Purification, Separation, Or Recovery Patents (Class 585/800)
  • Patent number: 7960597
    Abstract: The present invention is directed to methods (processes) and systems for processing triglyceride-containing, biologically-derived oils to provide for base oils and transportation fuels, wherein partial oligomerization of fatty acids contained therein provide for an oligomerized mixture from which the base oils and transportation fuels can be extracted. Such methods and systems can involve an initial hydrotreating step or a direct isomerization of the oligomerized mixture.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: June 14, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen Joseph Miller
  • Patent number: 7956157
    Abstract: A method for the separation of hydrocarbon compounds utilizing a dividing wall distillation column is described. The dividing wall distillation column enables one or more side draw stream to be removed from the dividing wall distillation column in addition to an overhead stream and a bottoms stream.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: June 7, 2011
    Assignee: Fina Technology, Inc.
    Inventor: James R. Butler
  • Publication number: 20110071330
    Abstract: Methods and systems for the dehydrogenation of hydrocarbons include a direct contact condenser to remove compounds from an offgas process stream. The reduction of compounds can decrease duty on the offgas compressor by removing steam and aromatics from the offgas. The dehydrogenation reaction system can be applicable for reactions such as the dehydrogenation of ethylbenzene to produce styrene, the dehydrogenation of isoamiline to produce isoprene, or the dehydrogenation of n-pentene to produce piperylene.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicant: Fina Technology, Inc.
    Inventors: Vincent A. Welch, James R. Butler
  • Publication number: 20110071332
    Abstract: A process for recovering ethylene is disclosed, the process including: recovering a ethylene-containing stream comprising methane, ethylene, and nitrogen oxides from at least one of an ethylene production process and an ethylene recovery process; separating the ethylene-containing stream via extractive distillation using at least one C2+ hydrocarbon absorbent to produce an overheads fraction comprising methane and nitrogen oxides and a bottoms fraction comprising the at least one C2+ hydrocarbon absorbent and ethylene; wherein the separating comprises operating the extractive distillation at temperatures and pressures sufficient to prevent any substantial conversion of nitrogen oxides to N2O3.
    Type: Application
    Filed: November 23, 2010
    Publication date: March 24, 2011
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Stephen J. Stanley, Stephen De Haan, Peter Daniel Kuzma
  • Publication number: 20100317903
    Abstract: The present invention relates to an integrated process for producing diesel fuel or fuel additive from biological material by producing paraffins by a Fischer-Tropsch reaction on one hand and by a catalytic hydrodeoxygenation of bio oils and fats on the other hand. The two hydrocarbon streams are combined and distilled together. The invention also relates to the use of lignocellulosic material, such as by-products of the wood-processing industry for producing diesel fuel and to a method for narrowing the chain length distribution of Fischer-Tropsch derived diesel fuel. The invention provides a high-quality middle distillate fraction from various biological sources and most preferably from by-products of the wood-processing industry. The invention also relates to equipment for producing fuel form biological material, which comprises a hydrodeoxygenation reactor (3) for hydrocarbons, a cracking/isomerization reactor (11) for FT paraffins and a separation unit (12) for the combined hydrocarbons.
    Type: Application
    Filed: October 31, 2008
    Publication date: December 16, 2010
    Applicant: Upm-Kymmene OYJ
    Inventor: Pekka Knuuttila
  • Publication number: 20100303709
    Abstract: A process comprising receiving production saltwater comprising water, salt, and hydrocarbons, separating substantially all of the hydrocarbons from the production saltwater, evaporating at least some of the water in the production saltwater to obtain the salt, and collecting the salt. Also disclosed is a facility comprising a settling pit, an evaporator in fluid communication with the settling pit and comprising a nozzle configured to emit a stream along a path, and a collection pit positioned under the path.
    Type: Application
    Filed: June 2, 2009
    Publication date: December 2, 2010
    Inventor: Dennis Hudgens
  • Publication number: 20100292524
    Abstract: A process is provided for recovering methane from landfill feed gas and other anaerobic digestors. The process comprising the following steps: firstly treating the feed gas to remove H2S; subsequently compressing the gas; and then treating the gas to remove further impurities. Additionally, there is provided a chiller for reducing the temperature of a gas flow. The chiller comprising: a shell arranged to be chilled, a plurality of bores through the shell and through which the gas flows, in use, and forming, together with the shell, a heat exchanger, a tangential inlet to each bore for creating a spiral flow of the gas through the bore, in use. Furthermore, a process is provided for purifying a gas feed using a reversible gas absorber unit comprising two hollow fibre gas/liquid contactors, each of which is arranged to provide a counter-current flow.
    Type: Application
    Filed: January 9, 2007
    Publication date: November 18, 2010
    Applicant: GASREC LIMITED
    Inventors: Andrew Derek Turner, Richard John Lileystone, George Cutts
  • Patent number: 7799118
    Abstract: A gas-solids reaction system is provided for improving product recovery in a multiple reactor reaction system. The solids of the product gas-solids flows from the multiple reactors are separated out in a separation vessel having a baffled transition zone. Additional product vapor is stripped from the solids as the solids pass through the baffled transition zone. The solids are then returned to the multiple reactors.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: September 21, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: James H. Beech, Jr.
  • Patent number: 7781635
    Abstract: A mixture and method of using such mixture is provided for purifying carbon nanotubes. A substituted imidazolium cation is utilized to suspend carbon nanotubes in a nonpolar liquid. A polar solvent immiscible with the nonpolar liquid is mixed in to remove soot from the suspension, allowing recovery of the nanotubes. The relative gentleness of the separation provides nanotubes that are undamaged and unoxidized. The components of the mixture are economically advantageous for this use and the method is simple compared to other nanotube purification methods.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: August 24, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Thomas E. Sutto, Karen A. McGrady
  • Publication number: 20100168347
    Abstract: A method for the separation of hydrocarbon compounds utilizing a dividing wall distillation column is described. The dividing wall distillation column enables one or more side draw stream to be removed from the dividing wall distillation column in addition to an overhead stream and a bottoms stream.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Applicant: Fina Technology, Inc.
    Inventor: James R. Butler
  • Patent number: 7727401
    Abstract: A process for purifying monoterpenes, including the steps of: providing a monoterpene comprising alpha terpinene of about 90% or greater purity and comprising an oxygen-containing impurity compound selected from the group consisting of 1,8-cineole, 1,4,-cineole, and mixtures thereof; providing an activated silica gel preparative chromatographic column; contacting the monoterpene with the column, wherein the oxygen-containing impurity compounds are retained on the column; recovering monterpenes depleted of oxygen-containing impurity compounds from the column by applying a pressure above atmospheric from a gas source without the use of a solvent; and removing the oxygen-containing impurity compounds by contacting the column with an alcohol.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: June 1, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Heather Regina Bowen
  • Patent number: 7696398
    Abstract: A process of stabilizing an olefin metathesis product mixture, preferably, against double bond isomerization and thermal and chemical degradation. The process involves (a) contacting an olefin metathesis product mixture comprising one or more olefins produced in a metathesis process, a metathesis catalyst comprising a catalytic metal and one or more ligands, optionally, one or more metathesis catalyst degradation products, and optionally, one or more metals derived from sources other than the catalyst or catalyst degradation product(s), with an adsorbent, more preferably carbon; or alternatively, (b) subjecting the olefin metathesis product mixture to a two-step distillation, preferably, including short path wiped-film evaporation. A stabilized olefin metathesis product mixture to a two-step distillation, preferably, including short path wiped-film evaporation.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: April 13, 2010
    Assignee: Dow GlobalTTechnologies, Inc.
    Inventors: Kenneth A. Burdett, Rob R. Maughon, Patrick H. Au-Yeung
  • Patent number: 7691239
    Abstract: A differential vapor pressure (DYP) cell is disposed in a divided wall column that receives a feed comprising a first, second, and third component. A separation section on the feed side of the divided wall column separates the feed in a vapor comprising the first and second component, and a liquid comprising the second and third component. The DYP cell is disposed in the divided wall column at a level below the point where the feed enters the column, and the DYP cell measures the concentration of the first component.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: April 6, 2010
    Assignee: Fluor Technologies Corporation
    Inventors: Henry Kister, Walt Stupin
  • Patent number: 7691354
    Abstract: A process for producing an ElAPO molecular sieve with essentially pure CHA framework is disclosed. When El is silicon the process allows for a broad range of silicon content, and produces a catalyst with a high selectivity for the conversion of methanol to olefins.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: April 6, 2010
    Assignee: UOP LLC
    Inventor: Stephen T. Wilson
  • Publication number: 20100081775
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized. These zeolites are represented by the empirical formula. Mmn+Rr+Al(1-x)ExSivOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the choline cation and E is a framework element such as gallium. These zeolites are similar to MCM-68 but are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Jaime G. Moscoso, Deng-Yang Jan
  • Publication number: 20100063343
    Abstract: Process for purification of landfill gas and digester gas, also known as biogas or biomethane, to remove harmful constituents within the stream. The harmful constituents treated include water, particulate, sulfur (hydrogen sulfide), and siloxanes.
    Type: Application
    Filed: September 11, 2009
    Publication date: March 11, 2010
    Inventors: Guy D. Cusumano, Clint C. Harriman
  • Publication number: 20100041936
    Abstract: Processes for separating a solid from a solids-liquids slurry under conditions that prevent ingress of molecular oxygen are advantageous where the presence of molecular oxygen would otherwise reduce efficiencies, contribute to limited product yields, and potentially compromise safe operation of the process or downstream unit operations. Among the various embodiments disclosed herein, is a process utilizing filter columns as solid-liquid separators in combination with crystallization and reslurry unit operations to recover a product component from an initial feed mixture of miscible components. Embodiments of the disclosed processes may include the separation and purification of a product component using a crystallizer in series with a filter column followed by a chemical reactor, using a reslurry drum in series with a filter column, and using a combination of crystallizers and/or reslurry drums in series with at least one filter column.
    Type: Application
    Filed: August 14, 2008
    Publication date: February 18, 2010
    Applicant: BP Corporation North America Inc.
    Inventors: Richard A. Wilsak, Scott A. Roberts, Rose M. Janulis
  • Patent number: 7652185
    Abstract: A process for reducing boron trifluoride usage and emissions associated with PAO manufacture, the process comprising distilling a portion of the crude PAO product containing a boron trifluoride-organic catalyst at a temperature sufficient to cause the boron trifluoride-organic catalyst to dissociate to produce an overhead stream comprising uncomplexed boron trifluoride and an uncomplexed organic catalyst component, contacting the uncomplexed boron trifluoride and uncomplexed organic catalyst component in a condenser column having an internal structure that increases the recombination of the uncomplexed boron trifluoride and uncomplexed organic catalyst component to form a recycle boron trifluoride-organic catalyst.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: January 26, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Norman Yang, Shakeel Tirmizi
  • Publication number: 20090326295
    Abstract: Disclosed is a process for integrating a butene dimerization process with a metathesis process to remove isobutene from the feed stream to the metathesis reactor. The isobutene is preferentially dimerized in the dimerization process to leave n-butenes for metathesis with ethylene. An upstream selective hydrogenation process also isomerizes 1-butenes to 2-butenes which is the preferred butene reagent in the metathesis process. A common fractionator column for the dimerization and hydrogenation processes is also described.
    Type: Application
    Filed: September 2, 2009
    Publication date: December 31, 2009
    Applicant: UOP LLC
    Inventors: STEVEN L. KRUPA, JILL M. MEISTER
  • Publication number: 20090318744
    Abstract: A process is disclosed for the separation of solids from gases in a mixture which is most particularly applicable to an FCC apparatus. The mixture of solids and gases are passed through a conduit and exit through a swirl arm that imparts a swirl motion having a first annular direction to centripetally separate the heavier solids from the lighter gases. The mixture then enters a gas recovery conduit in which at least one plate radially extending from an inner wall impedes rotational motion of the mixture. The mixture enters cyclones at the other end of the gas recovery conduit without substantial swirling motion.
    Type: Application
    Filed: August 28, 2009
    Publication date: December 24, 2009
    Applicant: UOP LLC
    Inventors: Lawrence A. Lacijan, Hadjira Iddir
  • Publication number: 20090312511
    Abstract: The invention provides a process of polymerizing ethylene and at least one ?-olefin, said process comprises polymerizing the ethylene and the at least one ?-olefin in the presence of 5-ethylidene-2-norbornene, which comprises low levels of impurities, as determined by the absorbances at the following wavelengths: 320 nm and 343 nm. The invention also provides a method of increasing the catalysts efficiency, and a method of determining the expected catalyst efficiency, each in a polymerization of ethylene and at least one ?-olefin in the presence of the 5-ethylidene-2-norbornene, which comprises low levels of impurities, as determined by the absorbances at the above wavelengths. The invention further provides a method of purifying 5-ethylidene-2-norbornene to form a purified 5-ethylidene-2-norbornene, which comprises low levels of impurities, as determined by the absorbances of the above wavelengths.
    Type: Application
    Filed: July 13, 2007
    Publication date: December 17, 2009
    Applicant: DOW GLOBAL TECHNOLOGIES INC.
    Inventors: David L. Ramage, Sarah L. Martin
  • Publication number: 20090264695
    Abstract: A system and method for the use of super critical CO2 as a diluent for transport of extracted or processed hydrocarbons. The super critical state CO2 is then co-mingled with the extracted or processed hydrocarbons and transported in the co-mingled state to a delivery point. At the delivery point, the super critical state CO2 is allowed to return to its gaseous state allowing the separation of the hydrocarbons therefrom. The hydrocarbons may be processed and the gaseous CO2 returned to its super critical state for future transport, use in EOR, or geologically sequestered.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 22, 2009
    Inventor: Michael J. Hirl
  • Publication number: 20090234170
    Abstract: Disclosed is a method for separating aromatic compounds using a simulated moving bed (SMB) operation, characterized by injecting each raw material having a different composition into each different part of an adsorption chamber so as to improve the recovery rate. More specifically, the present invention provides a method for separating aromatic compounds for improving p-xylene separation in a p-xylene separation process, by injecting a high p-xylene mixture from selective toluene disproportionation process (STDP) and low p-xylene mixture from other processes (for example, processes of reformer, isomerization reactor and transalkylation of aromatics having 9 carbon atoms) into each different part of an adsorption chamber.
    Type: Application
    Filed: February 25, 2009
    Publication date: September 17, 2009
    Applicant: SAMSUNG TOTAL PETROCHEMICALS, CO., LTD.
    Inventors: JIN-SUK LEE, NAM-CHEOL SHIN
  • Patent number: 7582312
    Abstract: Methods of producing lung surfactant formulations through solvent dissolution and lyophilization are described as well as surfactant formulations derived therefrom. Methods of treating respiratory distress dysfunction are also provided.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: September 1, 2009
    Assignee: Discovery Laboratories, Inc.
    Inventors: Mark Johnson, Roy Coe
  • Publication number: 20090182176
    Abstract: A method and system for the production of valuable chemicals or alternative liquid fuels via an integrated biomass conversion and upgrading process is disclosed. The process integrates three subcomponent processes, capturing the desirable attributes of each: zoned partial oxidation, alcohol production, and gas-to-liquids reformation. The method and system may include reacting gasification intermediates—e.g., syngas from zoned partial oxidation, with bioprocessing intermediates—e.g., aqueous ethanol from alcohol production in a reactive separation to produce a product(s) of higher alcohols, liquid hydrocarbons, or a combination of these. The product(s) can be split into two (or more) boiling point fractions by the same reactive separations unit operation.
    Type: Application
    Filed: January 14, 2009
    Publication date: July 16, 2009
    Inventor: Thomas Paul Griffin
  • Publication number: 20090177023
    Abstract: The device described in the present invention can trap plugging particles contained in the liquid feed supplying a reactor functioning in gas and liquid co-current down-flow mode using a specific distributor tray comprising a filtration medium. The present device is of particular application to the selective hydrogenation of feeds containing acetylenic and dienic compounds.
    Type: Application
    Filed: August 24, 2006
    Publication date: July 9, 2009
    Inventors: Abdelhakim Koudil, Christophe Boyer
  • Patent number: 7554002
    Abstract: A method is described for refrigerant supply of a low-temperature separation stage in a plant for producing olefins from hydrocarbon-containing feed (olefin plant). During the separation sequence beginning with a front end deethanizer (3) downstream of raw gas compressor (1), precooler and dryer (2), first separation is performed into an olefin fraction having at most two carbon atoms and an olefin fraction having at least three carbon atoms. The fraction having at least three carbon atoms is conducted to the further separation sequence for longer-chain olefins (4). The fraction having at most two carbon atoms is conducted via a catalytic hydrogenation stage (5) connected in between to the low-temperature separation stage (6) which comprises three condensation stages in the temperature range from ?50° C. to ?100° C.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: June 30, 2009
    Assignee: Linde Aktiengesellschaft
    Inventor: Tuat Pham Duc
  • Publication number: 20090163750
    Abstract: A method for reducing halide concentration in a hydrocarbon product made by a hydrocarbon conversion process using an ionic liquid catalyst comprising a halogen-containing an acidic ionic liquid comprising: (i) separating at least a portion of the hydrocarbon product from the ionic liquid catalyst used in the hydrocarbon conversion process from the hydrocarbon product; (ii) contacting at least a portion of the separated hydrocarbon product with an ionic liquid catalyst having the same formula as the ionic liquid catalyst used in the hydrocarbon conversion process; (iii) separating at least a portion of the hydrocarbon product from the ionic liquid catalyst of step (ii); and (iv) recovering at least a portion of the separated hydrocarbon product of step (iii) having a halide concentration less than the halide concentration of the hydrocarbon product of step (i) is disclosed.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Inventors: Hye-Kyung C. Timken, Michael S. Driver, Thomas V. Harris
  • Publication number: 20090062589
    Abstract: Disclosed is a process for integrating a butene dimerization process with a metathesis process to remove isobutene from the feed stream to the metathesis reactor. The isobutene is preferentially dimerized in the dimerization process to leave n-butenes for metathesis with ethylene. An upstream selective hydrogenation process also isomerizes 1-butenes to 2-butenes which is the preferred butene reagent in the metathesis process. A common fractionator column for the dimerization and hydrogenation processes is also described.
    Type: Application
    Filed: November 3, 2008
    Publication date: March 5, 2009
    Inventors: Steven L. Krupa, Jill M. Meister
  • Publication number: 20090018347
    Abstract: A process for purifying removal of acrylic acid, methacrylic acid, N-vinylpyrrolidone or p-xylene crystals from their suspension in mother liquor by means of a wash column with forced transport, whose shell of the process chamber is a metal wall, the wash column additionally being enveloped by a thermal insulation material having a water vapor barrier and a specific heat flow of >0.1 W/m2 and <10 W/m2 flowing into the process chamber through the metal wall of the wash column.
    Type: Application
    Filed: July 9, 2008
    Publication date: January 15, 2009
    Applicant: BASF SE
    Inventors: Jorg HEILEK, Ulrich Hammon, Klaus Joachim Muller-Engel, Dieter Baumann
  • Publication number: 20080279759
    Abstract: A process for producing a purified gas stream from a feed gas stream comprising contaminants, the process comprising the steps of: (a) removing contaminants from the feed gas stream to obtain the purified gas stream and a sour gas stream comprising H2S and RSH; (b) separating the sour gas stream comprising H2S and RSH into a gas stream enriched in H2S and a residual gas stream comprising RSH; (c) converting H2S in the gas stream enriched in H2S to elemental sulphur in a Claus unit, thereby obtaining a first off-gas stream comprising SO2; (d) converting SO2 in the first off-gas stream comprising SO2 to H2S in a Claus off-gas treating reactor to obtain a second off-gas stream comprising H2S; (e) converting RSH from the residual gas stream comprising RSH to H2S in an RSH conversion reactor to obtain a residual gas stream comprising H2S, wherein at least one of the operating conditions of the RSH conversion reactor is different from the corresponding operating condition of the Claus off-gas treating reactor.
    Type: Application
    Filed: November 2, 2006
    Publication date: November 13, 2008
    Inventors: Cornelis Petrus Johannes Maria Van Den Brand, Lydia Singoredjo, Johannes Theodorus Maria Smits
  • Patent number: 7435319
    Abstract: The invention relates to a semibatchwise process for the mild distillative separation of mixtures, in a first stage a column being supplied continuously with a feed and the feed being separated at least into different fractions, one of the fractions being removed continuously into a container, and, in a second step, the fraction removed into the container being recycled to the column and being separated again batchwise into different fractions.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: October 14, 2008
    Assignee: LANXESS Deutschland GmbH
    Inventors: Ludwig Deibele, Dieter Heinz, Jan Thomas Leu, Johannes-Peter Schäfer, Kai Fahrenkamp, Wolfgang Scheinert, Thomas Schilling, Paul Wagner
  • Patent number: 7429553
    Abstract: This invention relates to a method for reducing the toxicity of a mixture of hydrocarbons by means of fractional distillation, a distillate having a reduced toxicity and a composition including the distillate.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: September 30, 2008
    Assignee: Petroleum Oil and Gas Corporation of South Africa (Pty) Ltd.
    Inventors: Carl Dunlop, Stewart Hlohloza, Petrus Johannes Hoffmann, Cyril David Knottenbelt, Leon Walliser
  • Publication number: 20080214885
    Abstract: In a method and an apparatus for cleaning tar-bearing waste water (17), a mixture of water and hydrocarbons, e.g. comprising polyaromatic hydrocarbons and phenols, the mixture is separated into a low-boiling-point part and a high-boiling-point part, bringing the low-boiling-point part on vapor form in a boiler (1), and the low-boiling-point part is cracked in vapor form at a high temperature in a reactor (2), providing light combustible gases, which can be utilized in e.g. gas engines, gas turbines or the like. Furthermore, the high-boiling-point part may be used for energy supply to the process or other processes or as an alternative be cracked for providing light combustible gases.
    Type: Application
    Filed: February 12, 2008
    Publication date: September 4, 2008
    Inventor: Thomas NISSEN
  • Patent number: 7402716
    Abstract: Novel compounds having a hybrid cubic/hexagonal diamond crystal structure are disclosed. Each of the four compounds have the stoichiometric formula C26H32 and a molecular weight of 344. The four compounds are contemplated to have a utility in diamond film nucleation.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: July 22, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Jeremy E. Dahl, Robert M. Carlson, Shenggao Liu
  • Patent number: 7357902
    Abstract: Process for the removal of oxygen from a gas mixture comprising oxygen, at least one olefin, hydrogen, carbon monoxide and optionally at least one alkyne, the ratio of oxygen:hydrogen in the gas mixture being 1 part by volume of oxygen to at least 5 parts by volume of hydrogen. The process comprises contacting the gas mixture with a catalyst in a reaction zone under conditions sufficient to oxidise at least a portion of the hydrogen and to oxidize at least a portion of the carbon monoxide and without significant hydrogenation of the at least one olefin. The catalyst comprises at least one metal or oxide of a metal from the 10th group of the Periodic Table of Elements, the metal or oxide of the metal being supported on an oxide support, provided that the catalyst also comprises tin.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: April 15, 2008
    Assignee: Ineos Europe Limited
    Inventors: Matthew Hague, Ian Raymond Little, Warren John Smith
  • Patent number: 7326817
    Abstract: This invention relates to a method for reducing the toxicity of a mixture of hydrocarbons by means of fractional distillation, a distillate having a reduced toxicity and a composition including the distillate.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: February 5, 2008
    Assignee: Petroleum Oil and Gas Corporation of South Africa (Pty) Ltd.
    Inventors: Carl Dunlop, Stewart Hlohloza, Petrus Johannes Hoffmann, Cyril David Knottenbelt, Leon Walliser
  • Patent number: 7326821
    Abstract: This invention is to a process for removing dimethyl ether from an olefin stream. The process includes contacting the olefin stream with a molecular sieve that has improved capacity to adsorb the dimethyl ether from the olefin stream. The molecular sieve used to remove the dimethyl ether has low or no activity in converting the olefin in the olefin stream to other products.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: February 5, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael A. Risch, John Di-Yi Ou
  • Patent number: 7326820
    Abstract: Removing impurities from a heptane stream by contacting the heptane stream with an acidic catalyst, wherein the contacting reduces a concentration of one or more close boiling impurities, one or more olefins, or both. The impurities are isomerized via contact with the acidic catalyst into species that possess lower octane levels or that do not possess boiling points as near to the boiling point of n-heptane, which promotes separation of the impurities via distillation. Close boiling impurities may include such compounds as cis-1,2-dimethylcyclopentane and methylcyclohexane or may be compounds having boiling points at a standard pressure of 760 Torr in the range of about 96.5 to about 100.5 degrees Celsius including such compounds as cis-1,2-dimethylcyclopentane and methylcyclohexane. The concentration of cis-1,2-dimethylcyclopentane and methylcyclohexane may be reduced by at least about 25 and 10 percent by weight, respectively.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: February 5, 2008
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Daniel M. Hasenberg, Mitchell D. Refvik, Christopher Raymond Tully, Michael S. Hankinson, Clyde Stewart Denton, Dale Solaas
  • Patent number: 7294749
    Abstract: A low-pressure olefins recovery process and plant are described. The feed gas 300 is compressed 302, 304 and distilled 310 at a primary distillation pressure. The overhead stream 312 is chilled 318 at a pressure less than 30 kg/cm2 (430 psia) to partially condense the overheads. The primary distillation tower 310 is refluxed with at least a portion of the condensate 320. The overhead vapor is further chilled 318 and partially condensed and the condensate 322 is fed to a demethanizer 324. The remaining vapor 326 is cooled in a cold section 328 and the resultant liquid is phase-separated 330 and expanded 331, 334 to provide refrigeration for the cold section. The expanded vapor 332 from the cold section is recycled to the process gas compressor. The bottoms streams 338, 342 from the primary distillation zone and the demethanizer are fractionated into respective streams consisting essentially of ethylene 356, ethane 358, propylene 364, propane 366, C4's 346, and C5+ 348.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: November 13, 2007
    Assignee: Kellogg Brown & Root LLC
    Inventors: Vijender K. Verma, Jichuan Hu
  • Patent number: 7288198
    Abstract: During the process of synthesis of methylcyclopentadienyl manganese tricarbonyl (MMT), a key raw material methylcyclopentadiene (MCP) is used. The MCP component may be recycled for subsequent reaction processes. The recycle stream of MCP is washed with water and, optionally, passed over a molecular sieve bed to remove the contaminants protic side products from the MCP recycled stream.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: October 30, 2007
    Assignee: Afton Chemical Corporation
    Inventors: David M. Marchand, Abbas Kadkhodayan
  • Publication number: 20070227356
    Abstract: A gas-solids reaction system is provided for improving product recovery in a multiple reactor reaction system. The solids of the product gas-solids flows from the multiple reactors are separated out in a separation vessel having a baffled transition zone. Additional product vapor is stripped from the solids as the solids pass through the baffled transition zone. The solids are then returned to the multiple reactors.
    Type: Application
    Filed: March 28, 2007
    Publication date: October 4, 2007
    Inventor: James H. Beech
  • Patent number: 7276105
    Abstract: A method for separating water from a Fischer-Tropsch reactor product stream in a cost effective and energy efficient manner which comprises feeding a Fischer-Tropsch product stream to a separation membrane, preferably a ceramic membrane, and recovering water vapor from the downstream permeate side of the membrane.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: October 2, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventor: Randall B. Pruet
  • Patent number: 7255792
    Abstract: There is provided a process for modifying a first organic composition comprising (i) at least one first solvent, (ii) at least one solute, and (iii) optionally, at least one second solvent to produce a modified organic composition in which the concentration of the at least one first solvent is reduced and the concentration of the at least one second solvent is increased, comprising the steps of: (a) providing a selectively permeable membrane having a first surface and a second surface; (b) transferring a portion of the first solvent and optionally a portion of the solute from the first surface to the second surface across the membrane by contacting the first organic composition with the first surface, wherein the pressure at the first surface is greater than the pressure at the second surface, and wherein the membrane is a selectively permeable membrane such that the membrane rejection (R) of the solute is greater than 0%; (c) adding a portion of the second solvent to the organic composition retained at the f
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: August 14, 2007
    Assignee: Membrane Extraction Technology Limited
    Inventor: Andrew Guy Livington
  • Patent number: 7255777
    Abstract: Improved HETP is obtained in the operation of a distillation column containing trays with a packing of a porous container containing a particulate material intimately associated with a resilient component having at least 50 volume % open space, preferably at least 70 volume % positioned on the trays compared to the trays without the packing. The packing may contain a catalytic particulate material and the distillation may involve reaction and distillation of the reaction products. The particulate material may also be inert and the distillation of the conventional type to separate components in the distillation mixture without reaction.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: August 14, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Gary R. Gildert, James R. Fair, A. Frank Seibert
  • Patent number: 7241470
    Abstract: The method applies to a process such as cementation or chemical vapor infiltration or deposition, the process being carried out in an oven and the method comprising setting operating parameters of the oven, introducing a reagent gas into the oven, the reagent gas containing at least one gaseous hydrocarbon, and extracting from the oven an effluent gas containing reaction by-products of the reagent gas. The effluent gas is subjected to washing in oil that absorbs tars contained in the effluent gas, and information about the progress of the process is obtained by measuring the quantity of tar absorbed by the oil.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 10, 2007
    Assignee: Snecma Propulsion Solide
    Inventors: Bernard Delperier, Eric Thibaudeau
  • Patent number: 7176341
    Abstract: A method and apparatus are disclosed for recovering pure naphthalene from hot crude coke oven gas. The hot crude coke oven gas is directly cooled by means of sprinkling water directly thereon, and the naphthalene is recovered by subsequent filtering out of tar and other impurities, followed by cooling to obtain crystalline pure naphthalene. More specifically, after direct cooling of the hot crude coke oven gas, the gas is then guided through an electrofilter to be subsequently cooled in such a manner that the naphthalene contained in the crude coke oven gas is separated from the gaseous phase and is obtained in the form of pure naphthalene crystals without any required additional treatment.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: February 13, 2007
    Assignee: Deutsche Montan Technologie GmbH
    Inventors: Frank Rossa, Hans-Josef Giertz, Horst Schröder
  • Patent number: 7173160
    Abstract: Hydroprocessing such as hydrocracking is advantageously employed in processes for the recovery and purification of higher diamondoids from petroleum feedstocks. Hydrocracking and other hydroprocesses degrade nondiamondoid contaminants.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: February 6, 2007
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theo Maesen, Robert M. Carlson, Jeremy E. Dahl, Shenggao Liu, Hye Kyung C. Timken, Waqar R. Qureshi
  • Patent number: 7169267
    Abstract: A process is proposed for the separation of C5+ cuts by distillation into a low-boiler (A), a medium-boiler (B) and a high-boiler fraction (C) in one or more dividing-wall columns (TK), in which a dividing wall (T) is arranged in the longitudinal direction of the column with formation of an upper, common column region (1), a lower, common column region (6), a feed part (2, 4) with rectifying section (2) and stripping section (4), and a withdrawal part (3, 5) with rectifying section (5) and stripping section (3), with feed of the C5+ cut (A, B, C) into the central region of the feed part (2, 4), discharge of the high-boiler fraction (C) from the bottom of the column, discharge of the low-boiler fraction (A) via the top of the column, and discharge of the medium-boiler fraction (B) from the central region of the withdrawal part (3, 5), wherein the dividing ratio of the liquid reflux at the upper end of the dividing wall (T) is set in such a way that the proportion of high-boiling key components in the liquid re
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: January 30, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerd Kaibel, Carsten Oost, Manfred Stroezel, Gerald Meyer, Peter Trübenbach, Karl-Heinz Sartor, Jürgen Heners
  • Patent number: 7125817
    Abstract: A catalyst system and process for combined cracking and selective hydrogen combustion of hydrocarbons are disclosed. The catalyst comprises (1) at least one solid acid component, (2) at least one metal-based component comprised of one or more elements from Group 3 and one or more elements from Groups 4–15 of the Periodic Table of the Elements; and at least one of oxygen and sulfur, wherein the elements from Groups 3, Groups 4–15 and the at least one of oxygen and sulfur are chemically bound both within and between the groups and (3) at least one of at least one support, at least one filler and at least one binder. The process is such that the yield of hydrogen is less than the yield of hydrogen when contacting the hydrocarbons with the solid acid component alone.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: October 24, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John D. Y. Ou, Neeraj Sangar