Fluid Motor Means Driven By Waste Heat Or By Exhaust Energy From Internal Combustion Engine Patents (Class 60/597)
  • Patent number: 8572963
    Abstract: A supercharged internal combustion engine includes a motor unit having a head and an exhaust manifold. A turbocharger assembly is fluid dynamically connected to the exhaust manifold, wherein the turbocharger assembly includes a turbine, a central body and a compressor. The turbocharger assembly includes a lubrication channel for the passage of a lubricating fluid hydraulically connected to a lubrication circuit of the motor unit of said internal combustion engine. The turbine includes a jacket, provided at least in part in a body thereof, arranged for the passage of a cooling fluid and in hydraulic communication with an inlet channel and an outlet channel hydraulically connected to a cooling circuit of the motor unit of said internal combustion engine. The inlet channel, outlet channel and lubrication channel are integrated in said turbocharger assembly in correspondence of a connection interface between said turbocharger assembly and the motor unit.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: November 5, 2013
    Assignee: C.R.F. Società Consortile per Azioni
    Inventors: Marco Cuniberti, Roberto Saretto, Damiano Micelli
  • Patent number: 8572960
    Abstract: A method for operating a compressor, which supplies an internal combustion engine that is assigned to the compressor at its output end with air compressed to a boost pressure, in which the boost pressure is reducible by releasing the compressed air at least partially via a pressure release valve. The air released via the pressure release valve is used for driving a compressor wheel of the compressor.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: November 5, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Jochen Laubender
  • Publication number: 20130247558
    Abstract: The heat pump with a turbine-driven energy recovery system provides selectively cooled and/or heated air and recovers energy from refrigerant circulation. The heat pump includes a condenser for receiving refrigerant and condensing the refrigerant into a cooled liquid to release thermal energy therefrom. An evaporator receives the cooled liquid refrigerant and boils the refrigerant, the evaporator absorbing thermal energy to boil the refrigerant. A compressor circulates the refrigerant between the condenser and the evaporator, as is conventionally known. At least one turbine is positioned in a refrigerant flow path between the condenser and the evaporator, such that the at least one turbine is driven by the refrigerant circulating therebetween. At least one electrical generator is driven by the at least one turbine, the at least one generator being in electrical communication with the compressor for providing power thereto.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 26, 2013
    Inventor: RICHARD H. MARUYA
  • Publication number: 20130247559
    Abstract: One exemplary embodiment can be a process for modifying a fluid catalytic cracking unit. The process can include adding a carbon monoxide boiler to the fluid catalytic cracking unit to receive a bypassed flue gas stream from a power recovery expander for increasing capacity of the fluid catalytic cracking unit.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Applicant: UOP, LLC
    Inventors: Paolo Palmas, Richard A. Johnson, II, Ronald Gatan
  • Patent number: 8522547
    Abstract: In an exhaust gas turbocharger for an internal combustion engine of a motor vehicle with a turbine comprising a turbine housing with at least a first and a second spiral channel, each being coupled to an exhaust gas line of an exhaust gas tract of the internal combustion engine for conducting exhaust gas to a turbine wheel arranged within the turbine housing and driving a compressor wheel of a compressor of the exhaust gas turbocharger, an area ratio Qg of the turbine corresponds to the formula Qg=(A?+AAGR)/AR>0.40, wherein A? refers to a narrowest flow cross-section of the first spiral channel, AAGR to a narrowest flow cross-section of the second spiral channel (52b) and AR to a wheel exit flow cross-section of the turbine exhaust channel. The invention further relates to a motor vehicle with an internal combustion engine and such an exhaust gas turbocharger.
    Type: Grant
    Filed: November 27, 2010
    Date of Patent: September 3, 2013
    Assignee: Daimler AG
    Inventors: Siegfried Sumser, Stephan Krätschmer, Markus Müller
  • Publication number: 20130219880
    Abstract: A heat exchanger is provided that includes plate pairs stacked one above the other. A first flow chamber is formed between the two plates of a plate pair by conducting a first fluid therethrough, a second flow chamber for conducting a second fluid therethrough, wherein the second flow chamber is formed between two adjacent plate pairs, an inlet opening for introducing the first fluid, and an outlet opening for discharging the first fluid. The plates have at least one expansion opening, in particular at least one expansion slit, for reducing stress in the plates. The heat exchanger can withstand high thermal and mechanical loads even over a long time period, such as 10 years.
    Type: Application
    Filed: April 8, 2013
    Publication date: August 29, 2013
    Applicant: Behr GmbH & Co.KG
    Inventor: Behr GmbH & Co., KG
  • Publication number: 20130186084
    Abstract: Unique engines, air compressors, and pneumatically driven electrical generators are disclosed. The engine employs a rotor having a number of pistons slidably disposed within respective cylinder bores extending into the rotor periphery. As the rotor spins within a stator, each cylinder bore passes a combustion stage at which the piston is driven further into the rotor toward a bottom of the respective cylinder bore. Valves at the bottom of the cylinder discharge air that is compressed by this piston downstroke, and admit new intake air during an opposing upstroke. The unit thus operates as a self driven compressor, or engine-compressor combination, and the compressed air may be used to pneumatically drive a turbine of an electrical generator. A carbon splitter dissociates carbon and oxygen molecules from the carbon dioxide in the air downstream of the generator turbine, reducing the overall carbon dioxide output of the system.
    Type: Application
    Filed: January 21, 2013
    Publication date: July 25, 2013
    Inventor: Robert J. Novak
  • Patent number: 8468826
    Abstract: A turbocharger including a turbine wheel having a hub-to-tip ratio of no more than 60% and blades with a high turning angle, a turbine housing forming an inwardly spiraling primary-scroll passageway that significantly converges to produce highly accelerated airflow into the turbine at high circumferential angles, and a two-sided parallel compressor. The compressor and turbine each produce substantially no axial force, allowing the use of minimal axial thrust bearings.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: June 25, 2013
    Assignee: Honeywell International Inc.
    Inventors: Vaclav Kares, Jeffrey A. Lotterman
  • Patent number: 8453448
    Abstract: A turbocharger including a turbine wheel having a hub-to-tip ratio of no more than 60% and blades with a high turning angle, a turbine housing forming an inwardly spiraling primary-scroll passageway that significantly converges to produce highly accelerated airflow into the turbine at high circumferential angles, and a two-sided parallel compressor. The compressor and turbine each produce substantially no axial force, allowing the use of minimal axial thrust bearings.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: June 4, 2013
    Assignee: Honeywell International Inc.
    Inventors: Jeffrey A. Lotterman, Vaclav Kares
  • Patent number: 8453445
    Abstract: A turbocharger including a turbine wheel having a hub-to-tip ratio of no more than 60% and blades with a high turning angle, a turbine housing forming an inwardly spiraling primary-scroll passageway that significantly converges to produce highly accelerated airflow into the turbine at high circumferential angles, and a two-sided parallel compressor. The compressor and turbine each produce substantially no axial force, allowing the use of minimal axial thrust bearings.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: June 4, 2013
    Assignee: Honeywell International Inc.
    Inventors: Jeffrey A. Lotterman, Vaclav Kares, Milan Nejedly, Daniel Turecek, Josef Ferda, Tomas Baron, Vit Houst
  • Publication number: 20130133321
    Abstract: The invention relates to a drive system for a vehicle, comprising an internal combustion that releases mechanical and thermal energy and a device for converting the thermal energy, wherein the device is designed to directly convert thermal energy into electrical energy and to transfer thermal energy to a working medium intended to act on an expansion apparatus.
    Type: Application
    Filed: January 22, 2013
    Publication date: May 30, 2013
    Applicant: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Bayerische Motoren Werke Aktiengesellschaft
  • Patent number: 8448440
    Abstract: A high order of thermal efficiency is achieved in a steam engine or steam expander having a piston clearance that approximates zero together with a negligible amount of compression, such that pressure in the clearance volume approximates ambient pressure, i.e. atmospheric or condenser pressure as the case may be at the end of the piston return stroke when the clearance is essentially zero and constitutes a new engine apparatus and Rankine operating cycle that can be referred to as “zero clearance with zero compression”. The steam admission valve assembly can be operated either automatically responsive to piston contact or by means of a cam shaft or electrically by means of a solenoid. A normally open exhaust valve permits residual steam to be exhausted through the piston return stroke, closed by the piston or cam then held closed by a fresh charge of steam.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: May 28, 2013
    Assignee: Thermal Power Recovery LLC
    Inventors: Jerry A. Peoples, James V. Harmon, Sr.
  • Patent number: 8418457
    Abstract: A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: April 16, 2013
    Assignee: Energy & Enviromental Research Center Foundation
    Inventor: Darren D. Schmidt
  • Publication number: 20130086902
    Abstract: A heat recovery system includes an engine coolant circuit and an exhaust gas recovery circuit. The engine coolant circuit uses an engine coolant fluid to cool an engine. The exhaust gas recovery circuit comprises a Rankine cycle system that uses a working fluid to convert heat from engine exhaust gases to energy. The engine coolant fluid comprises the working fluid such that the engine coolant circuit and an exhaust gas recovery circuit comprise a common circuit such that the Rankine cycle system recovers energy from exhaust gas heat and from engine coolant heat.
    Type: Application
    Filed: October 9, 2012
    Publication date: April 11, 2013
    Applicant: FAURECIA EMISSIONS CONTROL TECHNOLOGIES
    Inventor: Navin Khadiya
  • Publication number: 20130067910
    Abstract: The waste heat recovery system includes a Rankine cycle device in which working fluid circulates through a pump, a boiler, an expander and then through a heat exchanging device, heat exchange occurs in the boiler between the working fluid and intake fluid that is introduced into an internal combustion engine while being cooled. The heat exchanging device includes a condenser condensing the working fluid, a receiver connected downstream of the condenser and storing liquid-phase working fluid, a subcooler connected downstream of the receiver and subcooling the liquid-phase working fluid, and a selector device serving to change the ratio of the condenser to the subcooler. The waste heat recovery system further includes a determination device for determining required cooling load for the intake fluid, and a controller for controlling the selector device depending on the required cooling load determined by the determination device.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 21, 2013
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Fumihiko ISHIGURO, Masao IGUCHI, Hidefumi MORI, Fuminobu ENOKIJIMA
  • Patent number: 8397503
    Abstract: Two turbochargers are arranged vertically near a one side of a crank-shaft direction at a one-side face of an engine body so that the large-size turbocharger is located above the small-sized turbocharger, and an exhaust-gas purification device is arranged an open space made on the other side of the crank-shaft direction so that its exhaust inlet is located above and its outlet is located below. Accordingly, the turbochargers and the exhaust-gas purification device can be arranged compactly and the layout of some devices around the engine can be facilitated.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: March 19, 2013
    Assignee: Mazda Motor Corporation
    Inventors: Yasushi Niwa, Atsuhiro Hatabu, Takashi Sasada, Eiji Nakai
  • Patent number: 8353161
    Abstract: A turbocharger including a turbine wheel having a hub-to-tip ratio of no more than 60% and blades with a high turning angle, a turbine housing forming an inwardly spiraling primary-scroll passageway that significantly converges to produce highly accelerated airflow into the turbine at high circumferential angles, and a two-sided parallel compressor. The compressor and turbine each produce substantially no axial force, allowing the use of minimal axial thrust bearings.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: January 15, 2013
    Assignee: Honeywell International Inc.
    Inventors: Vaclav Kares, Thomas J. Elliott
  • Publication number: 20120317973
    Abstract: A combined cycle power plant includes a first engine, a second engine, a first heat recovery steam generator, a second heat recovery steam generator, and a steam turbine. The second engine is relatively more productive but less efficient than the first engine. The first engine generates a first exhaust gas, and the second engine generates a second exhaust gas. The first heat recovery steam generator transfers excess energy from the first exhaust gas to a first flow of water, creating a first flow of steam. The second heat recovery steam generator transfers excess energy from the second exhaust gas to a second flow of water, creating a second flow of steam. The second heat recovery steam generator further transfers excess energy from the second exhaust gas to the first flow of steam and the second flow of steam, creating a flow of superheated steam. The steam turbine receives the flow of superheated steam from the second heat recovery steam generator.
    Type: Application
    Filed: June 14, 2011
    Publication date: December 20, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Seyfettin Can Gülen
  • Patent number: 8307648
    Abstract: In a compressor of a turbocharger of an internal combustion engine comprising a housing with an inflow channel; a compressor impeller arranged in the inflow channel; and a bypass channel which has a first flow opening upstream of the compressor impeller inlet, a second flow opening downstream of the compressor impeller inlet and an axial annular chamber which connects the first and the second flow openings. An axial vane structure is provided in the axial annular chamber of the bypass channel, which imparts a swirl direction corresponding to that of the air mass flow in the inflow channel to the air mass flowing through the bypass channel from the second to the first flow opening.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: November 13, 2012
    Assignee: Daimler AG
    Inventors: Siegfried Sumser, Gernot Hertweck, Paul Löffler, Lionel Le Clech
  • Patent number: 8281589
    Abstract: For operating an internal combustion engine having a throttle situated in an exhaust line or exhaust return line, in which a heat engine is driven by a quantity of heat produced by the internal combustion engine, in a first non-heating operating mode of the internal combustion engine, a first setpoint value is preset, a first operating parameter that characterizes a temperature of the internal combustion engine is detected, a first triggering value is determined for the triggering of the at least one throttle as a function of the first setpoint value and the first operating parameter, the at least one throttle is triggered in accordance with the first triggering value, and the at least one heat engine is driven by the resulting quantity of heat.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: October 9, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Guillaume Huard, Juergen Stegmaier, Henrick Brandes, Martin Cichon, Manfred Schmitt, Lutz Rauchfuss, Oliver Tschismar
  • Patent number: 8281587
    Abstract: A control system for engine braking for a vehicle powered by a turbocharged engine uses a supercharger to assist a turbocharger compressor to boost turbocharger air flow into the engine cylinders. An engine driven air pumping device draws ambient air, or alternately exhaust gas through the pump inlet, compresses the air, and delivers the compressed air through the pump outlet to the turbocharger compressor inlet or alternately the turbocharger compressor outlet. The increased air flow into the cylinders and out of the cylinder exhaust valves increases retarding power of the vehicle.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: October 9, 2012
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Qianfan Xin, Martin R. Zielke, Michael D. Bartkowicz, Luis Carlos Cattani, Steve Gravante, Timothy Prochnau, Antoun Y. Calash, John L. Cagney
  • Patent number: 8225607
    Abstract: The housing of a vane-type machine has a largely cylindrical space for accommodating the vane cells. A shaft is eccentrically arranged in the housing. First and second guide plates are provided on the shaft. Slides displaceable largely radially to the shaft in the direction of the inner housing wall are guided by the guide plates. A vane cell is formed with the participation of two adjacent slides of the adjacent region of the inner housing wall and the volume of the vane cells in the region of an inlet opening differs from the volume of the vane cells in the region of an outlet opening. To increase the speed of the shaft and the temperature of the medium, the slides are lubricated by pressure oil and radially and axially guided by a guideway, which is fixed with respect to the housing.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: July 24, 2012
    Inventors: Michael Stegmair, Daniel Stegmair
  • Publication number: 20120116655
    Abstract: Methods and systems are provided for controlling exhaust emissions by adjusting a fuel injection into an engine cylinder from a plurality of fuel injectors based on the fuel type of the injected fuel and further based on the soot load of the engine. Soot generated from direct fuel injection is reduced by decreasing an amount of direct injection into a cylinder as the engine soot load increases.
    Type: Application
    Filed: January 19, 2012
    Publication date: May 10, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: David Karl Bidner, Ralph Wayne Cunningham, Stephen G. Russ, James Hilditch, John Eric Rollinger
  • Patent number: 8171732
    Abstract: A device is provided. The device includes an inlet manifold configured to direct an exhaust gas flow within the device, an air inlet configured to introduce an airflow within the device and at least one surface of the device having a Coanda profile configured to entrain incoming air through the exhaust gas flow to generate a high velocity airflow.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: May 8, 2012
    Assignee: General Electric Company
    Inventor: Andrei Tristan Evulet
  • Patent number: 8174141
    Abstract: A turbo generator having a turbine configured to be driven by exhaust gas from an internal combustion engine, and an electric generator having a rotor coupled to the turbine and a stator having an ironless coil arranged with the rotor to generate electric power when the rotor is rotated by the turbine.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: May 8, 2012
    Assignee: Thingap, LLC
    Inventor: Gerhard E. Delf
  • Publication number: 20120102943
    Abstract: A method for monitoring a regulated emissions concentration C, in the exhaust gas of an internal combustion engine is provided. The method comprises directing the exhaust gas through an exhaust-gas turbocharger, directing at least a portion of the exhaust gas through an exhaust-gas recirculation system, measuring an air ratio ?meas in the exhaust gas with a lambda probe, measuring a rotational speed nT of the exhaust-gas turbocharger with a sensor, and determining the regulated emission concentration Ci based on the air ratio ?meas and the rotational speed nT. In this way, the emission concentration of the exhaust may be determined as a function of the rotational speed of the turbine.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 3, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Simon Petrovic, Yasser Mohamed sayed Yacoub
  • Publication number: 20120090317
    Abstract: An exhaust heat regeneration system includes: an evaporator for cooling engine cooling water; an expansion device for expanding the refrigerant heated through the evaporator so as to generate a driving force; a condenser for cooling the refrigerant passing through the expansion device to condense the refrigerant; and a pump for pressure-feeding the refrigerant cooled through the condenser to the evaporator, in which: the expansion device is coupled to the pump by a shaft, and the expansion device and the pump are housed within the same casing to constitute a pump-integrated type expansion device; and the pump includes a high-pressure chamber through which the refrigerant to be discharged to the evaporator flows, the high-pressure chamber being provided on the expansion device side, or a low-pressure chamber through which the refrigerant flowing from the condenser flows, the low-pressure chamber being provided on the expansion device side.
    Type: Application
    Filed: July 26, 2010
    Publication date: April 19, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kazuhiko Kawajiri, Minoru Sato, Kazunori Tsuchino
  • Publication number: 20120079822
    Abstract: A method for controlling an exhaust gas aftertreatment device of a vehicle hybrid drive is provided. The method comprises operating the hybrid drive only by a combustion engine, only by a non-combustion motor, or by both, as a function of a temperature of the exhaust aftertreatment device, and conducting exhaust gas of the hybrid drive at least partially through the exhaust aftertreatment device, the engine and motor each providing output to power the vehicle. In this way, the aftertreatment device may be operated at an optimal temperature for conversion performance.
    Type: Application
    Filed: September 28, 2011
    Publication date: April 5, 2012
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Yasser Mohamed sayed Yacoub
  • Patent number: 8141360
    Abstract: A hybrid engine having a gas turbine engine and an internal combustion engine, both engines driving a common drive shaft. The compressor delivers compressed air to the combustor and to an inlet of the internal combustion engine, the compressed air picks up heat from the internal combustion engine either from the combustion process or through a heat exchanger, and is delivered to the combustor. When the gas turbine engine is not operating by burning fuel, the heated compressed air from the internal combustion engine is used to maintain the shaft speed sufficient for starting the gas turbine engine without the need to bring the turbine engine up to speed prior to ignition. The apparatus and process of the present invention provides a hybrid engine that is light weight, fuel efficient, and with enough available power for high powered situations.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: March 27, 2012
    Assignee: Florida Turbine Technologies, Inc.
    Inventor: David J Huber
  • Patent number: 8136512
    Abstract: In an internal combustion engine, fresh air is compressed by a pressure-wave supercharger. At least one operating parameter of the pressure-wave supercharger is controlled or regulated as a function of at least one actual operating variable of the internal combustion engine.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 20, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Lino Guzzella, Christopher Onder, Martin Rauscher, Peter Spring
  • Patent number: 8091357
    Abstract: A system for recovering engine exhaust energy is provided. The system includes an exhaust system including a first exhaust branch and a second exhaust branch. The system includes a first and a second group of exhaust valves associated with a plurality of engine cylinders. The system also includes an energy recovering assembly. The system further includes a control mechanism configured to control at least one of the first and second groups of exhaust valves according to a determined timing strategy based on at least one engine operating parameter.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: January 10, 2012
    Assignee: Caterpillar Inc.
    Inventor: Wade J. Robel
  • Patent number: 8061140
    Abstract: A high efficiency combined cycle internal combustion and steam engine includes a cylinder and a piston with an internal combustion chamber outward of the piston, a fixed cylinder cap and a steam expansion chamber inside the piston. The cylinder cap can be heated to reduce condensation of steam entering from a steam generator fired by waste combustion heat. Following exhaust, residual steam can be recompressed prior to admitting the next charge of steam. A wrist pin connected to an inner end of the piston skirt inwardly of the cylinder cap is coupled to a connecting rod secured to a crankshaft. One valve or a pair of steam inlet valves are connected to communicate in series within the cylinder cap inside the piston. The steam mass admitted is regulated to reduce fuel consumption. Coolant can be superheated in the combustion exhaust manifold.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: November 22, 2011
    Assignee: Thermal Power Recovery LLC
    Inventor: James V. Harmon, Sr.
  • Publication number: 20110271674
    Abstract: A sliding vane rotary expander is used in a waste heat recovery system for a power plant. One example rotary expander has multiple stages with the vane assemblies disposed in bearing supported rings. Another example rotary expander has multiple stages with the vane assemblies disposed in an elliptical cavity. A balance valve equalizes the flow within the stages. Single stage rotary expanders may also be used.
    Type: Application
    Filed: January 12, 2010
    Publication date: November 10, 2011
    Applicant: AVL North America Inc.
    Inventors: Ho Teng, Gerhard Regner
  • Publication number: 20110265470
    Abstract: An energy recovery system includes an exhaust line which is capable of collecting exhaust gas from an exhaust manifold of the engine and which is equipped with a particulate filter, a secondary line which is thermally linked with, but distinct from, the exhaust line, and which carries a fluid. The particulate filter has a filtering part in which exhaust gases can flow and a heat exchanging part in which the fluid can flow, the filtering part and heat exchanging part being arranged to transfer heat by conduction from the exhaust gases to said fluid. The secondary line is connected to energy recovery means capable of recovering energy from the heat.
    Type: Application
    Filed: December 30, 2008
    Publication date: November 3, 2011
    Inventors: Marc Lejeune, Eduard Iojoiu
  • Publication number: 20110154819
    Abstract: A system for recovering engine exhaust energy is provided. The system includes an exhaust system including a first exhaust branch and a second exhaust branch. The system includes a first and a second group of exhaust valves associated with a plurality of engine cylinders. The system also includes an energy recovering assembly. The system further includes a control mechanism configured to control at least one of the first and second groups of exhaust valves according to a determined timing strategy based on at least one engine operating parameter.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 30, 2011
    Applicant: Caterpillar Inc.
    Inventor: Wade J. Robel
  • Patent number: 7942000
    Abstract: A rotary vane engine system for using exhaust heat energy of a fuel-based heat engine. The heat engine includes a crankshaft being driven by a combustion cycle, and the heat engine generates exhaust gases by combustion. The system comprises an independent air system, wherein the independent air system contains air separate to the exhaust gases. A heat exchanger system is provided for transferring exhaust heat energy from the exhaust gases to the air contained in the independent air system to generate pressurized air. A rotary vane engine is also provided having a housing, a rotor contained within the housing and coupled to the crankshaft of the heat engine, and a plurality of vanes extending radially from the rotor. The pressurized air is expanded within the rotary vane engine for rotation of the rotor thereby providing drive to the crankshaft of the heat engine.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: May 17, 2011
    Assignee: Engine-Uity Limited
    Inventor: Barry T. Crate
  • Publication number: 20110072813
    Abstract: A vehicle power generation system using exhaust gas and includes a casing which is installed at a vehicle chassis and is formed of an inlet hole for inputting an exhaust gas and an outlet hole for discharging an exhaust gas, a turbine which is rotatably installed in the interior of the casing 10 and rotates by a pressure of the exhaust gas inputted into the inlet hole, a power generator which has a rotary shaft axially engaged to a shaft part of a turbine passing through a front side of the casing and a fixing bracket for fixing the power generator to the casing.
    Type: Application
    Filed: April 15, 2010
    Publication date: March 31, 2011
    Inventor: Boo-Sung Hwang
  • Patent number: 7909026
    Abstract: The present invention provides a servo actuated operating mechanism for a coacting lobed rotor positive displacement supercharger combining a low cost and capacity electromagnetic clutch with a small oil pump internal to the supercharger unit. The oil pump supplies on demand oil pressure from oil in a hydraulic clutch housing or the supercharger timing gear case and acts as a servomechanism to actuate an internal hydraulic clutch. The hydraulic clutch can be engaged over a much wider range of speeds and loads than is possible with an electromagnetic clutch alone. The electro-hydraulic servomechanism provides improved highway fuel economy relative to an electromagnetic clutch as the engagement speed could be moved to a higher rotational speed (rpm). The internal hydraulic system makes higher supercharger engagement speeds possible with a hydraulic system, but without the assembly and leak issues associated with externally plumbed engine oil system actuated clutches.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: March 22, 2011
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Gregory P. Prior
  • Patent number: 7891186
    Abstract: A waste heat recovery system is provided for an internal combustion engine having a piston, a cylinder and an intake manifold, significantly improving gas mileage efficiency without reliance on alternative fuels. The system includes a heat loop having a heat transfer fluid, a compressor in fluid communication with the intake manifold to supply compressed air thereto, a Stirling engine operated and optimized via thermal communication with the heat loop, and operatively coupled to the compressor. The system includes a chiller in thermal communication with the heat loop, and with the intake manifold to cool the compressed air communicate to the cylinder. The system may include additional Stirling engines operating other devices, or being operated by a device, such as a propeller. A vehicle can incorporate the system and route fluid to and from a radiator. The system can be used in both portable and stationary applications.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: February 22, 2011
    Inventor: Indru J. Primlani
  • Patent number: 7893554
    Abstract: A turbo compounding system may include a turbo generator having a switched reluctance machine having at least one pole-matched rotor and stator pair, a single phase inverter coupled to the turbo generator and further coupled to a direct current link, an inverter coupled to the direct current link, a motor generator coupled to the inverter.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: February 22, 2011
    Assignee: Deere & Company
    Inventors: Ronnie Dean Stahlhut, Jim Shoemaker
  • Publication number: 20100275594
    Abstract: An exhaust heat recovery system includes a plurality of Starling engines. Heaters of the Starling engines are disposed in an exhaust passage that is a heat medium passage. An inside of the exhaust passage is partitioned with a partitioning member into a first exhaust passage and a second exhaust passage. The heater of the Starling engine disposed on an upstream side in a flowing direction of exhaust gas is provided in the first exhaust passage, and the heater of the Starling engine disposed on a downstream side in the flowing direction of the exhaust gas is provided in the second exhaust passage.
    Type: Application
    Filed: May 22, 2009
    Publication date: November 4, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaaki Katayama, Daisaku Sawada, Hiroshi Yaguchi
  • Publication number: 20100258068
    Abstract: The present invention provides a spark-ignition type cross-cycle internal combustion engine that can conduct the seven processes of the spark-ignition type cross-cycle operation with gasoline and bio-fuel and natural gas.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 14, 2010
    Inventor: Lung-tan Hu
  • Publication number: 20100244461
    Abstract: A system for increasing electrical power includes an exhaust gas turbine, a generator, and a controller. The exhaust gas turbine is configured to be driven by exhaust gas from an engine. The generator is coupled to the exhaust gas turbine to produce electrical power for an electrical load. The controller is configured to increase the electrical power produced by the generator in response to a certain decrease in an electrical load voltage of the electrical load when the engine is at idle. The controller increases the electrical power by increasing a throughput of the exhaust gas through the exhaust gas turbine.
    Type: Application
    Filed: August 20, 2009
    Publication date: September 30, 2010
    Inventor: Gerhard E. DELF
  • Publication number: 20100192906
    Abstract: Apparatus constituting part of an induction and fuel delivery system for a cylinder of a piston internal combustion engine comprising a small cyclone into which is tangentially discharged a flow of heated air to generate a sustained vortex of high rotational speed; a modulatable fuel injector delivering a flow of atomised fuel into said small cyclone wherein it underdoes flash evaporation and energetic mixing; a delivery duct connecting said small cyclone to the inlet tract of said cylinder wherein said vortex fuel-air mixture is mixed with heated induction air; and means to prevent overheating of said modulatable fuel injector.
    Type: Application
    Filed: November 6, 2006
    Publication date: August 5, 2010
    Inventor: David Littlewood Johnson
  • Publication number: 20100170243
    Abstract: In a method and a device for utilizing heat transported by a discontinuous flow of exhaust gases (1), the discontinuous flow of exhaust gases (1) is emitted in phases (P1, P2, P3, P4, P5) with, in each case, constant output values for volume flowing (Va) and temperature (Ta) from an industrial installation, particularly an industrial furnace, wherein the discontinuous flow of exhaust gases (1) is converted into a continuous working flow (2) with adjustable, constant target values for the volume flowing (Vz) and the temperature (Tz). The continuous working flow (2), with the heat contained therein, is used for the conversion of thermal energy into useful energy.
    Type: Application
    Filed: May 28, 2008
    Publication date: July 8, 2010
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Hanno Garbe, Jörg Lengert, Thomas Matschullat
  • Publication number: 20100162969
    Abstract: A heat-pipe electric power generating device including a fan disposed between an evaporating end and a condensing end of a heat-pipe is provided. A magnetic substance is disposed on the fan to form a magnetic field. A stator coil of a generator is disposed at the outer of the heat-pipe, which is corresponding to the position of the fan. An induced current is generated by the stator coil of the generator when the magnetic substance spins. Since the heat-pipe is made of copper, and the magnetic field is not shielded by copper, a current is induced when a relative motion between the magnetic substance on the fan and the stator coil of the generator at the outer of the heat-pipe is generated. Further, the heat-pipe electric power generating device can be applied on a hydrogen/oxygen gas generating apparatus and an internal combustion engine system of a motor vehicle.
    Type: Application
    Filed: February 23, 2009
    Publication date: July 1, 2010
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ra-Min Tain, Wen-Yang Peng, Yao-Shun Chen
  • Publication number: 20100154410
    Abstract: Integral multifunctional system for motor vehicle including a gas turbine (1) mounted on the exhaust pipe of the internal combustion engine (2) of the vehicle and mechanically coupled to a hydraulic pump (3), featuring also a serial hybrid hydraulic system (4), wherein the inlet of the hydraulic pump (3) is connected to the low pressure tank (5) of the serial hybrid hydraulic system (4) and the outlet of the hydraulic pump (3) is connected to the high pressure hydraulic accumulator (6) of the serial hybrid hydraulic system (4).
    Type: Application
    Filed: August 2, 2007
    Publication date: June 24, 2010
    Inventor: Galin Raychinov
  • Publication number: 20100146964
    Abstract: A torque transmission device includes a first shaft is coaxially borne relative to a second shaft via at least one roller bearing. An adjusting device adjusts the amount of torque transmitted from the first shaft to the second shaft by changing the internal bearing friction experienced by the at least one roller bearing. In one embodiment, the adjusting device causes one ring of the at least one roller bearing to axially displace relative to a second ring of the at least one roller bearing, thereby changing the amount of bearing friction experienced by roller bodies disposed between the first and second rings and thus the amount of torque transmitted from the first shaft to the second shaft.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 17, 2010
    Applicant: Aktiebolaget SKF
    Inventor: Marco Schmitt
  • Patent number: 7730723
    Abstract: An exhaust heat recovery apparatus includes: an exhaust heat recovery unit that produces motive power by recovering thermal energy from exhaust gas discharged from a heat engine; an electric generator that is driven by the exhaust heat recovery unit; a first power transmission-switching device that switches between connection and disconnection between the heat engine and the exhaust heat recovery unit; and a second power transmission-switching device that switches between connection and disconnection between the exhaust heat recovery unit and the electric generator, wherein the heat engine or the electric generator is selectively connected to the exhaust heat recovery unit, depending on the operational status of the heat engine. The exhaust heat recovery apparatus makes it possible to effectively use surplus motive power produced by an exhaust heat recovery unit.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: June 8, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Yaguchi, Daisaku Sawada, Shinichi Mitani
  • Publication number: 20100101224
    Abstract: A waste heat utilization device recovering waste heat produced by an internal combustion engine from a heat medium includes a Rankine cycle circuit including an evaporator, an expander, a condenser and a pump serially arranged in a circulation line along which a combustible working fluid circulates, a casing air-tightly enclosing the Rankine cycle circuit, and an inactivation device for creating a chemically-inactive condition inside the casing.
    Type: Application
    Filed: April 1, 2008
    Publication date: April 29, 2010
    Inventors: Junichiro Kasuya, Yasuaki Kanou