From Nonhydrocarbon Feed Patents (Class 585/638)
  • Patent number: 8940951
    Abstract: A process for preparing isobutene by dissociation of MTBE, including: a) reaction of isobutene-containing hydrocarbon mixtures, with methanol, present in one or more methanol-containing streams, over acidic ion exchangers to give a stream, containing MTBE and TBA; b) separation of a stream containing MTBE and TBA, from a stream by distillation; c) dissociation of a stream in the gas phase over a heterogeneous catalyst to give a stream containing at least isobutene, methanol, MTBE and water and possibly TBA, d) separation of a stream by distillation to give a stream containing in each case more than 50% by mass of the amounts of methanol, TBA and water present in another stream and a stream containing isobutene, e) separation of water from stream to below 1% by mass by distillation to give a stream, f) total or partial recirculation of the methanol-containing stream.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: January 27, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Markus Winterberg, Dirk Roettger, Armin Rix, Reiner Bukohl, Walter Luh, Holger Wiederhold, Gunnar Schilling, Christian Boeing
  • Patent number: 8940949
    Abstract: A process for the conversion of biomass to hydrocarbon products such as transportation fuels, kerosene, diesel oil, fuel oil, chemical and refinery plant feeds. The instant process uses a hydrocarbon or synthesis gas co-feed and hot pressurized water to convert the biomass in a manner commonly referred to as hydrothermal liquefaction.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: January 27, 2015
    Inventor: Gary Peyton Miller
  • Patent number: 8933285
    Abstract: Methods are provided for producing a jet fuel composition from a feedstock comprising a natural oil. The methods comprise reacting the feedstock with a low-weight olefin in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product. The methods further comprise hydrogenating the metathesized product under conditions sufficient to form a jet fuel composition.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: January 13, 2015
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Melvin L. Luetkens, Jr., Steven A. Cohen, Chander Balakrishnan
  • Patent number: 8921629
    Abstract: Biofuels can be produced via an organic phase hydrocatalytic treatment of biomass using an organic solvent that is partially miscible with water. An organic hydrocarbon-rich phase from the hydrocatalytically treated products can be recycled to form at least a portion of the organic phase.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: December 30, 2014
    Assignee: Shell Oil Company
    Inventors: Joseph Broun Powell, Kimberly Ann Johnson
  • Patent number: 8912376
    Abstract: The invention relates to a process for upgrading a pyrolysis oil comprising the following steps: —hydrodeoxygenation treatment (10) of the pyrolysis oil (12) and separation of the effluent (16) obtained into a light aqueous fraction (18) and a heavy organic fraction (20), or separation of the pyrolysis oil into an aqueous fraction and a lignin-rich fraction, —pre-reforming (22) of said aqueous fraction (18) and treatment of the effluent (26) obtained in an SMR unit (28) in order to produce hydrogen (34), —hydrotreatment (40) and/or catalytic cracking and/or visbreaking of said heavy organic fraction (20).
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: December 16, 2014
    Assignee: Total Raffinage Marketing
    Inventor: Alexandre Preau
  • Patent number: 8912373
    Abstract: A method and apparatus for dehydrating bio-1-alcohols to bio-1-alkenes with high selectivity. The bio-1-alkenes are useful in preparing high flashpoint diesel and jet biofuels which are useful to civilian and military applications. Furthermore, the bio-1-alkenes may be converted to biolubricants useful in the transportation sector and other areas requiring high purity/thermally stable lubricants.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: December 16, 2014
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Michael E. Wright
  • Patent number: 8912379
    Abstract: Disclosed is a method of preparing an alkene compound including introducing an acidic catalyst and a solvent into a reactor, increasing a temperature the reactor, and continuously removing water from the reactor while continuously supplying an alcohol into the reactor and continuously collecting an alkene compound.
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: December 16, 2014
    Assignee: Songwon Industrial Co., Ltd.
    Inventors: Dong-Kyung Park, Chang-Heon Shon, Duk-Suk Jung, Young-Tae Song
  • Patent number: 8912367
    Abstract: A method of reacting one or more components in a liquid phase to form an organic product, the method including feeding a carbon-based gas to a high shear device; feeding a hydrogen-based liquid medium to the high shear device; using the high shear device to form a dispersion comprising the carbon-based gas and the hydrogen-based liquid medium, wherein the dispersion comprises gas bubbles with a mean diameter of less than about 5 ?m; introducing the dispersion into a reactor; and reacting the dispersion to produce the organic product.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: December 16, 2014
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Aziz Hassan, Rayford G. Anthony, Gregory Borsinger
  • Publication number: 20140357919
    Abstract: The present invention relates to a process for the oxidative regeneration of a deactivated catalyst comprising molecular sieve to provide a regenerated molecular sieve catalyst, wherein said deactivated catalyst is from one or both of an oxygenate to olefin process and a olefin cracking process, said regeneration process comprising at least the steps of providing a regeneration gas stream comprising oxidant; treating the regeneration gas stream with a liquid adsorbent stream comprising an ethylene glycol in a contaminant absorption zone to remove at least a part of one or more of any water, any alkali metal ion and any alkaline earth metal ion present in the regeneration gas stream to provide a treated regeneration gas stream comprising oxidant; regenerating a deactivated catalyst comprising molecular sieve with the treated regeneration gas stream to provide a regenerated catalyst comprising regenerated molecular sieve.
    Type: Application
    Filed: November 28, 2012
    Publication date: December 4, 2014
    Inventors: Sivakumar Sadasivan Vijayakumari, Jeroen Van Westrenen
  • Patent number: 8901365
    Abstract: A catalytic Wittig method utilizing a phosphine including the steps of providing a phosphine oxide precatalyst and reducing the phosphine oxide precatalyst to produce the phosphine; forming a phosphonium ylide precursor from the phosphine and a reactant; generating a phosphonium ylide from the phosphonium ylide precursor; reacting the phosphonium ylide precursor with the aldehyde, ketone, or ester to form the olefin and the phosphine oxide which then reenters the cycle. The invention is also directed to a Mitsunobu reaction catalytic in phosphine.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: December 2, 2014
    Assignee: Board of Regents, The University of Texas System
    Inventor: Christopher J. O'Brien
  • Publication number: 20140343338
    Abstract: A catalyst return apparatus is disclosed as well as a riser reactor system comprising the conduit apparatus and a riser reactor, the conduit apparatus comprising a catalyst return conduit and at least two flow control devices in series, each flow control device arranged to control the flow of fluid through the conduit, wherein the length of the catalyst return conduit is more than 20 m. A process for reacting a feedstock in a riser reactor system comprising a riser reactor, the catalyst return apparatus and, and a stage vessel, the process comprising: holding a fluid comprising the catalyst in the at least one stage vessel for a residence time of at least 10 seconds.
    Type: Application
    Filed: April 24, 2014
    Publication date: November 20, 2014
    Applicant: SHELL OIL COMPANY
    Inventors: Leslie Andrew CHEWTER, Hubertus Wilhelmus Albertus DRIES, Rene SAMSON, Mao YE
  • Publication number: 20140343336
    Abstract: The present invention relates to a process for the oxidative regeneration of a deactivated catalyst comprising providing a catalyst comprising molecular sieve in hydrogen form to a guard zone; passing a regeneration gas stream comprising oxidant through the guard zone to remove part of one or both of any alkali metal ion and alkaline earth metal ion from the regeneration gas stream, to provide a treated regeneration gas stream; providing deactivated catalyst comprising molecular sieve in a regeneration zone, said deactivated catalyst from one or both of an oxygenate to olefin process and an olefin cracking process; regenerating the deactivated catalyst in the regeneration zone with the treated regeneration gas stream to provide regenerated molecular sieve catalyst; wherein said catalyst in said guard zone is one or both of deactivated catalyst comprising molecular sieve in hydrogen form and regenerated catalyst comprising regenerated molecular sieve in hydrogen form.
    Type: Application
    Filed: November 28, 2012
    Publication date: November 20, 2014
    Inventors: Sivakumar SADASIVAN VIJAYAKUMARI, Jeroen VAN WESTRENEN
  • Patent number: 8889941
    Abstract: The invention relates to a process for preparing lower olefins from an oxygenate, the process comprising subjecting C4 hydrocarbons obtained in an oxygenate-to-olefins conversion step to extractive distillation to obtain a stream enriched in unsaturated C4 hydrocarbons comprising isobutene and n-butenes, and a stream enriched in saturated C4 hydrocarbons; converting the isobutene in the stream enriched in unsaturated C4 hydrocarbons into an alkyl tertiary butyl ether to obtain an isobutene-depleted unsaturated C4 hydrocarbon stream and alkyl tertiary-butyl ether; and recycling at least part of the isobutene-depleted unsaturated C4 hydrocarbon stream and/or at least part of the alkyl tertiary-butyl ether, optionally after conversion into tertiary butanol and/or isobutene, to the oxygenate-to-olefins conversion step.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: November 18, 2014
    Assignee: Shell Oil Company
    Inventors: Leslie Andrew Chewter, Rajaram Ramesh, Jeroen Van Westrenen
  • Patent number: 8884090
    Abstract: An olefin is prepared from an alkyl alcohol in a process which comprises the steps: a) converting the alkyl alcohol into a dialkylether over a first catalyst, to yield a hot dialkylether product stream containing alkyl alcohol, dialkylether and water; b) cooling the hot dialkylether product stream at least partly by indirect heat exchange with a cold dialkylether product stream to below the dew point of water at the prevailing conditions to obtain a gas-liquid mixture; c) separating the obtained mixture into a liquid water-containing stream and a vaporous dialkylether-rich stream; d) subjecting at least part of the vaporous dialkylether-rich stream, as the cold dialkylether product stream in step b), to heat exchange with the hot dialkylether product stream, to yield a heated dialkylether-rich feed; and e) converting the heated dialkylether-rich feed to an olefin over a second catalyst.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: November 11, 2014
    Assignee: shell Oil Company
    Inventors: Jeroen Van Westrenen, Leslie Andrew Chewter, Ferry Winter
  • Patent number: 8864984
    Abstract: This invention relates to compositions comprising fluid hydrocarbon products, and to methods for making fluid hydrocarbon products via catalytic pyrolysis. Some embodiments relate to methods for the production of specific aromatic products (e.g., benzene, toluene, naphthalene, xylene, etc.) via catalytic pyrolysis. Some such methods involve the use of a composition comprising a mixture of a solid hydrocarbonaceous material and a heterogeneous pyrolytic catalyst component. The methods described herein may also involve the use of specialized catalysts. For example, in some cases, zeolite catalysts may be used.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: October 21, 2014
    Assignee: University of Massachusetts
    Inventors: George W. Huber, Yu-Ting Cheng, Torren Carlson, Tushar Vispute, Jungho Jae, Geoff Tompsett
  • Patent number: 8859837
    Abstract: The present invention relates to a process for producing lower olefinic hydrocarbons by oxidative dehydrogenation of paraffinic lower hydrocarbons. More particularly the present invention provides a process for converting a feedstream comprising a paraffinic lower hydrocarbon and carbon dioxide to a product stream comprising an olefinic lower hydrocarbon and synthesis gas in the presence of the catalyst composition La—Mn/inert support, wherein said catalyst composition comprises 1-10 mass % lanthanum and 1-10 mass % manganese and optionally 0.3-3 mass % alkali metal.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: October 14, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Aggadin Kh. Mamedov, Ali S. Al-Khuraimi
  • Patent number: 8853484
    Abstract: A process and system for separating and upgrading bio-oil into renewable fuels is provided. The process comprises separating bio-oil into a light fraction, an optional intermediate fraction, and heavy fraction based on their boiling points. The light fraction and optional intermediate fraction can be upgraded via hydrotreatment to produce a renewable gasoline and a renewable diesel, which may be combined with their petroleum-derived counterparts. The heavy fraction may be subjected to cracking and further separated into light, intermediate, and heavy fractions in order to increase the yield of renewable gasoline and renewable diesel.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: October 7, 2014
    Assignee: KiOR, Inc.
    Inventors: Maria Magdalena Ramirez Corredores, Vicente Sanchez Iglesias
  • Patent number: 8835703
    Abstract: The present invention describes a method for the production of one or more olefins from the residue of at least one renewable natural raw material. The present invention is advantageously related to a method that is integrated with a processing method for processing renewable natural agricultural raw materials for the production of propylene, and optionally of ethylene and butylene, mainly from the residues of the processed renewable natural agricultural raw material. The propylene is obtained from the gasification reaction of the lignocellulosic materials and of other organic products contained in the raw material residues, followed by the formation of methanol and its subsequent transformation into propylene, where this route may further generate ethylene and/or butylene as by-products.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: September 16, 2014
    Assignee: Braskem S.A.
    Inventor: Antonio Luiz Ribeiro De Castro Morschbacker
  • Patent number: 8829260
    Abstract: A process for the production of olefins from at least one of an alcohol and ether, the process including: contacting at least one alcohol or ether with a hydrofluoric acid-treated amorphous synthetic alumina-silica catalyst under decomposition conditions to produce an olefin.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: September 9, 2014
    Assignee: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Patent number: 8829258
    Abstract: Integrating a biomass pyrolysis and upgrading process into a fluid catalytic cracking unit. The process uses conventional FCC feed and a mixture of a solvent and biomass to produce upgraded fuel products. A slurry stream composed of solid biomass particles and a solvent is fed into an FCC riser through a slurry pump to achieve biomass pyrolysis and in situ pyrolysis oil upgrading. The catalytic cracking of the conventional petroleum feed also occurs in the riser.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: September 9, 2014
    Assignee: Phillips 66 Company
    Inventors: Kening Gong, Alexandru Platon, Terry S. Cantu, Daren E. Daugaard
  • Patent number: 8822748
    Abstract: Process for the production of ethene by the vapor phased chemical dehydration of a feed containing ethanol, water and ethoxyethane in a reactor at elevated temperature and pressure in the presence of a bed of catalyst comprising a supported heteropolytungstic acid, by maintaining or configuring the reactor so that it operates in a regime which satisfies the following parameters: 0.05<(Pwater/Pethanol+Pethoxyethane))/(8×10?5×GHSV+0.75)??(1) and ?20<Treaction?Tdew point?40×Ptotal feed+40×Pinerts<+80??(2) wherein Pwater, Pethanol and Pethoxyethane, GHSV, Treaction, Tdew point, Ptotal feed and Pinerts are as defined in the specification.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: September 2, 2014
    Assignee: BP P.L.C.
    Inventors: Benjamin Patrick Gracey, Stephen Roy Partington
  • Patent number: 8822749
    Abstract: Process for the preparation of an olefinic product, which process comprises reacting an oxygenate feedstock and an olefinic co-feed in a reactor in the presence of an oxygenate conversion catalyst comprising a molecular sieve having one-dimensional 10-membered ring channels, and a further molecular sieve having more-dimensional channels, wherein the weight ratio between the one-dimensional molecular sieve and the further molecular sieve is in the range of from 1:1 to 100:1, to prepare an olefinic reaction effluent; separating the olefinic reaction effluent into at least a first olefinic fraction and a second olefinic fraction; recycling at least part of the second olefinic fraction; and recovering at least part of the first olefinic fraction as olefinic product.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: September 2, 2014
    Assignee: Shell Oil Company
    Inventors: Jeroen Van Westrenen, Leslie Andrew Chewter, Ferry Winter
  • Publication number: 20140243569
    Abstract: A rotary machine type shock wave reactor suitable for thermal cracking of hydrocarbon-containing materials includes a casing, a rotor whose periphery contains an axial-flow blade cascade, and a directing rim, provided with at least two stationary vane cascades, adjoining an axial-flow rotor cascade, wherein the casing substantially encloses the periphery of the rotor and the directing rim. The cascades are configured to direct feedstock containing process stream to repeatedly pass the cascades in a helical trajectory while propagating within the duct between the inlet and exit and to generate stationary shock-waves to heat the feedstock. The axial-flow rotor cascade is configured to provide kinetic energy and add velocity to feedstock containing process stream, and the stationary vanes located downstream the rotor cascade are configured to reduce the velocity of the stream and convert kinetic energy into heat.
    Type: Application
    Filed: February 22, 2013
    Publication date: August 28, 2014
    Applicant: COOLBROOK OY
    Inventors: Jukka SEPPALA, Jyrki HILTUNEN, Veli-Matti PUROLA
  • Patent number: 8809605
    Abstract: Technologies to convert biomass to liquid hydrocarbon fuels are currently being developed to decrease our carbon footprint and increase use of renewable fuels. Since sugars/sugar derivatives from biomass have high oxygen content and low hydrogen content, coke becomes an issue during zeolite upgrading to liquid hydrocarbon fuels. A process was designed to reduce the coke by co-feeding sugars/sugar derivatives with a saturated recycle stream containing hydrogenated products.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: August 19, 2014
    Assignee: Phillips 66 Company
    Inventors: Yun Bao, Edward L. Sughrue, II, Jianhua Yao, TiePan Shi, Kristi A. Fjare, Lisa L. Myers, Ronald E. Brown
  • Patent number: 8809603
    Abstract: A method of producing a hydrocarbon fuel from a hydrocarbon-containing gas is disclosed and described. A hydrocarbon-containing gas is produced (10) containing from about 25% to about 50% carbon dioxide and can be reformed (12) with a steam gas to form a mixture of hydrogen, carbon monoxide and carbon dioxide. The reforming can be a composite dry-wet reforming or a tri-reforming step. The mixture of hydrogen, carbon monoxide and carbon dioxide can be at least partially converted (14) to a methanol product. The methanol product can be converted to the hydrocarbon fuel (18), optionally via UME synthesis (16). The method allows for effective fuel production with low catalyst fouling rates and for operation in an unmanned, self-contained unit at the source of the hydrocarbon-producing gas.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: August 19, 2014
    Assignee: Oberon Fuels, Inc.
    Inventors: Andrew Corradini, Jarod McCormick
  • Patent number: 8802905
    Abstract: A unique, integrated non-obvious pathway to convert biomass to biofuels using integration of chemical processes is described herein. The present invention is simple, direct, and provides for the shortest or minimum path between biomass and transportation fuels with alcohols as intermediates, while avoiding hydrogen use during processing. Furthermore, the present invention allows the manufacture of “drop-in” substitutable fuels to be used as-is without modifications instead of conventional petroleum based fuels. The processing described herein is done under mild conditions, under relatively low pressures and temperatures, and under non-corrosive conditions obviating use of special equipment or materials.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: August 12, 2014
    Assignees: The Texas A&M University System, Byogy Renewables, Inc.
    Inventors: Mahmoud M. El-Halwagi, Kenneth R. Hall, Harold Dennis Spriggs
  • Patent number: 8771601
    Abstract: The present invention relates to a method and apparatus for intensifying the energy content of an organic material by converting the material into hydrocarbons and the resulting product thereof. A method for converting an organic material into hydrocarbon fuels is disclosed. The method comprising the steps of pressurising said organic material being in a fluid to a pressure above 225 bar, heating said organic material in said fluid to a temperature above 200 C in the presence of a homogeneous catalyst comprising a compound of at least one element of group IA of the periodic table of elements. The disclosed method further comprises the steps of contacting said organic material in said fluid with a heterogeneous catalyst comprising a compound of at least one element of group IVB of the periodic table and/or alpha-alumina assuring that said fluid has initially a pH value of above 7.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: July 8, 2014
    Assignee: Altaca Insaat ve dis Ticaret A.S.
    Inventors: Steen Brummerstedt Iversen, Karsten Felsvang, Tommy Larsen, Viggo Lüthje
  • Patent number: 8772562
    Abstract: A process for converting feedstock triglycerides to lube basestocks. The process has the steps of (a) metathesizing the feedstock triglycerides with ethylene in the presence of a metathesis catalyst to form alpha olefins and medium-chain triglycerides and (b) hydroisomerizing the medium-chain triglycerides in the presence of a hydroisomerization catalyst and hydrogen to form methyl-branched triglycerides. The alpha olefins may be oligomerized in the presence of an oligomerization catalyst to form poly(alpha olefins).
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: July 8, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, Margaret May-Som Wu, Alan Anthony Galuska, David Lawrence Stern
  • Patent number: 8754280
    Abstract: The present invention provides a method for start-up of an Oxygenate-to-Olefins process, which process comprises the steps: a) providing an oxygenate-comprising feedstock to an Oxygenate-to-Olefins reaction zone and contacting the feedstock with a zeolite-comprising catalyst at a temperature in the range of from 450 to 700° C. ° C., to obtain an reaction product containing olefins; b) separating the reaction product obtained in step a) in at least a product fraction containing ethylene and/or propylene and a product fraction containing C4+ olefins; c) recycling at least part of the C4+ olefins in the product fraction containing C4+ olefins to the Oxygenate-to-Olefins reaction zone in step (a), characterized in that upon start-up the oxygenate-comprising feedstock initially comprises a first amount of externally supplied tert-alkyl ether and subsequently the amount of externally supplied tert-alkyl ether in the oxygenate-comprising feedstock is reduced.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: June 17, 2014
    Assignee: Shell Oil Company
    Inventors: Leslie Andrew Chewter, Rajaram Ramesh, Sivakumar Sadasivan Vijayakumari, Jeroen Van Westrenen
  • Patent number: 8741258
    Abstract: Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: June 3, 2014
    Assignee: University of Massachusetts
    Inventors: George W. Huber, Tushar P. Vispute, Kamalakanta Routray
  • Patent number: 8735638
    Abstract: A method for processing biomass comprising heating an aqueous slurry comprising biomass, water and a phosphate catalyst in a pressure vessel at a temperature of about 150° C. to about 500° C. to produce a mixture comprising a dispersion of an organic phase and an aqueous phase.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: May 27, 2014
    Assignee: Aquaflow Bionomic Corporation Limited
    Inventors: Ian James Miller, Rhys Antony Batchelor
  • Patent number: 8729330
    Abstract: Non-hydrotreated biocomponent feeds can be mixed with mineral feeds and processed under catalytic isomerization/dewaxing conditions. The catalytic isomerization/dewaxing conditions can be selected to advantageously also substantially deoxygenate the mixed feed. Diesel fuel products with improved cold flow properties can be produced.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: May 20, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Patrick L. Hanks, Timothy L. Hilbert, William J. Novak, Christopher G. Oliveri
  • Patent number: 8716543
    Abstract: A process to make propylene can include providing a reaction zone containing a catalyst and introducing a feedstock into the reaction zone. The catalyst can be an acid. The feedstock can include ethylene, dimethyl ether or methanol and dimethyl ether with at least 1000 wppm of dimethyl ether, and optionally steam. The feedstock can be contacted with the catalyst at temperature and pressure conditions to produce an effluent, including propylene, hydrocarbons, steam, optionally unconverted methanol and/or unconverted dimethyl ether and optionally unconverted ethylene. The temperature at the inlet of the reaction zone can be under 280° C., such as from 50 to 280° C. The effluent can be sent to a fractionation zone to recover propylene, optionally methanol, dimethyl ether and optionally ethylene. At least a part of methanol, dimethyl ether, and ethylene can be recycled to the reaction zone at step b).
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: May 6, 2014
    Assignee: Total Research & Technology Feluy
    Inventors: Pieter Struelens, Pierre Jacobs, Nikolai Nesterenko, Delphine Minoux, Sander Van Donk, Jean-Pierre Dath
  • Patent number: 8709239
    Abstract: A process is disclosed process for converting a solid or highly viscous carbon-based energy carrier material to liquid and gaseous reaction products, said process comprising the steps of: a) contacting the carbon-based energy carrier material with a particulate catalyst material b) converting the carbon-based energy carrier material at a reaction temperature between 200° C. and 450° C., preferably between 250° C. and 350° C., thereby forming reaction products in the vapor phase. In a preferred embodiment the process comprises the additional step of: c) separating the vapor phase reaction products from the particulate catalyst material within 10 seconds after said reaction products are formed. In a further preferred embodiment step c) is followed by: d) quenching the reaction products to a temperature below 200° C.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: April 29, 2014
    Assignee: KiOR, Inc.
    Inventors: Paul O'Connor, Dennis Stamires, Jacob Adriaan Moulijn
  • Patent number: 8710288
    Abstract: A process for converting an oxygenate-containing feedstock to a product comprising olefins comprises including in the oxygenate-containing feedstock an amount of ammonia. The presence of the ammonia increases the product's ratio of ethylene to propylene.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: April 29, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Yu Liu, Albert E. Schweizer, Jr., Andrzej M. Malek
  • Patent number: 8697930
    Abstract: Convert a methylamine (e.g. monomethylamine, dimethylamine and trimethylamine) to a mixture of olefins (e.g. ethylene, propylene and butylene) by placing the methylamine, optionally in a mixture with at least one of ammonia and an inert diluent, in contact with a microporous acidic silicoaluminophosphate catalyst or a microporous aluminosilicate catalyst.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: April 15, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Robert G. Bowman, Eric E. Stangland, Rainer Bruening, Angelika Heilmann, Roland Wagner, Jason Lee Bronkema
  • Patent number: 8692045
    Abstract: A process for producing light olefins is provided. A feedstock enters a pre-reaction zone and contacts a catalyst comprising at least one silicon-aluminophosphate molecular sieve and produces a gas-phase stream; the gas-phase stream and the catalyst enter at least one riser, and the gas-phase stream and the catalyst pass from an outlet of the at least one riser and enter a gas-solid rapid separation zone; the separated gas-phase stream enters a separation section; a first portion of the separated catalyst returns to the pre-reaction zone, and a second portion is regenerated in a regenerator; wherein an inlet of the at least one riser extends into the pre-reaction zone, about 60% to about 90% of the height of the at least one riser passes through a heat exchange zone, and the outlet extends into the gas-solid rapid separation zone.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: April 8, 2014
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology
    Inventors: Guozhen Qi, Siqing Zhong, Wei Chen, Zhinan Yu
  • Patent number: 8686210
    Abstract: A process for obtaining gaseous hydrocarbons from a starting material which contains oxygen-containing hydrocarbons. The process includes providing the starting material and contacting the starting material with a porous catalyst at a temperature of 300-850° C. in the absence of oxygen in a converting reactor so as to form a hydrocarbon-containing product gas mixture in which a proportion by weight of gaseous hydrocarbons is greater than a proportion by weight of liquid hydrocarbons in the gas mixture. Additionally, the process includes collecting a hydrocarbon-containing product gas stream of the hydrocarbon-containing product gas mixture and introducing the product gas stream into a separation apparatus in which product fractionation is carried out.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: April 1, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Volker Heil, Wolfgang Urban, Axel Kraft, Christoph Unger, Karl Meller, Joachim Danzig, Ulrich Seifert, Anna Fastabend, Silvana Rossow, Andreas Menne
  • Patent number: 8680356
    Abstract: The present invention relates to a process for preparing a catalyst which, in a formal sense, comprises 0.1 to 20% by mass of alkali metal and/or alkaline earth metal oxide, 0.1 to 99% by mass of oxide and 0.1 to 99% by mass of silicon dioxide, which is characterized in that it aluminum comprises the steps of treating an aluminosilicate with an aqueous alkali metal and/or alkaline earth metal salt solution under acidic conditions and calcining the aluminosilicate treated with aqueous alkali metal and/or alkaline earth metal salt solution, and to a catalyst which is obtainable by this process and, in a formal sense, comprises alkali metal and/or alkaline earth metal oxide, aluminum oxide and silicon dioxide, which is characterized in that the catalyst, in a formal sense, has a content of alkali metal and/or alkaline earth metal oxides of 0.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: March 25, 2014
    Assignee: Evonik Oxeno GmbH
    Inventors: Horst-Werner Zanthoff, Dietrich Maschmeyer, Thomas Quandt, Franz Nierlich, Silvia Santiago Fernandez, Stephan Houbrechts, Georg Skillas, Kurt-Alfred Gaudschun
  • Patent number: 8680355
    Abstract: A novel olefin production process of the invention can be established as an industrial and practical process of producing an olefin with high selectivity by directly reacting a ketone and hydrogen in a single reaction step. In particular, a novel olefin production process is provided in which propylene is obtained with high selectivity by directly reacting acetone and hydrogen. An olefin production process of the invention includes reacting a ketone and hydrogen at a reaction temperature in the range of 50 to 300° C. in the presence of a Cu-containing hydrogenation catalyst and a solid acid substance.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: March 25, 2014
    Assignee: Mitsui Chemcials, Inc.
    Inventors: Tsuneyuki Ohkubo, Kenji Fujiwara, Terunori Fujita
  • Patent number: 8674160
    Abstract: Feeds containing a hydrotreated biocomponent portion, and optionally a mineral portion, can be processed under catalytic conditions for isomerization and/or dewaxing. The sulfur content of the feed for dewaxing can be selected based on the hydrogenation metal used for the catalyst. Diesel fuel products with improved cold flow properties can be produced.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: March 18, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Patrick L. Hanks, Timothy L. Hilbert, William J. Novak, Christopher G. Oliveri
  • Patent number: 8674157
    Abstract: A process for converting a hydrocarbon feedstock to provide an effluent containing light olefins, the process comprising passing a hydrocarbon feedstock comprising a mixture of a first portion, containing one or more olfeins of C4 or greater, and a second portion, containing at least one C1 to C6 aliphatic hetero compound selected from alcohols, ethers, carbonyl compounds and mixtures thereof, through a reactor containing a crystalline silicate catalyst to produce an effluent including propylene, the crystalline silicate being selected from at least one of an MFI-type crystalline silicate having a silicon/aluminum atomic ratio of at least 180 and an MEL-type crystalline silicate having a silicon/aluminum atomic ratio of from 150 to 800 which has been subjected to a steaming step.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: March 18, 2014
    Assignee: Total Research & Technology Feluy
    Inventors: Jean-Pierre Dath, Walter Vermeiren
  • Patent number: 8668823
    Abstract: This invention relates to methods and units for mitigation of carbon oxides during hydrotreating hydrocarbons including mineral oil based streams and biological oil based streams. A hydrotreating unit includes a first hydrotreating reactor for receiving a mineral oil based hydrocarbon stream and forming a first hydrotreated product stream, and a second hydrotreating reactor for receiving a biological oil based hydrocarbon stream and forming a second hydrotreated product stream.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: March 11, 2014
    Assignee: BP Corporation North America Inc.
    Inventors: Nicholas J. Gudde, John W. Shabaker
  • Patent number: 8658554
    Abstract: A catalyst support which may be used to support various catalysts for use in reactions for hydrogenation of carbon dioxide including a catalyst support material and an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction associated with the catalyst support material. A catalyst for hydrogenation of carbon dioxide may be supported on the catalyst support. A method for making a catalyst for use in hydrogenation of carbon dioxide including application of an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction to a catalyst support material, the coated catalyst support material is optionally calcined, and a catalyst for the hydrogenation of carbon dioxide is deposited on the coated catalyst support material. A process for hydrogenation of carbon dioxide and for making syngas comprising a hydrocarbon, esp. methane, reforming step and a RWGS step which employs the catalyst composition of the present invention and products thereof.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Robert W. Dorner, Heather D. Willauer, Dennis R Hardy
  • Patent number: 8647398
    Abstract: A process and system for separating and upgrading bio-oil into renewable fuels is provided. The process comprises separating bio-oil into a light fraction and heavy fraction based on their boiling points. The heavy fraction is then subjected to hydrotreatment, while the light fraction is not subjected to hydrotreatment. At least a portion of the un-hydrotreated light fraction and at least a portion of the hydrotreated heavy fraction are blended with petroleum-derived gasoline to thereby provide a renewable gasoline, and at least a portion of the hydrotreated heavy fraction is blended with petroleum-derived diesel to thereby provide a renewable diesel.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: February 11, 2014
    Assignee: KiOR, Inc.
    Inventors: Maria Magdalena Ramirez Corredores, Vicente Sanchez Iglesias
  • Patent number: 8648226
    Abstract: The present invention provides a process for producing gasoline components from syngas. Syngas is converted to one or more of methanol, ethanol, mixed alcohols, and dimethyl ether, followed by various combinations of separations and reactions to produce gasoline components with oxygenates, such as alcohols. The syngas is preferably derived from biomass or another renewable carbon-containing feedstock, thereby providing a biorefining process for the production of renewable gasoline.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: February 11, 2014
    Assignee: Range Fuels, Inc.
    Inventors: Shakeel H. Tirmizi, John D. Winter, David T. Gallaspy
  • Patent number: 8633345
    Abstract: A process for preparing isobutene including cleaving a mixture obtained from an MTBE-containing feedstock and/or an MTBE-containing stream, affording a stream of reaction products consisting of isobutene, methanol, MTBE and by-products, the latter consisting of a1) high boilers having a boiling range above 55° C. at a pressure of 0.1 MPa; a2) medium boilers having a boiling range of 12 to 55° C. at a pressure of 0.1 MPa; and a3) low boilers having a boiling range below 12° C. at a pressure of 0.1 MPa; distillatively separating into a stream which contains the isobutene product and low boilers, and a stream which contains MTBE, methanol, medium boilers and high boilers; distillatively separating to obtain an MTBE-containing stream and a methanol-containing high boiler stream; recycling an MTBE-containing stream in which the medium boilers being removed completely or partially before recycling.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: January 21, 2014
    Assignee: Evonik Oxeno GmbH
    Inventors: Markus Winterberg, Dirk Roettger, Rainer Bukohl, Holger Wiederhold, Walter Luh
  • Patent number: 8629312
    Abstract: The present invention provides a method to produce olefins by the decarboxylation of organic carboxylic acids in the presence of an organopalladium catalyst.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: January 14, 2014
    Assignee: Iowa State University Research Foundation, Inc.
    Inventor: George A. Kraus
  • Patent number: 8629308
    Abstract: A method for producing hydrocarbons from biomass is provided. The method involves supplying a feed stream; supplying a heated hydrocarbon solvent; combining the feed stream and the heated hydrocarbon solvent to produce a reactor feed, and hydrodeoxygenating the reactor feed to produce hydrocarbons; where the feed stream includes a synthetic polymer as well as biomass having fatty acids, glycerides, or combinations thereof.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: January 14, 2014
    Assignee: Syntroleum Corporation
    Inventors: Ramin Abhari, E. Gary Roth, Peter Z. Havlik, H. Lynn Tomlinson
  • Patent number: 8604260
    Abstract: Disclosed is a process for biomass conversion in a catalytic pyrolysis reactor to convert such to liquid hydrocarbons which includes conditions which favor increased olefin production; wherein the olefins are then upgraded alone or with the produced bio-oil to fuel range hydrocarbons.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: December 10, 2013
    Assignee: KiOR, Inc.
    Inventor: Andre Ditsch