Using Extraneous Nonhydrocarbon Agent Patents (Class 585/721)
-
Patent number: 10391481Abstract: We provide a process for regenerating a used acidic ionic liquid catalyst which has been deactivated by conjunct polymers in a reactor, by removing at least 57 wt % of the conjunct polymers originally present in the used acidic ionic liquid catalyst in a separate regeneration reactor, so as to increase the activity of the catalyst. We also provide a regenerated used acidic ionic liquid catalyst having increased activity.Type: GrantFiled: February 26, 2015Date of Patent: August 27, 2019Assignee: Chevron U.S.A. Inc.Inventors: Saleh Ali Elomari, Thomas Van Harris
-
Patent number: 9914675Abstract: Alkylation processes are described. The processes utilize ionic liquid catalysts having a kinematic viscosity range of about 50 cSt to about 100 cSt at 25° C. Catalysts within this range produce alkylate having higher octane than catalysts outside this range, especially at higher process temperatures which are preferable from an operating cost standpoint. The alkylate can have one or more of a research octane number of at least about 93, a selectivity of C8 of at least about 65%, and a mole ratio of trimethylpentane to dimethylhexane of greater than about 7:1.Type: GrantFiled: March 31, 2015Date of Patent: March 13, 2018Assignee: UOP LLCInventors: Avram M. Buchbinder, Douglas A. Nafis, Alakananda Bhattacharyya, Susie C. Martins
-
Patent number: 9914674Abstract: An alkylation process utilizing less than 10 vol % of a halometallate based ionic liquid catalyst is described. By decreasing the catalyst volume fraction, the level of subsequent undesirable reactions may be minimized. The total residence time is typically in the range of about 1 min to about 30 min. The alkylate typically has a research octane number of at least about 93, and the olefin conversion is typically at least about 96%.Type: GrantFiled: March 31, 2015Date of Patent: March 13, 2018Assignee: UOP LLCInventors: Avram M. Buchbinder, Susie C. Martins, Erin M. Broderick, Paul T. Barger, Alakananda Bhattacharyya, Douglas A. Nafis
-
Patent number: 9096487Abstract: Disclosed is an alkylation process using ionic liquid as catalyst, which process comprises separating halogenated hydrocarbons-rich fraction from the alkylation product by distillation and/or adsorption and reintroducing the separated fraction into the reaction system during the alkylation reaction, wherein the ionic liquid catalyst used in the alkylation reaction has a cation derived from hydrohalide of alkyl amine, hydrohalide of imidazole or hydrohalide of pyridine and an anion derived from one or more metallic compounds. The inventive process effectively utilizes the halogenated hydrocarbons in the alkylation product, prolongs the life of the ionic liquid catalyst, and reduces the halogen content in the alkylate oil.Type: GrantFiled: December 27, 2010Date of Patent: August 4, 2015Assignee: Shell Oil CompanyInventors: Zhichang Liu, Chunming Xu, Rui Zhang, Xianghai Meng
-
Publication number: 20150005560Abstract: A process of tuning a hydrocarbon product composition is described. The process involves selecting paraffins for reaction. The equilibrium constants for reactions of the selected paraffins can be used to select appropriate feed ratios, or an equilibrium composition as function of C/H molar ratio. A selected feed is reacted to obtain the product. Equilibrium product compositions and non-equilibrium product compositions can be obtained using the process.Type: ApplicationFiled: June 12, 2014Publication date: January 1, 2015Inventors: Stuart Smith, Alakananda Bhattacharyya, Peter K. Coughlin
-
Patent number: 8921636Abstract: Methods for converting an HF alkylation unit to an ionic liquid alkylation system configured for performing ionic liquid catalyzed alkylation processes may comprise connecting at least one component configured for ionic liquid catalyzed alkylation to at least one component of the HF alkylation unit, wherein the at least one component of the HF alkylation unit is retained, modified or adapted for use in the ionic liquid alkylation system. An ionic liquid alkylation system derived from an existing or prior HF alkylation unit is also disclosed.Type: GrantFiled: September 12, 2011Date of Patent: December 30, 2014Assignee: Chevron U.S.A. Inc.Inventors: Robert Fletcher Cleverdon, Christine Marie Phillips, Hye Kyung Cho Timken
-
Patent number: 8920755Abstract: Methods for converting an H2SO4 alkylation unit to an ionic liquid alkylation system configured for performing ionic liquid catalyzed alkylation processes may comprise connecting at least one component configured for ionic liquid catalyzed alkylation to at least one component of the H2SO4 alkylation unit, wherein the at least one component of the H2SO4 alkylation unit is retained, modified or adapted for use in the ionic liquid alkylation system. Ionic liquid catalyzed alkylation systems derived from existing conventional alkylation units, and ionic liquid catalyzed alkylation processes are also disclosed.Type: GrantFiled: September 12, 2011Date of Patent: December 30, 2014Assignee: Chevron U.S.A. Inc.Inventors: Robert Fletcher Cleverdon, Christine Marie Phillips, Hye Kyung Cho Timken
-
Patent number: 8912382Abstract: One exemplary embodiment can be a method of modifying an alkylation unit to increase capacity. The method may include combining a first alkylation zone with a second alkylation zone. Generally, the first alkylation zone includes a first settler having a height and a width. Typically, the width is greater than the height. In addition, the second alkylation zone may have a second settler having a height and a width. Usually, the height is greater than the width.Type: GrantFiled: February 8, 2012Date of Patent: December 16, 2014Assignee: UOP LLCInventors: Daryl Dunham, Dale James Shields
-
Patent number: 8911614Abstract: A new family of crystalline microporous metallophosphates designated AlPO-59 has been synthesized. These metallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as the ETMA+, M is a framework metal alkaline earth or transition metal of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The AlPO-59 compositions are characterized by a new unique ABC-6 net structure and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.Type: GrantFiled: June 29, 2012Date of Patent: December 16, 2014Assignee: UOP LLCInventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
-
Patent number: 8906225Abstract: A new family of crystalline microporous metallophosphates designated AlPO-57 has been synthesized. These metallophosphates are represented by the empirical formula R+rMmn+EPxSiyOz where R is an organoammonium cation such as the DEDMA+, M is a divalent framework metal such as an alkaline earth or transition metal, and E is a framework element such as aluminum or gallium. The microporous AlPO-57 compositions are characterized by a new unique ABC-6 net structure and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for separating at least one component.Type: GrantFiled: June 29, 2012Date of Patent: December 9, 2014Assignee: UOP LLCInventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
-
Publication number: 20140323786Abstract: A continuous mixing reactor has an outer shell having a cylindrical portion with a central section and two opposite conical end sections; a circulation tube within the shell so that an annular passage forms between the shell and the circulation tube; an impeller within and positioned adjacent to one end of the circulation tube; and heat exchange means penetrating the outer shell and extending into the end of the circulation tube opposite the impeller. The outer shell has a hydraulic head forming one end of the shell, a heat exchange medium header at the opposite end of the shell. The circulation tube nearer the heat exchange medium header terminates at or downstream from a tangential plane extending through the shell at the intersection of the central section and the conical end section of the cylindrical portion of shell. The reactor is useful in an alkylation process.Type: ApplicationFiled: April 25, 2014Publication date: October 30, 2014Applicant: E I DU PONT DE NEMOURS AND COMPANYInventors: Mark Coleman Puett, Minye Liu
-
Patent number: 8865960Abstract: Methods for starting and operating ionic liquid catalyzed hydrocarbon conversion processes and systems to provide maximum process efficiency, system reliability and equipment longevity may include: purging air and free water from at least a portion of the system; introducing at least one reactant into the at least a portion of the system; and re-circulating the at least one reactant through the at least a portion of the system, via at least one feed dryer unit, until the at least one reactant exiting the at least a portion of the system has a water content at or below a threshold value, prior to the introduction of an ionic liquid catalyst and/or additional reactant(s) and feeds into the system.Type: GrantFiled: June 28, 2010Date of Patent: October 21, 2014Assignee: Chevron U.S.A. Inc.Inventors: Hye-Kyung Timken, Howard S. Lacheen, Shawn S. Winter
-
Patent number: 8729329Abstract: A process, comprising: a) introducing an acidic ionic liquid to a reactor comprising a solid support; b) feeding to the reactor a feed stream comprising a Brønsted acid and a hydrocarbon mixture comprising: i. at least one alkylatable hydrocarbon, and ii. at least one alkylating agent; and c) collecting one or more liquid hydrocarbon products in an effluent from the reactor, wherein the one or more liquid hydrocarbon products are oligomer products, alkylate products, or mixtures thereof, made from the alkylatable hydrocarbon. Also, a process, comprising: a) introducing an acidic ionic liquid to a reactor comprising a solid support; b) feeding to the reactor a feed stream comprising a Brønsted acid and a hydrocarbon mixture; c) cooling the reactor by evaporating a volatile hydrocarbon from a reaction zone in the reactor; and d) collecting one or more liquid hydrocarbon products made from the hydrocarbon mixture.Type: GrantFiled: June 28, 2010Date of Patent: May 20, 2014Assignee: Chevron U.S.A. Inc.Inventors: Sven Ivar Hommeltoft, Zhen Zhou
-
Patent number: 8674159Abstract: A process comprising: contacting a blend of hydrocarbons under hydroconversion conditions in a hydroconversion zone with a mixture of an acidic ionic liquid catalyst and at least one alkyl halide comprising at least 55 wt % halide and having a boiling point of 70° C. or higher. An alkylation process comprising: contacting a blend of hydrocarbons under alkylation conditions with a mixture of an acidic ionic liquid catalyst that is a chloroaluminate and at least one alkyl halide comprising 1,1,1-trichloroethane, tetrachloroethylene, or a mixture thereof; wherein greater than 99.9 wt % of an at least one olefin in the blend of hydrocarbons is alkylated. Also, a hydroconversion process comprising drying the alkyl halide.Type: GrantFiled: May 19, 2009Date of Patent: March 18, 2014Assignee: Chevron U.S.A. Inc.Inventor: Sven Ivar Hommeltoft
-
Patent number: 8603407Abstract: A novel catalytic reactor is provided for controlling the contact of a limiting reactant with a catalyst surface. A first flow vessel defines an interior surface and an exterior surface, and the interior surface has a catalyst deposited on at least a portion thereof. A second flow vessel is positioned within the first flow vessel and the second flow vessel defines a porous surface designed to deliver a fluid uniformly to at least a portion of the interior surface of the first flow vessel.Type: GrantFiled: March 21, 2007Date of Patent: December 10, 2013Assignee: Precision Combustion, Inc.Inventors: William C. Pfefferle, Shahrokh Etemad
-
Patent number: 8536395Abstract: A solid catalyst, such as a molecular sieve catalyst or solid acid catalyst, is supported by a binder, such as amorphous silica or alumina, wherein the binder is charged with metal ions to form an ion-modified binder. The ion-modified binder is capable of attachment to polar contaminants and inhibit their contact with the catalyst. The catalyst can be a zeolite and can be the catalyst for an alkylation reaction, such as the alkylation of benzene with ethylene.Type: GrantFiled: December 22, 2011Date of Patent: September 17, 2013Assignee: Fina Technology, Inc.Inventors: Joseph E. Pelati, Taylor Rives
-
Patent number: 8507396Abstract: A process for regenerating a used acidic catalyst which has been deactivated by conjunct polymers by removing the conjunct polymers so as to increase the activity of the catalyst is disclosed. Methods for removing the conjunct polymers include addition of a basic reagent and alkylation. The methods are applicable to all acidic catalysts and are described with reference to certain ionic liquid catalysts.Type: GrantFiled: April 20, 2010Date of Patent: August 13, 2013Assignee: Chevron U.S.A. Inc.Inventors: Saleh Elomari, Thomas V. Harris
-
Publication number: 20130066133Abstract: Methods for converting an HF alkylation unit to an ionic liquid alkylation system configured for performing ionic liquid catalyzed alkylation processes may comprise connecting at least one component configured for ionic liquid catalyzed alkylation to at least one component of the HF alkylation unit, wherein the at least one component of the HF alkylation unit is retained, modified or adapted for use in the ionic liquid alkylation system. An ionic liquid alkylation system derived from an existing or prior HF alkylation unit is also disclosed.Type: ApplicationFiled: September 12, 2011Publication date: March 14, 2013Applicant: Chevron U.S.A. Inc.Inventors: Robert Fletcher Cleverdon, Christine Marie Phillips, Hye Kyung Cho Timken
-
Patent number: 8383874Abstract: A reactor for the autorefrigerant alkylation process has a reactor vessel with a lower end inlet for the refrigerant reactant and the sulfuric acid and a series of inlets for the olefin reactant at vertically spaced intervals. A flow path for the reactants is provided by co-acting baffles which define sequential reaction zones. The baffles interact with a rotary mixer with multiple impellers to provide agitation. Outlets for the vaporized refrigerant and the reaction effluent are provided at the upper end of the vessel. In the alkylation process, the liquid isoparaffin hydrocarbon reactant/refrigerant with a sulfuric acid alkylation catalyst is introduced into the lower end and passed along the extended reactant flow path with the olefin reactant introduced at intervals along the path. The reaction mixture flows in the sequence of serial reaction zones within the reactor to promote mixing of the isoparaffin reactant with the acid catalyst.Type: GrantFiled: December 22, 2011Date of Patent: February 26, 2013Assignee: ExxonMobil Research and Engineering CompanyInventors: Ramon A. Strauss, Ramesh R. Hemrajani, Guido L. Spinelli
-
Patent number: 8350108Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to paraffins useful as liquid fuels. The process involves the conversion of water soluble oxygenated hydrocarbons to oxygenates, such as alcohols, furans, ketones, aldehydes, carboxylic acids, diols, triols, and/or other polyols, followed by the subsequent conversion of the oxygenates to paraffins by dehydration and alkylation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.Type: GrantFiled: August 27, 2009Date of Patent: January 8, 2013Assignee: Virent, Inc.Inventors: Randy D. Cortright, Paul G. Blommel, Michael J. Werner, Matthew R. Vanstraten
-
Patent number: 8323478Abstract: A process, comprising: a. taking a sample from a continuous alkylation reactor process; b. measuring a content of a halide in the sample; and c. within 45 minutes from the taking a sample, adjusting a flow of a halide containing additive comprising the halide to control a ratio of a yield of an alkylate gasoline and a yield of a middle distillate. Also a process, comprising: a. taking a sample from an effluent of an alkylation reactor in an alkylation reactor process; b. measuring a content of a halide in the sample; and c. in response to the measured content of the halide, adjusting a flow of a halide containing additive to a predetermined range that has been selected to obtain a ratio of a yield of an alkylate gasoline and a yield of a middle distillate from 0.31 to 4.0 in a product from the alkylation reactor.Type: GrantFiled: July 21, 2011Date of Patent: December 4, 2012Assignee: Chevron U.S.A. Inc.Inventors: Sven Ivar Hommeltoft, Howard S. Lacheen
-
Publication number: 20120226086Abstract: A process for producing a gasoline blending component and a middle distillate, comprising adjusting a level of a halide containing additive provided to an ionic liquid alkylation reactor to shift selectivity towards heavier products, and recovering a low volatility gasoline blending component and the middle distillate.Type: ApplicationFiled: April 10, 2012Publication date: September 6, 2012Applicant: Chevron U.S.A. Inc.Inventors: Sven Ivar Hommeltoft, Stephen Joseph Miller, Ajit Ramchandra Pradhan
-
Publication number: 20120215045Abstract: Methods and apparatus of staged injection of an oxidant into a feedstream within a reactor are disclosed. The staged injection of the oxidant can better disperse the catalytic reactions throughout the catalyst bed. The staged injection of the oxidant can lower the content of carbon oxides in the reaction product stream, which can reduce energy release from the reactor.Type: ApplicationFiled: February 22, 2011Publication date: August 23, 2012Applicant: Fina Technology, Inc.Inventor: James R. Butler
-
Publication number: 20120197056Abstract: Surface-active solid-phase catalyst activity may be substantially improved by creating deliberate repetitive surface-to-surface contact between portions of the active surfaces of catalyst objects. While they are immersed in reactant material such contact between portions of the active surfaces of catalyst objects can substantially activate the surfaces of many heterogeneous catalysts. Examples are given of such action employing a multitude of predetermined shapes, supported catalyst structures, etc. agitated or otherwise brought into contact to produce numerous surface collisions. One embodiment employs a gear pump mechanism with catalytically active-surfaced gear teeth to create the repetitive transient contacting action during pumping of a flow of reactant. The invention is applicable to many other forms for creating transient catalytic surface contacting action. Optionally catalytic output of such systems may be significantly further improved by employing radiant energy or vibration.Type: ApplicationFiled: August 26, 2011Publication date: August 2, 2012Applicant: CCMI CorporationInventor: Mitchell A. Cotter
-
Patent number: 8212098Abstract: An improved process for removing polymeric by-product (ASO) from the HF alkylation acid in an HF alkylation unit used for the production of gasoline boiling range alkylate product by olefin/iso-paraffin alkylation, comprises fractionating a portion of the circulating HF alkylation acid inventory of the unit with a portion of hot alkylate product in a fractionation zone to from an overhead product comprising HF alkylation acid and water and a bottoms fraction comprising the polymeric by-product and alkylate. The bottoms fraction is sent to the isoparaffin stripper of the unit to remove trace HF alkylation acid as overhead and form a product stream of hot alkylate as a bottoms fraction.Type: GrantFiled: January 9, 2008Date of Patent: July 3, 2012Assignee: ExxonMobil Research & Engineering CompanyInventors: D'Arcy H. J. Blais, Doug F. Bodeux, Steve L. Burgwin, Alexander D. Chan, Gary S. Locke, Jerry H. Squires, Sarah J. Virtue
-
Patent number: 8198499Abstract: A process for a liquid/liquid reaction employs a nozzle dispersion whereby liquid reactants and liquid catalyst are injected through at least one nozzle into a reaction zone to effect a reaction. The reaction can be alkylation of at least one isoparaffin with at least one olefin in the presence of an ionic liquid catalyst. The at least one nozzle provides intimate contact between the phases for greater product control and reaction control.Type: GrantFiled: December 28, 2007Date of Patent: June 12, 2012Assignee: Chevron U.S.A. Inc.Inventors: Huping Luo, Abdenour Kemoun, Hye-Kyung Timken
-
Patent number: 8192716Abstract: Processes for the catalytic conversion of a carbonaceous composition into a gas stream comprising methane are provided, where a sour shift reaction is used to remove carbon monoxide gas stream produced by the gasification process. The incorporation of the sour shift reaction provides an efficient and cost-effective means of eliminating carbon monoxide from the gas stream. In addition, the sour shift reaction also generates additional hydrogen, thus increasing the amount of hydrogen produced from the gasification process.Type: GrantFiled: March 31, 2009Date of Patent: June 5, 2012Assignee: Greatpoint Energy, Inc.Inventors: Pattabhi K. Raman, Francis S. Lau, Earl T. Robinson
-
Patent number: 8183425Abstract: Provided is a process for producing low volatility, high quality gasoline blending components from a number of isoparaffin feed streams, olefin feed streams, and ionic liquid catalyst streams. The process entails providing an isoparaffin feed stream comprising isoparaffins, an olefin feed stream comprising olefins, and a catalyst stream comprising ionic liquid catalyst, and subsequently splitting at least the reactive olefin feed stream for feeding into the reaction zone at different locations.Type: GrantFiled: December 28, 2007Date of Patent: May 22, 2012Assignee: Chevron U.S.A. Inc.Inventors: Huping Luo, Abdenour Kemoun, Hye-Kyung Timken
-
Publication number: 20120088948Abstract: A method of producing a high octane alkylate from ethylene and isobutane by reacting ethylene and isobutane under catalytic conversion conditions. The ethylene and isobutane are contacted with a first catalytic material comprising a dimerization catalyst (i.e, for dimerizing ethylene) and a second catalytic material comprising an alkylation catalyst. The first and second catalytic materials are separate and distinct from each other. A high octane alkylate is recovered as a result of reacting the ethylene and isobutane in the presence of the first and second catalytic materials.Type: ApplicationFiled: September 29, 2011Publication date: April 12, 2012Inventors: Mitrajit Mukherjee, John F. Young, James P. Nehlsen, George D. Suciu, Kelly Ann Coley
-
Patent number: 8153854Abstract: A process for producing an alkylate having a low Reid vapor pressure, the process including: contacting a C6+-containing hydrocarbon stream with a mixture of isopentane and isobutane in the presence of an acid catalyst in an alkylation reactor to form a dilute alkylate product, wherein the C6+-containing hydrocarbon stream includes at least one of oligomers of C3 to C5 olefins and a dilute alkylate produced by contacting an isoparaffin with at least one of C3 to C5 olefins and oligomers of C3 to C5 olefins; fractionating the dilute alkylate product to form an isobutane-rich fraction, a n-butane-rich fraction, a fraction containing isopentane, and an alkylate product having a Reid vapor pressure less than 0.35 bar (5 psi); recycling at least a portion of the fraction containing isopentane to the alkylation reactor.Type: GrantFiled: June 6, 2008Date of Patent: April 10, 2012Assignee: Catalytic Distillation TechnologiesInventors: Lawrence A. Smith, Jr., Abraham P. Gelbein, William M. Cross, Jr.
-
Patent number: 8124034Abstract: One exemplary embodiment can be a method of modifying an alkylation unit to increase capacity. The method may include combining a first alkylation zone with a second alkylation zone. Generally, the first alkylation zone includes a first settler having a height and a width. Typically, the width is greater than the height. In addition, the second alkylation zone may have a second settler having a height and a width. Usually, the height is greater than the width.Type: GrantFiled: June 24, 2009Date of Patent: February 28, 2012Assignee: UOP LLCInventors: Daryl Dunham, Dale James Shields
-
Patent number: 8124823Abstract: A process for producing a jet fuel, comprising contacting an olefin and an isoparaffin with an unsupported catalyst system comprising an ionic liquid catalyst and a halide containing additive in an alkylation zone under alkylation conditions to make an alkylate product, and recovering the jet fuel from the alkylate product, wherein the jet fuel has a NMR branching index greater than 60 and meets the boiling point, flash point, smoke point, heat of combustion, and freeze point requirements for Jet A-1 fuel. Also a process for producing a jet fuel, comprising providing a feed produced in a FC cracker comprising olefins, mixing the feed with an isoparaffin, alkylating the mixed feed in an ionic liquid alkylation zone, and separating the jet fuel from the alkylated product.Type: GrantFiled: February 8, 2011Date of Patent: February 28, 2012Assignee: Chevron U.S.A. Inc.Inventors: Sven Ivar Hommeltoft, Stephen J. Miller, Ajit R. Pradhan
-
Publication number: 20110319695Abstract: A process, comprising: a) introducing an acidic ionic liquid to a reactor comprising a solid support; b) feeding to the reactor a feed stream comprising a Brønsted acid and a hydrocarbon mixture comprising: i. at least one alkylatable hydrocarbon, and ii. at least one alkylating agent; and c) collecting one or more liquid hydrocarbon products in an effluent from the reactor, wherein the one or more liquid hydrocarbon products are oligomer products, alkylate products, or mixtures thereof, made from the alkylatable hydrocarbon. Also, a process, comprising: a) introducing an acidic ionic liquid to a reactor comprising a solid support; b) feeding to the reactor a feed stream comprising a Brønsted acid and a hydrocarbon mixture; c) cooling the reactor by evaporating a volatile hydrocarbon from a reaction zone in the reactor; and d) collecting one or more liquid hydrocarbon products made from the hydrocarbon mixture.Type: ApplicationFiled: June 28, 2010Publication date: December 29, 2011Inventors: Sven Ivar Hommeltoft, Zhen Zhou
-
Patent number: 8084661Abstract: A process for the regeneration of spent sulfuric acid including contacting spent sulfuric acid containing acid soluble oils (ASO) with sulfur dioxide to extract at least a portion of the ASO from the spent sulfuric acid into the sulfur dioxide. The sulfuric acid phase having a reduced ASO content and a sulfur dioxide phase containing at least a portion of the ASO may be recovered. The resulting sulfuric acid and sulfur dioxide phases may be further separated to recover ASO, sulfur dioxide, and sulfuric acid.Type: GrantFiled: December 12, 2008Date of Patent: December 27, 2011Assignee: Catalytic Distillation TechnologiesInventor: William M. Cross, Jr.
-
Patent number: 8070939Abstract: A process comprising: a) taking a sample from a continuous reactor process, b)measuring a content of a halide in the sample, and c) in response to the measured content of the halide, adjusting a flow of a halide containing additive comprising the halide to control the process. Also, an apparatus comprising: a) a reactor holding an ionic liquid catalyst and a reactant mixture, b) a means for measuring levels of a halide in an effluent from the reactor, and c) a control system that receives a signal in response to the measuring and communicates changes in an operating condition that influences the yield of a product in the reactant mixture.Type: GrantFiled: September 18, 2008Date of Patent: December 6, 2011Assignee: Chevron U.S.A. Inc.Inventors: Sven Ivar Hommeltoft, Howard S. Lacheen
-
Patent number: 8067656Abstract: A process for separating an ionic liquid from hydrocarbons employs a coalescer material having a stronger affinity for the ionic liquid than the hydrocarbons. The coalescer material can be a high surface area material having a large amount of contact area to which ionic liquid droplets dispersed in the hydrocarbons may adhere. The process includes feeding a mixture comprising ionic liquid droplets dispersed in hydrocarbons to a coalescer comprising the coalescer material. The process further includes a capture step involving adhering at least a portion of the ionic liquid droplets to the coalescer material to provide captured droplets and a coalescing step involving coalescing captured droplets into coalesced droplets. After the capture and coalescence steps, the coalesced droplets are allowed to fall from the coalescer material to separate the ionic liquid from the hydrocarbons and provide a hydrocarbon effluent.Type: GrantFiled: November 26, 2008Date of Patent: November 29, 2011Assignee: Chevron U.S.A. Inc.Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
-
Patent number: 7988747Abstract: A method for producing a low sulphur containing fuel from a hydrocarbon feed having from 10 to 80 ppm of sulphur is disclosed. The method comprises contacting a hydrocarbon stream comprising at least one olefin having from 2 to 6 carbon atoms and at least one paraffin having from 4 to 6 carbon atoms with an ionic liquid catalyst and a halide containing additive in an alkylation reaction zone under alkylating conditions to produce a fuel having sulphur content up to 10 ppm.Type: GrantFiled: October 31, 2007Date of Patent: August 2, 2011Assignee: Chevron U.S.A. Inc.Inventors: Howard Lacheen, Hye-Kyung C. Timken
-
Publication number: 20110184219Abstract: A process for determining ionic liquid catalyst deactivation including (a) collecting at least one sample of an ionic liquid catalyst; (b) hydrolyzing the at least one sample to provide at least one hydrolyzed sample; (c) titrating the at least one hydrolyzed sample with a basic reagent to determine a volume of the basic reagent necessary to neutralize a Lewis acid species of the ionic liquid catalyst; and (d) calculating the acid content of the at least one sample from the volume of basic reagent determined in step (c) is described. Processes incorporating such a process for determining ionic liquid catalyst deactivation are also described. These processes are an alkylation process, a process for controlling ionic liquid catalyst activity in a reaction producing by-product conjunct polymers, and a continuous process for maintaining the acid content of an ionic liquid catalyst at a target acid content in a reaction producing by-product conjunct polymers.Type: ApplicationFiled: January 18, 2011Publication date: July 28, 2011Inventors: Hye Kyung Timken, Annie T. Pathiparampil
-
Patent number: 7956230Abstract: A method for reducing halide concentration in a hydrocarbon product made by a hydrocarbon conversion process using an ionic liquid catalyst comprising a halogen-containing an acidic ionic liquid comprising: (i) separating at least a portion of the hydrocarbon product from the ionic liquid catalyst used in the hydrocarbon conversion process from the hydrocarbon product; (ii) contacting at least a portion of the separated hydrocarbon product with an ionic liquid catalyst having the same formula as the ionic liquid catalyst used in the hydrocarbon conversion process; (iii) separating at least a portion of the hydrocarbon product from the ionic liquid catalyst of step (ii); and (iv) recovering at least a portion of the separated hydrocarbon product of step (iii) having a halide concentration less than the halide concentration of the hydrocarbon product of step (i) is disclosed.Type: GrantFiled: December 21, 2007Date of Patent: June 7, 2011Assignee: Chevron U.S.A. Inc.Inventors: Hye-Kyung C. Timken, Michael S. Driver, Thomas V. Harris
-
Patent number: 7947232Abstract: An improved reactor for an HF alkylation unit of the shell-and-tube heat exchanger type has an axial tube bundle to provide cooling for the reactor and a centrally-located axial sparger system for injecting and dispersing the hydrocarbon reactants into the flow path in the reactor. The sparger comprises an axially-extensive tube with outlet nozzles for the hydrocarbon reactants arranged around the tube, preferably with differing radial angles, at different locations along the length of the sparger.Type: GrantFiled: November 30, 2007Date of Patent: May 24, 2011Assignee: ExxonMobil Research & Engineering CompanyInventors: Ramon A. Strauss, Ramesh R. Hemrajani
-
Publication number: 20110105811Abstract: A process to produce an alkylate distillate blending component in one embodiment comprising: providing at least one olefinic C5+ product which was produced by conversion of synthesis gas in a Fischer Tropsch process; and alkylating the olefinic C5+ product in the presence of an acidic ionic liquid alkylation catalyst with hydrocarbons selected from the group consisting of isoparaffins, cycloparaffins, and their mixtures to form an alkylate distillate blending component is described.Type: ApplicationFiled: October 30, 2009Publication date: May 5, 2011Inventors: Dennis J. O'Rear, Sven Ivar Hommeltoft, Steve S. Mathur, Jerome F. Mayor, Hye-Kyung Timken
-
Publication number: 20110105820Abstract: Methods and compositions for stabilizing the activity of catalytic compositions during catalytic processes, such as alkylation. A catalytic composition comprising a partially deactivated ionic liquid catalyst may be regenerated by reaction with a metal to form reactivated catalyst and an inorganic catalyst precursor; and the catalytic composition may be amended in-process by addition of an organic catalyst precursor for reaction with the inorganic catalyst precursor to form fresh ionic liquid catalyst. The organic catalyst precursor may be protected from water, e.g., during handling, by hydrophobic material(s).Type: ApplicationFiled: November 3, 2009Publication date: May 5, 2011Inventor: Thomas V. Harris
-
Publication number: 20110060178Abstract: Alkylation systems and processes are provided herein that include a slurry reactor. The slurry reactor receives a reactor feed slurry including catalyst and liquid isobutane, a olefin feed, and a circulating reactor vapor stream, where the slurry reactor produces a reactor liquid effluent stream, the reactor liquid effluent stream including catalyst, isobutane, and a liquid alkylate product. The catalyst in the reactor feed slurry can be regenerated catalyst from a catalyst regenerator. The catalyst can be regenerated after being removed from the liquid alkylate product and isobutane in the reactor liquid effluent stream.Type: ApplicationFiled: September 4, 2009Publication date: March 10, 2011Inventors: Douglas A. Nafis, Lev Davydov, David N. Myers, Carl J. Stevens, Daniel N. Myers
-
Patent number: 7875754Abstract: A method of operation for producing high yield of alkylate product using catalytic reactors. The catalytic reactors which cycle between reaction mode and catalyst regeneration mode have their contents exchanged with each other at the beginning of each cycle in order to increase the yield of the desired product. This exchange increases the yield by minimizing the contact of reactant in reaction mode with regenerant utilized in regeneration mode. Thus, reducing/preventing the undesirable alternate reaction between the two, which consumes the reactant making it unavailable for the production of the desired product.Type: GrantFiled: July 27, 2006Date of Patent: January 25, 2011Assignee: Lummus Technology Inc.Inventor: Vincent James D′Amico
-
Publication number: 20100298620Abstract: A process comprising: contacting a blend of hydrocarbons under hydroconversion conditions in a hydroconversion zone with a mixture of an acidic ionic liquid catalyst and at least one alkyl halide comprising at least 55 wt % halide and having a boiling point of 70° C. or higher. An alkylation process comprising: contacting a blend of hydrocarbons under alkylation conditions with a mixture of an acidic ionic liquid catalyst that is a chloroaluminate and at least one alkyl halide comprising 1,1,1-trichloroethane, tetrachloroethylene, or a mixture thereof; wherein greater than 99.9 wt % of an at least one olefin in the blend of hydrocarbons is alkylated. Also, a hydroconversion process comprising drying the alkyl halide.Type: ApplicationFiled: May 19, 2009Publication date: November 25, 2010Inventor: Sven Ivar Hommeltoft
-
Patent number: 7781634Abstract: A process for the removal of aromatic compounds from an olefin feed to a paraffin alkylation is disclosed. The process may include feeding a olefin and aromatic containing hydrocarbon stream and a dilute alkylate product stream comprising alkylate product and unreacted material from the paraffin alkylation to a distillation zone and removing the unreacted material as overheads and removing a more concentrated alkylate product stream and a portion of the aromatic compounds as bottoms resulting in an improved alkylation process.Type: GrantFiled: January 8, 2007Date of Patent: August 24, 2010Assignee: Catalytic Distillation TechnologiesInventor: William M. Cross, Jr.
-
Patent number: 7700514Abstract: A catalyst comprising at least one porous support, at least some platinum, and at least a second group VIII metal which is different from platinum and iridium, said catalyst having been prepared in accordance with a process comprising a) impregnation of the support with at least one solution containing a platinum precursor, b) activation in a neutral or oxidizing atmosphere, at a temperature of between 120 and 800° C., c) activation in a reducing medium, at a temperature of between 0 and 800° C., d1) impregnation with an aqueous solution and d2) treatment with at least one hydrogen donor compound, at a temperature of less than 200° C., e) the impregnation of the support, which has already been impregnated with the platinum, with at least one solution containing a precursor of said second group VIII metal, and f) activation in a neutral, reducing, or oxidizing atmosphere, at a temperature of between 100 and 800° C.Type: GrantFiled: November 6, 2007Date of Patent: April 20, 2010Assignee: Institut Francais du PetroleInventors: Gil Mabilon, Patrice Marecot, Denis Uzio, Catherine Especel, Florence Epron
-
Publication number: 20100094072Abstract: A composition comprising a base component and a polymer, and a method of making said composition, are disclosed. The composition thereby obtained is then used as a catalyst for isoparaffin-olefin alkylation.Type: ApplicationFiled: December 17, 2009Publication date: April 15, 2010Applicant: UOP LLCInventors: Bruce B. Randolph, Marvin M. Johnson, Glenn W. Dodwell
-
Patent number: 7674925Abstract: Methods of producing plant polyols from plant oils include reacting a plant oil with a designed reactant having one or more nucleophilic functional groups and one or more active hydrogen functional groups in the presence of an addition reaction catalyst in a single reaction step. The resultant polyols may be directly reacted with polyisocyanates to produce polyurethanes.Type: GrantFiled: September 21, 2006Date of Patent: March 9, 2010Assignee: Athletic Polymer Systems, Inc.Inventors: Thomas M. Garrett, Xian Xia Du
-
Patent number: 7601881Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a phosphorus component, and at least one platinum-group metal component which is preferably platinum. The catalyst has a structure other than a heteropoly anion structure.Type: GrantFiled: January 30, 2008Date of Patent: October 13, 2009Assignee: UOP LLCInventors: Ralph D. Gillespie, Feng Xu