions such that substantially all olefins remaining in the stream are hydrogenated to paraffins.
    Type: Grant
    Filed: November 22, 1988
    Date of Patent: April 2, 1991
    Assignee: The Dow Chemical Company
    Inventors: George R. Durham, Randy S. Hebert
  • Patent number: 4831200
    Abstract: Alkynes are selectively hydrogenated in alkene rich hydrocarbon feeds, such as 1,3-butadiene-rich C.sub.4 cuts, by passing the hydrocarbon feed at least partially in liquid phase over a palladium-based catalyst in the presence of hydrogen, preferably in trickle mode, followed by passing the effluent, at least partially in liquid phase preferably containing about 300-400 ppmw alkynes, over a copper-based catalyst in the presence of hydrogen thereby producing a hydrocarbon product of significantly reduced alkyne concentration.
    Type: Grant
    Filed: December 30, 1987
    Date of Patent: May 16, 1989
    Assignee: Labofina, S.A.
    Inventors: Guy L. G. Debras, Georges E. M. J. De Clippeleir, Jacques F. Grootjans, Raymond M. Cahen
  • Patent number: 4822936
    Abstract: A process for hydrogenating phenylacetylene in the presence of an excess of styrene by contacting a mixture of hydrogen and the phenylacetylene with a catalyst obtained by the reduction of a copper compound on a support.
    Type: Grant
    Filed: August 25, 1987
    Date of Patent: April 18, 1989
    Assignee: The Dow Chemical Company
    Inventors: Brian R. Maurer, Mercedes Galobardes
  • Patent number: 4774375
    Abstract: A process using selective hydrogenation and HF alkylation in combination that employs a multifunction alkylation stripper for removal of light ends from the selective hydrogenation and a alkylation operations. The process combines the effluent from the selective hydrogenation operation, an isobutane feed stream and a bottoms stream from the HF stripper in the alkylation feed stripper. The feed stripper provides a C.sub.4 -plus bottoms stream that serves as the feed to the alkylation zone and a C.sub.3 -minus overhead that can be recovered as fuel gas. Significant benefit is obtained from this process when processing a mixed olefin feed of C.sub.3 /C.sub.4 hydrocarbons and recovering a high purity C.sub.3 product stream ahead of the selective hydrogenation zone. Another variation of this process allows a C.sub.3 product stream to be withdrawn from the alkylation feed stripper either directly as a sidecut or downstream of an overhead condensor.
    Type: Grant
    Filed: December 11, 1987
    Date of Patent: September 27, 1988
    Assignee: UOP Inc.
    Inventors: Harold U. Hammershaimb, Joel B. Spinner
  • Patent number: 4762956
    Abstract: Dienes and/or acetylene impurities in an olefin feed; in particular a propylene feed, may be selectively hydrogenated in a single stage by use of a catalyst of palladium supported on alumina which is substantially crystalline alpha alumina, wherein the average pore radius is 200-2000 .ANG., with a least 80% of the pores having a pore radius within the range of 100 to 3000 .ANG.. The surface acidity of the catalyst is generally from 0.002 to 0.05 millimole of pyridine absorbed per gram of catalyst. The active palladium surface area is from 20 to 200 m.sup.2 /g. The palladium is in the form of crystallines having an average size of at least 25 .ANG..
    Type: Grant
    Filed: April 30, 1986
    Date of Patent: August 9, 1988
    Assignee: Beijing Research Institute of Chemical Industry He Ping Li
    Inventors: Xin X. Liu, Bing Y. Zhao, Herbert Riegel, Jo-Lung Chien
  • Patent number: 4735789
    Abstract: Catalytically-active metallic glasses containing at least one element from a subgroup of the periodic system and at least one element from a main group of the periodic system. Process for the production of catalytically-active metallic glasses where the metallic glass is produced from at least one element from a subgroup of the periodic system and at least from one element from a main group of the periodic system. The metallic glasses are activated by self-activation or by an oxidative and/or reductive treatment. The catalytically-active metallic glasses can be used as hydrogenation oxidation or isomerization catalysts.
    Type: Grant
    Filed: July 25, 1985
    Date of Patent: April 5, 1988
    Assignee: Lonza Ltd.
    Inventors: Volker Franzen, Hans-Joachim Guntherodt, Alphons Baiker, Erich Armbruster, Halim Baris