Using A Catalyst Patents (Class 60/299)
  • Patent number: 8745979
    Abstract: An exhaust aftertreatment system has a side inlet flow diffuser and provides even flow exhaust distribution to an aftertreatment element.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: June 10, 2014
    Assignee: Cummins Filtration IP, Inc.
    Inventors: Jeffrey T. Sedlacek, Jay V. Warner
  • Patent number: 8747788
    Abstract: An aftertreatment module for use with an engine is disclosed. The aftertreatment module may include a housing having an inlet configured to direct exhaust in a first flow direction into the aftertreatment module, and an outlet configured to direct exhaust in the first flow direction out of the aftertreatment module. The aftertreatment module may also include a catalyst bank separating the inlet from the outlet. The catalyst bank may have a face disposed at an oblique angle with respect to the first flow direction. The oblique angle may create an inlet passage extending from the inlet to the catalyst bank and having a decreasing cross-sectional area, and an outlet passage extending from the catalyst bank to the outlet and having an increasing cross-sectional area.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: June 10, 2014
    Assignee: Caterpillar Inc.
    Inventors: Mirza Pervaiz Baig, Andrew Michael Denis, Raymond Bassilli Gerges, Raymond Upano Isada
  • Patent number: 8747761
    Abstract: An exhaust gas purification device with a first exhaust pipe section for leading exhaust gas discharged from an engine, a second exhaust pipe section having in a side section on an upstream side thereof an opening section for introducing exhaust gas from the first exhaust pipe section, the second exhaust pipe section being connected at a side section thereof to the first exhaust pipe section so that flow of exhaust gas therein becomes a swirl flow and having provided on a downstream side thereof a post-processing device, and a reduction agent supply device provided at an upstream end of the second exhaust pipe section. The opening section is formed so as to include at least a first tilted side extending in a direction tilted relative to an axis of the second exhaust pipe section.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: June 10, 2014
    Assignee: Isuzu Motors Limited
    Inventors: Yuuta Kageyama, Isao Ohara
  • Patent number: 8745973
    Abstract: An engine control system includes a dosing control module and an offset determination module. The dosing control module actuates an injector to inject a first amount of reducing agent into exhaust gas produced by an engine during a period when a temperature of the exhaust gas is greater than a predetermined temperature threshold. The offset determination module determines an efficiency of a selective catalytic reduction (SCR) material based on measured amounts of nitrogen oxide (NOx) during the period and expected NOx amounts, wherein the measured amounts of NOx are measured at locations upstream and downstream from the SCR material, and wherein the expected NOx amounts are based on the temperature of the exhaust gas and the first amount of reducing agent.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: June 10, 2014
    Inventors: Jason Daniel Mullins, Rebecca J Darr, Kyle E. Crawford, Paul Jasinkiewicz
  • Patent number: 8747527
    Abstract: A method for converting soot particles of an exhaust gas includes providing at least nitrogen dioxide or oxygen in the exhaust gas, ionizing soot particles with an electric field, depositing electrically charged soot particles on inner channel walls of at least one surface precipitator, and bringing at least nitrogen dioxide or oxygen into contact with the deposited soot particles on the inner channel walls of the at least one surface precipitator. A device for carrying out the method includes at least one surface precipitator having a plurality of channels through which the exhaust gas can flow and extending between an inlet region and an outlet region, and at least one deposit inhibitor for electrically charged soot particles provided in at least part of the inlet region, especially allowing the soot particles to be evenly deposited and the surface precipitator to be continuously regenerated.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: June 10, 2014
    Assignee: Emitec Gesellschaft fuer Emissionstechnologie mbH
    Inventors: Wolfgang Maus, Peter Hirth, Rolf Brueck
  • Publication number: 20140154160
    Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.
    Type: Application
    Filed: November 6, 2013
    Publication date: June 5, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Janet Mary FISHER, David THOMPSETT
  • Publication number: 20140150413
    Abstract: A trough filter integrated with a thermoelectric generator includes annular filter modules having a support structure at its inner circumference, a filter element, and a support structure at its outer circumference. The filter elements may be configured to form troughs. An annular exhaust gas outlet channel or gas inlet channel may be formed between filter modules. The thermoelectric generator may be positioned in the exhaust gas outlet or inlet channel. A vehicle includes the trough filter integrated with a thermoelectric generator downstream from an internal combustion engine. A method of treating exhaust gas uses a trough filter with an integrated thermoelectric generator.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Inventors: Monika Backhaus-Ricoult, Thomas Dale Ketcham
  • Patent number: 8741241
    Abstract: Systems and methods are provided for a layered emission control device coupled to an exhaust manifold. Various formulations may be incorporated in a plurality of layers of the device to enable various emission control functions to be grouped within spatial constraints. For example, a first layer may include a first, oxidizing catalyst, a second layer may include a HC trap, and a third layer may include a second, different oxidizing catalyst, the second layer positioned between the first and third layers. The layers may be organized to reduce functional interference and improve functional synergy between the various emission control functions.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: June 3, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Christine Kay Lambert, Douglas Allen Dobson
  • Patent number: 8741240
    Abstract: The selective reduction-type catalyst effectively purifies nitrogen oxides contained in exhaust gas from a lean-burn engine such as a boiler, a gas turbine or a lean-burn engine, a diesel engine, even under high SV, as well as having small pressure loss, by supplying by spraying urea water or ammonia water, as a reducing component, to the selective reduction-type catalyst; and an exhaust gas purification apparatus along with an exhaust gas purification method using the same. The selective reduction-type catalyst for selectively reducing a nitrogen oxide by adding urea or ammonia as a reducing agent of the nitrogen oxide to exhaust gas discharged from a lean-burn engine, characterized by coating a catalyst layer including zeolite containing at least an iron element, and a composite oxide of silica, tungsten oxide, ceria and zirconia, as denitration components, at the surface of a monolithic structure-type substrate.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: June 3, 2014
    Assignee: N.E. Chemcat Corporation
    Inventors: Takashi Hihara, Tomoaki Ito, Yasushi Tanaka, Makoto Nagata
  • Publication number: 20140147359
    Abstract: A catalysed soot filter comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from a compression ignition engine disposed on a filtering substrate, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 29, 2014
    Applicant: Johnson Matthey Public Limited Company
    Inventors: David BERGEAL, Andrew Francis CHIFFEY, John Benjamin GOODWIN, Daniel HATCHER, Francois MOREAU, Agnes RAJ, Raj Rao RAJARAM, Paul Richard PHILLIPS, Cathal PRENDERGAST, Gavin Michael BROWN
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Patent number: 8733081
    Abstract: An object of the present invention is that after return from fuel cut, an oxygen storage amount in a catalyst in an exhaust path and an oxygen storage amount in a catalyst in an exhaust gas recirculating path are promptly adjusted to be in appropriate states, respectively. A control apparatus for an internal combustion engine of the present invention controls the internal combustion engine including a recirculating gas generating cylinder and a recirculating gas nongenerating cylinder. The control apparatus includes: an exhaust gas recirculating path for connecting the exhaust path through which exhaust gas only in the recirculating gas generating cylinder is delivered and an intake system; a recirculating catalyst provided on the exhaust gas recirculating path; and rich control means that performs rich control for controlling an air-fuel ratio to be temporarily richer than a theoretical air-fuel ratio when fuel injection is restarted after return from the fuel cut.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: May 27, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shigeki Miyashita
  • Patent number: 8734742
    Abstract: A method is described for treating a gas including nitrogen oxides (NOx). The method can include conducting a reduction reaction of the nitrogen oxides with a nitrogen reducing agent. Further described, is a catalyst used for the reduction reaction which is a catalytic system including a composition based on cerium oxide and including niobium oxide in a proportion by a mass of from 2% to 20%.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: May 27, 2014
    Assignee: Rhodia Operations
    Inventors: Julien Hernandez, Emmanuel Rohart, Rui Jorge Coelho Marques, Deborah Jayne Harris, Clare Jones
  • Patent number: 8733084
    Abstract: A bypass HC—NOx system includes a NOx conversion control module that generates a signal indicating whether a close coupled catalyst is active. The system further includes a bypass valve control module that, in response to the signal, opens a bypass valve located in an active HC—NOx adsorber assembly to purge hydrocarbons from an HC adsorber, wherein the bypass valve is located upstream from the HC adsorber and a NOx adsorber. The bypass valve control module also determines a temperature of a three way catalyst and closes the bypass valve to purge nitrogen dioxide from the NOx adsorber if the temperature of the three way catalyst is greater than a predetermined temperature threshold.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 27, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso
  • Patent number: 8728422
    Abstract: System to reduce the amount of NOx in exhaust gases of a vehicle. The system includes a storage space 1 containing an agent, a SCR catalytic converter 5, an injection module 6c to inject the agent upstream of the converter, a heat exchanger 2 containing a porous matrix, a shutter or injector 11 to control the flow rate of the agent to the exchanger, a valve 12 between the storage space and exchanger, to transfer thermal energy to gases during the starting period. The shutter or injector controls the flow of agent into the exchanger during the starting period to raise its temperature, and is closed when gases have reached a certain temperature. The valve regulates exchanger pressure during a period at operating temperature and conveys the agent to storage space when the exchanger pressure is higher than storage space pressure.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: May 20, 2014
    Assignee: Aaqius & Aaqius S.A.
    Inventors: Arnaud Audouin, Jean-Baptiste Dementhon
  • Patent number: 8726661
    Abstract: An exhaust aftertreatment system for treating an exhaust gas feedstream of an internal combustion engine includes a catalytic converter, a fluidic circuit and a Stirling engine. The Stirling engine is configured to transform thermal energy from a working fluid heat exchanger to mechanical power that is transferable to an electric motor/generator to generate electric power. The Stirling engine is configured to transform mechanical power from the electric motor/generator to thermal energy transferable to the working fluid heat exchanger.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: May 20, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: John Patrick Spicer, Kerem Koprubasi
  • Patent number: 8726637
    Abstract: An oscillation signal is generated to oscillate the air-fuel ratio with a set frequency which is different from a 0.5th-order frequency (half of the frequency corresponding to a rotational speed of the engine). Air-fuel ratio perturbation control is performed to oscillate the air-fuel ratio according to the oscillation signal. An intensity of the 0.5th-order frequency component and the set frequency component contained in the detected air-fuel ratio signal are calculated. A determination parameter applied to determining an imbalance degree of air-fuel ratios corresponding to the plurality of cylinders is calculated according to the two intensities and determines an imbalance failure that the imbalance degree of the air-fuel ratios exceeds an acceptable limit. A predicted imbalance value, indicative of a predicted value of the imbalance degree, is calculated, and an amplitude of the oscillation signal is set according to the predicted imbalance value.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: May 20, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tooru Sekiguchi, Atsuhiro Miyauchi, Takeshi Aoki, Michinori Tani, Seiji Watanabe
  • Publication number: 20140130482
    Abstract: Device for the purification of exhaust gases from a thermal combustion engine comprising: one or several ceramic catalyst carriers comprising an arrangement of crystallites of the same size, same isodiametric morphology and same chemical composition, or approximately the same size, same isodiametric morphology and same chemical composition in which each crystallite is in point or quasi-point contact with the surrounding crystallites, and one or several active phases for chemical destruction of impurities in the exhaust gas comprising metallic particles mechanically anchored in said catalyst carrier such that coalescence and mobility of each particle are limited to a maximum volume corresponding to the volume of a crystallite of said ceramic catalyst carrier.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 15, 2014
    Applicants: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude, Centre National De La Recherche Scientifique, Universite De Limoges
    Inventors: Pascal Del-Gallo, Fabrice Rossignol, Thierry Chartier, Raphael Faure, Sebastien Goudalle, Claire Bonhomme
  • Patent number: 8722000
    Abstract: Catalytic articles, systems and methods for treating exhaust gas streams are described. A catalytic article comprising a wall flow filter having gas permeable walls, a hydrolysis catalyst, an optional soot oxidation catalyst, a selective catalytic reduction catalyst permeating the walls, an ammonia oxidation catalyst and an oxidation catalyst to oxidize CO and hydrocarbons is described. Methods of treating exhaust gas streams comprising soot, an ammonia precursor such as urea, ammonia, NOx, CO and hydrocarbons are also provided.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: May 13, 2014
    Assignee: BASF Corporation
    Inventor: R. Samuel Boorse
  • Patent number: 8720190
    Abstract: A method for predicting sulfur oxides (SOx) stored at a denitrification (DeNOx) catalyst may include calculations of the mass flow of SOx poisoned at the DeNOx catalyst, the mass flow of SOx released from the DeNOx catalyst, and the SOx amount poisoned at the DeNOx catalyst by integrating the value obtained by subtracting the released mass flow of SOx from the poisoned mass flow of SOx. An exhaust system using the method may comprise an engine having a first injector, an exhaust pipe, a second injector mounted at the exhaust pipe and injecting a reducing agent, a DeNOx catalyst mounted at the exhaust pipe and reducing SOx or nitrogen oxides (NOx) or both contained in the exhaust gas by using the reducing agent, and a control portion electrically connected to the system and performing the calculations and controls.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: May 13, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation, FEV Motorentechnik GmbH
    Inventors: Jin Ha Lee, Jin Woo Park, Christopher Severin, Thomas Wittka
  • Patent number: 8720187
    Abstract: An exhaust diagnostic control system comprises a test enabling module, an exhaust gas temperature management module in communication with the test enabling module, and a component management module configured for executing a test for determining a reduction efficiency associated with the after-treatment component. The test enabling module is configured for assessing a reliability of an estimated level of reductant load on an after-treatment component, and, based on the reliability, selectively facilitating disablement of a subsequent test for determining an efficiency of NOx reduction in the after-treatment component. The exhaust gas temperature management module is configured for selectively adjusting a temperature of the after-treatment component to a predetermined temperature range using intrusive exhaust gas temperature management. The test for determining reduction efficiency comprises determining a NOx reduction efficiency of the after-treatment component.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: May 13, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Janean E. Kowalkowski, Justin A. Shetney
  • Patent number: 8715601
    Abstract: A method and apparatus are provided for reducing emissions of particulates from diesel engines. Exhaust is passed through a diesel particular filter having at least two stages comprised of (a) a catalyst section having a platinum group metal catalyst on contact surfaces within the catalyst section and (b) a filter section comprised of passages effective to remove particulates from a moving stream of combustion gases generated by combusting the fuel in the engine and holding them therein to permit their oxidation. Carbon removal is enhanced by utilizing levels of platinum group metal composition, cerium compositions, fuels and/or optional chemical enhancers to generate NO2 in the catalyst section in amounts sufficient to form cerium nitrates in the filter section. The cerium oxide is associated with and maintains dispersion of the platinum in the filter section, and the cerium nitrates are available at the surface and within the soot particles to provide enhanced soot oxidation at a lower balance point.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: May 6, 2014
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Michiel Makkee, Krishna Kamasamudram, Walter G. Copan
  • Patent number: 8713915
    Abstract: A catalyst overheat prevention apparatus has a temperature obtaining portion that estimates a convergence temperature of a catalyst provided in the exhaust system of an internal combustion engine and the present temperature of the catalyst. The catalyst overheat prevention apparatus also has a fuel increment calculation portion, a comparison portion, a correction portion, and a fuel increment setting portion, which are used to execute OT fuel increase control when the convergence temperature and present catalyst temperature obtained by the temperature obtaining portion are equal to or higher than an OT determination temperature. The catalyst overheat prevention apparatus also has a present temperature correction portion that corrects the present catalyst temperature to be equal to the OT determination temperature when the present catalyst temperature is equal to or higher than the OT determination temperature and the convergence temperature is equal to the OT determination temperature.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: May 6, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Kachi, Shinya Kondo
  • Patent number: 8713921
    Abstract: An upper catalyst layer of an upstream catalyst 3 and a downstream catalyst 5 includes an oxygen storage/release material in/on which a catalytic metal is included or loaded. The content of the oxygen storage/release material per 1 L of a substrate in the catalyst layer of the upstream catalyst 3 is larger than that in the catalyst layer of the downstream catalyst 5. The oxygen release amount per a unit amount of the Rh is larger than that for the upper catalyst layer of the upstream catalyst 5. At least part of the oxygen storage/release material included in the downstream catalyst shows a particle size distribution having a peak particle size smaller than that in the upstream catalyst 5.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: May 6, 2014
    Assignee: Mazda Motor Corporation
    Inventors: Masaaki Akamine, Masahiko Shigetsu
  • Patent number: 8713914
    Abstract: A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 6, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven J. Schmieg, Michael B. Viola, Shi-Wai S. Cheng, Patricia A. Mulawa, David L. Hilden, Thompson M. Sloane, Jong H. Lee
  • Patent number: 8713920
    Abstract: An exhaust gas treatment device includes at least a housing and a second exhaust gas treatment unit which is disposed at a distance from the housing and extends into the housing. The housing has an opening that is disposed laterally relative to the second exhaust gas treatment unit and extends laterally at least across 50% of the second exhaust gas treatment unit which extends into the housing. A motor vehicle having the exhaust gas treatment device is also provided.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: May 6, 2014
    Assignee: EMITEC Gesellschaft fuer Emissionstechnologie mbH
    Inventors: Rolf Brück, Conny Johansson, Mats Laurell
  • Patent number: 8713919
    Abstract: In an exemplary embodiment of the invention an exhaust gas after treatment system for an internal combustion engine comprises an exhaust gas conduit configured to transport exhaust gas from the internal combustion engine to exhaust treatment devices of the exhaust gas treatment system. A controller in signal communication with the exhaust gas aftertreatment system is configured to monitor the temperature of a selective catalytic reduction device, wherein the controller is operable to move a valve assembly to an open position when the selective catalytic reduction device is at or above an operating temperature and to move the valve assembly to a closed position when the selective catalytic reduction device is below the operating temperature for entrainment of NOx constituents from the exhaust gas.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: May 6, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Joshua Clifford Bedford
  • Publication number: 20140116027
    Abstract: An apparatus is disclosed, including an exhaust conditions module structured to interpret a diesel particulate filter (DPF) delta pressure value, a flow balance correlation, a NOx input value, and an exhaust flow rate value. A flow determination module is structured to determine a flow imbalance value in response to the DPF delta pressure value, the flow balance correlation, and the exhaust flow rate value. A reductant determination module is structured to determine a first reductant injection command and a second reductant injection command in response to the flow imbalance value and the NOx input value.
    Type: Application
    Filed: October 21, 2013
    Publication date: May 1, 2014
    Applicant: Cummins Inc.
    Inventor: Richard J. Ancimer
  • Patent number: 8707935
    Abstract: Various systems and methods are described for operating an engine system having a sensor coupled to an exhaust gas recirculation system in a motor vehicle. One example method comprises during a first operating condition, directing at least some exhaust gas from an exhaust of the engine through the exhaust gas recirculation system and past the sensor to an intake of the engine and, during a second operating condition, directing at least some fresh air through the exhaust gas recirculation system and past the sensor.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: April 29, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Dave Charles Weber, Michiel J. Van Nieuwstadt, Daniel Joseph Styles, Daniel Joseph Rinkevich
  • Patent number: 8707682
    Abstract: In an internal combustion engine, an upstream side air-fuel ratio sensor (23), hydrocarbon feed valve (15), exhaust purification catalyst (13), and the downstream side air-fuel ratio sensor (24) are arranged in an engine exhaust passage in that order from the upstream side. If hydrocarbons are fed from the hydrocarbon feed valve (15), the air-fuel ratio which is detected by the downstream side air-fuel ratio sensor (24) changes to the rich side from the reference air-fuel ratio which is detected when hydrocarbons are not fed from the hydrocarbon feed valve (15). The amount of hydrocarbons which are fed from the hydrocarbon feed valve (15) and which slip through the exhaust purification catalyst (13) is detected from the air-fuel ratio difference between the air-fuel ratio detected by the upstream side air-fuel ratio sensor (23) and the reference air-fuel ratio detected by the downstream side air-fuel ratio sensor (24).
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: April 29, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yuki Bisaiji
  • Publication number: 20140109556
    Abstract: A hybrid vehicle equipped with an internal combustion engine and a motor-generator for running the vehicle, includes: a power storage device to be supplied to the motor-generator; a current leakage detection circuit detecting a decrease in insulation resistance, the current leakage detection circuit being electrically connected to a negative electrode of the power storage device; an electrical heated catalyst device; and a power supply device that converts electric power from the power storage device into energization power of the electrical heated catalyst device by a power conversion path passing through an insulating mechanism. The power supply device includes a switching device. The switching device is opened when the electrical heated catalyst device is energized, and is closed when the decrease in insulation resistance of the electrical heated catalyst device is detected.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 24, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Keita HASHIMOTO
  • Patent number: 8701387
    Abstract: An engaging groove (47) with which a gasket (42) is engaged is provided in each of a front side projecting portion (44) and a rear side projecting portion (46) formed in a filter accommodating cylinder (37) to be positioned on an outer peripheral surface (44A, 46A) of each projecting portion (44, 46). Therefore, when the gasket (42) latches on each of the projecting portion (44; 46) to be fitted thereon from an outside, the gasket (42) can be engaged with the engaging groove (47) provided in each of the projecting portions (44, 46). In consequence, at the time of mounting and removing the filter accommodating cylinder (37), the falling-off of the gasket (42) can be prevented, and, for example, an inspection operation, a cleaning operation and the like of an accommodated particulate matter removing filter (41) can be easily performed.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: April 22, 2014
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Tomoyuki Saito, Eri Saijo, Toshihiro Abe, Hiroyuki Kamata
  • Patent number: 8701392
    Abstract: An internal combustion engine wherein an exhaust purification catalyst and a hydrocarbon feed valve are arranged downstream in an exhaust passage. A first NOX purification method, which removes NOX by making a concentration of hydrocarbons that flows into the exhaust purification catalyst vibrate within predetermined amplitude and period ranges and a second NOX purification method which utilizes an adsorption action of NOX to the exhaust purification catalyst are used. A high pressure exhaust gas recirculation system (HPL) causing recirculation of high pressure exhaust gas and a low pressure exhaust gas recirculation system (LPL) causing recirculation of low pressure exhaust gas are provided.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: April 22, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuki Bisaiji, Kohei Yoshida, Mikio Inoue
  • Patent number: 8701393
    Abstract: An internal combustion engine in which an SOx trap catalyst (13) for trapping SOx contained in the exhaust gas contains an oxygen adsorbing and releasing material (54) which can adsorb SO2 contained in the exhaust gas and an SOx storage material (55) which can store SOx in the form of sulfates. The SO2 which is contained in the exhaust gas is chemically adsorbed at the oxygen adsorbing and releasing material (54) without being oxidized. If the temperature of the SOx trap catalyst (13) becomes higher than the start temperature of adsorbed SO2 movement, the SO2 which is chemically adsorbed at the oxygen adsorbing and releasing material (54) is oxidized and stored in the form of sulfates in the SOx storage material (55).
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: April 22, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takamitsu Asanuma, Yoshihisa Tsukamoto, Kazuhiro Umemoto, Junichi Matsuo, Hiromasa Nishioka
  • Publication number: 20140102083
    Abstract: The invention relates to an exhaust gas system (10) for an internal combustion engine (12), having an exhaust gas path which includes at least in sections two parallel exhaust gas lines (34, 36), namely a main line (34) and an auxiliary line (36), an adsorber (46) for reversible sorption of unburnt hydrocarbons (HC) and/or nitrogen oxides (NOx) being situated in the auxiliary line (36); having an adjusting means (48) for selectively guiding an exhaust gas flow into the main line (34) and/or into the auxiliary line (36) and having a main catalytic converter (44) situated downstream from the parallel exhaust gas lines (33, 36). An exhaust gas flow-conducting, gas-permeable element (58) is provided upstream from the adsorber (46), which separates the auxiliary line (36) from the remaining exhaust gas flow-conducting areas. In addition, the adsorber (46) may also be equipped with a particle filtering function and/or a catalytic function.
    Type: Application
    Filed: April 16, 2012
    Publication date: April 17, 2014
    Inventors: Jörg-Dieter Baetge, Alf Degen, Markus Paulovsky, Valeri Seiler, Peter Männel
  • Patent number: 8695569
    Abstract: A vehicle burner (6) for heating a gas flow (14) in a motor vehicle is provided with a fuel pump (10) for delivering a fuel to an injection nozzle (11) that can be actuated for injecting the fuel into a combustion chamber (7), with an air delivery device (16) for delivering air to the combustion chamber (7), with a control (17) for operating the. A vehicle burner (6), which is coupled with the fuel pump (10), with the air delivery and/or air regulating device (16) and with the injection nozzle (11). Burner waste gas, which is generated during the operation of the. A vehicle burner (6) by the reaction of fuel with air in the combustion chamber (7), is used to heat the gas flow (14). To increase efficiency, a control (17) determines a quantity of fuel, a quantity of air and a fuel pressure as a function of a presettable heat output.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: April 15, 2014
    Assignee: Bosch Emission Systems GmbH & Co. KG
    Inventor: Gerd Gaiser
  • Patent number: 8695748
    Abstract: An improvement in a work vehicle having an exhaust gas treatment unit is disclosed. An engine is disposed in an engine room formed in a vehicle body and supported by the vehicle body. A support unit includes right and left vertical struts mounted on the vehicle body across the engine along a vehicle body transverse direction. The exhaust gas treatment unit is disposed inside the engine room and attached to the support unit upwardly of the engine, under a posture elongate along the vehicle body transverse direction.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: April 15, 2014
    Assignee: Kubota Corporation
    Inventors: Manabu Togo, Norihide Iwata, Keita Ono
  • Patent number: 8689547
    Abstract: An annular heat exchanger for cooling hot gases comprises an inner shell, an intermediate shell and an outer shell. Where the heat exchanger is integrated with a catalytic converter for treatment of hot exhaust gases in a motor vehicle, the inner shell contains a catalyst for treatment of the exhaust gases. Inner and outer gas flow passages are provided between the shells, and a coolant flow passage is provided, either on the outer surface of the outer shell, or between the intermediate and outer shells. The exhaust gases change direction twice as they pass through the heat exchanger, and the annular structure of the heat exchanger provides a large surface area, and a large flow section, relative to volume, and thereby provides effective heat exchange without significantly increasing space requirements.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 8, 2014
    Assignee: Dana Canada Corporation
    Inventors: John G. Burgers, Michael A. Martin, Ihab Edward Gerges, Herve Palanchon
  • Patent number: 8689541
    Abstract: An engine control system includes a catalyst module and a cylinder module. The catalyst module determines a catalyst temperature. The cylinder module selectively switches operation of a first cylinder from a first engine cycle having four strokes to a second engine cycle having N times four strokes, based on the catalyst temperature, wherein N is an integer greater than one. A related method is also provided.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: April 8, 2014
    Inventors: Mike M. McDonald, William C. Albertson
  • Patent number: 8689542
    Abstract: One embodiment is a method including determining whether an ammonia storage device has a stored quantity of ammonia, predicting an impending ammonia release from the ammonia storage device, determining a NOx increase amount in response to the impending ammonia release, and increasing an amount of NOx provided by an engine based on the NOx increase amount. In certain embodiments, determining the NOx increase amount in response to the impending ammonia release comprises determining a NOx increase schedule based on the stored quantity of ammonia. In certain embodiments, the NOx increase schedule comprises a specified NOx increase time period, and in certain further embodiments, the method further includes decrementing the specified NOx increase time period based on an estimated catalyst degradation value.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: April 8, 2014
    Assignee: Cummins Inc.
    Inventors: Hasan Mohammed, Joseph M. Brault
  • Patent number: 8685353
    Abstract: Provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap. The improved exhaust gas cleaning systems and methods allow for the sulfur released from the sulfur trap to pass through the nitrogen oxide trap with no or little poisoning of NOx storage and reduction sites, which significantly improves NSR catalyst trap lifetime and performance to meet future emissions standards. The disclosed exhaust gas cleaning systems are suitable for use in internal combustion engines (e.g., diesel, gasoline, CNG) which operate with lean air/fuel ratios over most of the operating period.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: April 1, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul James Polini
  • Patent number: 8683787
    Abstract: An exhaust gas purifying catalyst (1) of the present invention includes anchor/promoter simultaneous enclosure particles (5) including catalyst units (13) which contain: noble metal particles (8); and anchor particles (9) as an anchor material of the noble metal particles (8) supporting the noble metal particles (8); promoter units (14) which are provided not in contact with the noble metal particles (8) and contain first promoter particles (11) having an oxygen storage and release capacity; and an enclosure material (12) which encloses both the catalyst units (13) and the promoter units (14), and separates the noble metal particles (8) and the anchor particles (9) in the catalyst units (13) from the first promoter particles (11) in the promoter units (14). The exhaust gas purifying catalyst (1) further includes second promoter particles (6) which have the oxygen storage and release capacity, and are not enclosed in the anchor/promoter simultaneous enclosure particles (5) by the enclosure material (12).
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: April 1, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takamasa Nakagawa, Masanori Nakamura, Misaki Fujimoto, Naoki Kachi
  • Patent number: 8677739
    Abstract: Hydrocarbon traps used to trap then release unburned hydrocarbons upon startup of a spark ignition internal combustion engine are sensitive to degradation if exposed to normal temperature exhaust gases. On board diagnostics of HC traps are provided by the invention, by incorporating a heat sensitive oxygen storage material in the HC trap material, and using conventional determination of OSC efficiency to determine if the HC trap material has been exposed to excessive temperature.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: March 25, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Neil Robert Collins, Christopher Morgan, Michael Howard
  • Patent number: 8679433
    Abstract: Disclosed are, inter alia, methods of forming coated substrates for use in catalytic converters, as well as washcoat compositions and methods suitable for using in preparation of the coated substrates, and the coated substrates formed thereby. The catalytic material is prepared by a plasma-based method, yielding catalytic material with a lower tendency to migrate on support at high temperatures, and thus less prone to catalyst aging after prolonged use. Also disclosed are catalytic converters using the coated substrates, which have favorable properties as compared to catalytic converters using catalysts deposited on substrates using solution chemistry. Also disclosed are exhaust treatment systems, and vehicles, such as diesel vehicles, particularly light-duty diesel vehicles, using catalytic converters and exhaust treatment systems using the coated substrates.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: March 25, 2014
    Assignee: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger, Jayashir Sarkar
  • Patent number: 8679434
    Abstract: Described is a catalytic article for the treatment of lean burn engine exhaust gas. The catalytic article comprises a honeycomb substrate having disposed thereon a washcoat containing one or more calcined platinum group metal components dispersed on a refractory metal oxide support located on the honeycomb substrate, the platinum group metal components having an average crystallite size in the range of about 10 to about 25 nm to provide a stable ratio of NO2 to NOx when the exhaust gas flows through the honeycomb substrate. Methods of treating exhaust gas from a lean burn engine and a system for the removal of pollutants from a lean burn engine exhaust gas stream containing NOx are also described.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: March 25, 2014
    Assignee: BASF Corporation
    Inventors: Yuejin Li, Stanley A. Roth
  • Publication number: 20140075921
    Abstract: A method of controlling a power system including an engine and an exhaust treatment system having an exhaust treatment device is disclosed. The method includes determining a catalyst parameter indicative of a conversion efficiency of the exhaust treatment device. The method further includes determining a weighted index based on the catalyst parameter. The method further includes determining a plurality of first index values. In the method, each first index value of the plurality of first index values is predicted as a function of a corresponding respective aftertreatment control strategy. The method further includes selecting an aftertreatment control strategy based on a comparison between the weighted index and each first index value of the plurality of first index values. In the method, the selected aftertreatment control strategy changes the catalyst parameter.
    Type: Application
    Filed: February 14, 2013
    Publication date: March 20, 2014
    Applicant: CATERPILLAR INC.
    Inventor: Praveen S. Chavannavar
  • Patent number: 8668891
    Abstract: An exhaust system 10 for a vehicular lean-burn internal combustion engine comprises: (a) a first substrate monolith 6 comprising a SCR catalyst; (b) at least one second substrate monolith 4 comprising a catalytic washcoat coating comprising at least one platinum group metal (PGM) disposed upstream of the first substrate monolith; and (c) a third substrate monolith 2 disposed between the first substrate monolith and the or each second substrate monolith, wherein at least one PGM on the or each second substrate monolith 4 is liable to volatilise when the or each second substrate monolith 4 is exposed to relatively extreme conditions including relatively high temperatures, and wherein the third substrate monolith 2 comprises a washcoat coating comprising at least one metal oxide for trapping volatilised PGM.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 11, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Philip Gerald Blakeman, Sougato Chatterjee, Andrew Francis Chiffey, Jane Gast, Paul Richard Phillips, Raj Rao Rajaram, Andrew Peter Walker
  • Patent number: 8667785
    Abstract: A catalysed substrate monolith 12 for use in treating exhaust gas emitted from a lean-burn internal combustion engine, which catalysed substrate monolith 12 comprising a first washcoat coating 16 and a second washcoat coating 18, wherein the first washcoat coating comprises a catalyst composition comprising at least one platinum group metal (PGM) and at least one support material for the at least one PGM, wherein at least one PGM in the first washcoat coating is liable to volatilize when the first washcoat coating is exposed to relatively extreme conditions including relatively high temperatures, wherein the second washcoat coating comprises at least one metal oxide for trapping volatilized PGM and wherein the second washcoat coating is oriented to contact exhaust gas that has contacted the first washcoat coating.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 11, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Philip Gerald Blakeman, Gavin Michael Brown, Sougato Chatterjee, Andrew Francis Chiffey, Jane Gast, Paul Richard Phillips, Raj Rao Rajaram, Glen Spreitzer, Andrew Peter Walker
  • Patent number: 8667778
    Abstract: A catalyst overheat prevention apparatus has a temperature obtaining portion that estimates a convergence temperature of a catalyst provided in the exhaust system of an internal combustion engine and the present temperature of the catalyst. The catalyst overheat prevention apparatus also has a fuel increment calculation portion, a comparison portion, a correction portion, and a fuel increment setting portion, which are used to execute OT fuel increase control when the convergence temperature and present catalyst temperature obtained by the temperature obtaining portion are equal to or higher than an OT determination temperature. The catalyst overheat prevention apparatus also has a present temperature correction portion that corrects the present catalyst temperature to be equal to the OT determination temperature when the present catalyst temperature is equal to or higher than the OT determination temperature and the convergence temperature is equal to the OT determination temperature.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: March 11, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Kachi, Shinya Kondo
  • Patent number: 8668890
    Abstract: Aspects of the invention relate to a method of treating a gas stream generated by a motorcycle, the method comprising: contacting a gas stream containing hydrocarbons, carbon monoxide and nitrogen oxides and generated by a motorcycle under both rich and lean engine operating conditions with a base metal catalyst composition, thereby removing at least a part of the hydrocarbons, carbon monoxide and nitrogen oxides in gas stream. The base metal catalyst composition comprises a support including at least 10% by weight of reducible ceria, and about 3 to about 7 wt % MnO and about 8 to about 22 wt % CuO on the reducible ceria support. The base metal catalyst composition is effective to promote a steam reforming reaction of hydrocarbons and a water gas shift reaction to provide H2 as a reductant to abate NOx.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: March 11, 2014
    Assignee: BASF Corporation
    Inventors: Pascaline Harrison Tran, Xinsheng Liu, Ye Liu, Michael P. Galligan, Qinglin Zhang, Hiroyuki Horimura, Akiko Iwasa