Detects Constituents While Excluding Components (e.g., Noise) Patents (Class 600/336)
-
Patent number: 12138020Abstract: An apparatus and method for detecting a bio-signal feature are provided. The apparatus according to one aspect may include: a bio-signal acquirer configured to acquire a bio-signal; and a processor configured to generate an envelope signal of the bio-signal, and detect at least one feature of the bio-signal based on a difference between the envelope signal and the bio-signal.Type: GrantFiled: January 9, 2023Date of Patent: November 12, 2024Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventor: Dae Geun Jang
-
Patent number: 12089961Abstract: The present invention provides a signal quality detection method for an ear-chip physiological measurement device. The signal quality detection method includes receiving a sensing signal from the ear-clip physiological measurement device; filtering the sensing signal to generate a pre-processed signal; calculating a physiological index according to the pre-processed signal; and calculating a similarity of a red light alternating current (AC) component and an infrared light AC component of the pre-processed signal and a plurality of correlation coefficients of the red light AC component, and generating a reliability index of the physiological index accordingly. The reliability index indicates one of a plurality of signal qualities.Type: GrantFiled: January 10, 2021Date of Patent: September 17, 2024Assignee: Wistron CorporationInventors: Hsuan-Tsung Chang, Kuo-Ting Huang, Ching-An Cho, Hao-Gong Chou
-
Patent number: 12074244Abstract: An integrated sensor package for an electronic device may include a matrix material defining a body structure of the integrated sensor package, a light emitting diode at least partially encapsulated in the matrix material, a photodiode at least partially encapsulated in the matrix material and configured to detect light emitted by the light emitting diode and reflected by an object external to the integrated sensor package, a via structure at least partially encapsulated in the matrix material, a permanent magnet at least partially encapsulated in the matrix material, a first conductive member on a first side of the integrated sensor package and conductively coupling the light emitting diode to a first end of the via structure, and a second conductive member on a second side of the integrated sensor package opposite the first side and conductively coupled to a second end of the via structure.Type: GrantFiled: September 13, 2021Date of Patent: August 27, 2024Assignee: Apple Inc.Inventors: Saijin Liu, Tongbi T. Jiang, Saahil Mehra
-
Patent number: 11971303Abstract: The present invention belongs to the field of optical technology, disclosing a quadrilateral common-path time-modulated interferometric spectral imaging device and method. The present invention sets up a moving mirror scanning mechanism in a quadrilateral common path interferometer for generating optical path differences that vary with time, so that the quadrilateral common-path time-modulated interferometric spectral imaging device operates in the staring observation mode. The invention can make the quadrilateral common-path time-modulated interferometric spectral imaging device not only retain the advantages of common optical path spectroscopic technology, but also obtain high spectral resolution.Type: GrantFiled: May 18, 2023Date of Patent: April 30, 2024Assignee: WUHAN UNIVERSITYInventor: Ruyi Wei
-
Patent number: 11864921Abstract: The melanin bias reducing pulse oximeter system reduces melanin interference when obtaining pulse oximetry readings for individuals with higher skin concentrations of melanin. The system incorporates optics reducing the melanin bias through hardware and software designed using extensive testing, via a proprietary testing method. The physical pulse oximeter includes different mechanical designs, for example, finger clip, ring, and bracelet design for enhanced usage, accuracy, and comfort for those unable to wear traditional pulse oximeters. The user interface includes built-in UI, external and portable UI, bedside monitoring, and connection to patient monitoring systems, via wired and/or wireless means. Further systems include those with both melanin bias reducing pulse oximetry and heart telemetry in the same device, via either a wired or wireless compact waterproof system to be used for continuous monitoring including blood oxygen saturation as a 5th vital sign.Type: GrantFiled: August 8, 2022Date of Patent: January 9, 2024Assignee: JMAD CREATIONS, LLCInventors: Jonathan M. Maderic, Samantha Rose Elduff, Jacob Martin Joyce
-
Patent number: 11864923Abstract: The melanin bias reducing pulse oximeter system reduces melanin interference when obtaining pulse oximetry readings for individuals with higher skin concentrations of melanin. The system incorporates optics reducing the melanin bias through hardware and software designed using extensive testing, via a proprietary testing method. The physical pulse oximeter includes different mechanical designs, for example, finger clip, ring, and bracelet design for enhanced usage, accuracy, and comfort for those unable to wear traditional pulse oximeters. The user interface includes built-in UI, external and portable UI, bedside monitoring, and connection to patient monitoring systems, via wired and/or wireless means. Further systems include those with both melanin bias reducing pulse oximetry and heart telemetry in the same device, via either a wired or wireless compact waterproof system to be used for continuous monitoring including blood oxygen saturation as a 5th vital sign.Type: GrantFiled: December 22, 2022Date of Patent: January 9, 2024Assignee: JMAD CREATIONS, LLCInventors: Jonathan M. Maderic, Samantha Rose Elduff, Jacob Martin Joyce
-
Patent number: 11806150Abstract: The present disclosure relates to a wearable device with a bridge portion and systems/methods relating to the device. Preferred embodiments may include two flexible wings and a bridge connecting the two wings. In some embodiments, the upper surface of the bridge can be non-adhesive and uncoupled to the flexible wing such that the flexible wing can be decoupled from the bridge when the adhesive is adhered to the surface of a user. The bridge can be narrower in some portions, and extend around the housing of the monitor. The bridge can extend beneath the housing and bisect the two flexible wings.Type: GrantFiled: February 27, 2023Date of Patent: November 7, 2023Assignee: iRhythm Technologies, Inc.Inventors: Jeffrey Joseph Abercrombie, II, Genaro Sebastian Sepulveda, Shena Hae Park, Ryan James Wensley, James Kihyun Lee, Thomas Burnell Reeve, III
-
Patent number: 11540779Abstract: A bio-information measuring apparatus bio-information measuring method are provided. The bio-information measuring apparatus includes: a pulse wave obtainer configured to obtain a pulse wave signal, and a processor configured to correct a feature of the obtained pulse wave signal based on a variation in an amplitude of the obtained pulse wave signal, and to measure bio-information based on the corrected feature.Type: GrantFiled: July 24, 2018Date of Patent: January 3, 2023Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Seung Woo Noh, Yunseo Ku, Ui Kun Kwon, Youn Ho Kim, Chang Soon Park, Seung Keun Yoon, Dae Geun Jang
-
Patent number: 11534088Abstract: An optical measuring apparatus includes first and second light-emitting elements that emit light and a controller. Upon detection of the presence of a body by light emitted from the first light-emitting element, the controller performs control so that the second light-emitting element will emit light with an amount for measuring the body.Type: GrantFiled: June 8, 2018Date of Patent: December 27, 2022Assignee: FUJIFILM Business Innovation Corp.Inventors: Tsutomu Otsuka, Manabu Akamatsu, Kazuhiro Sakai
-
Patent number: 11426090Abstract: The present disclosure provides a vital sign measuring device and method that may measure a heart rate signal of a living body in a motion state. The method comprises detecting two different signals, using an adaptive noise removal algorithm for removing noise from the two signals, and obtaining a more accurate heat rate signal after a certain operation.Type: GrantFiled: September 27, 2016Date of Patent: August 30, 2022Inventor: Xin Qi
-
Patent number: 11348268Abstract: A system includes a neural network implemented by one or more computers, in which the neural network includes an image depth prediction neural network and a camera motion estimation neural network. The neural network is configured to receive a sequence of images. The neural network is configured to process each image in the sequence of images using the image depth prediction neural network to generate, for each image, a respective depth output that characterizes a depth of the image, and to process a subset of images in the sequence of images using the camera motion estimation neural network to generate a camera motion output that characterizes the motion of a camera between the images in the subset. The image depth prediction neural network and the camera motion estimation neural network have been jointly trained using an unsupervised learning technique.Type: GrantFiled: September 3, 2020Date of Patent: May 31, 2022Assignee: Google LLCInventors: Reza Mahjourian, Martin Wicke, Anelia Angelova
-
Patent number: 11311237Abstract: In some embodiments, a system comprises a wearable member configured to receive first energy, generate first signals, select a first subset of the time series data, determine a standard deviation indicating a quality at a low percentile of values associated with first windows of the time series data and a high percentile of values associated with the first windows of the time series data, the signal assessment threshold being including at least the values of the lower percentile, receive second energy, generate second signals containing second time series data from the second energy, select a second subset of the time series data to assess, compare all or part of the second signals to the signal assessment threshold, and if all or part of the second signals include the second time series data that is within the values of the lower percentile, then remove the second signals from further processing.Type: GrantFiled: January 28, 2020Date of Patent: April 26, 2022Inventors: Elad Ferber, Andrew Joseph DeKelaita, Patrick Edward Landreman
-
Patent number: 11219391Abstract: A pulse oximeter may reduce power consumption in the absence of overriding conditions. Various sampling mechanisms may be used individually or in combination. Various parameters may be monitored to trigger or override a reduced power consumption state. In this manner, a pulse oximeter can lower power consumption without sacrificing performance during, for example, high noise conditions or oxygen desaturations.Type: GrantFiled: October 29, 2018Date of Patent: January 11, 2022Assignee: MASIMO CORPORATIONInventor: Ammar Al-Ali
-
Patent number: 11202582Abstract: The present invention relates to a device (10), system (1) and method (200) for use in blood oxygen saturation measurement of a subject.Type: GrantFiled: August 7, 2017Date of Patent: December 21, 2021Assignee: Koninklijke Philips N.V.Inventors: Willem Verkruijsse, Simone Cornelia Maria Anna Ordelman, Cristian Nicolae Presura, Rick Bezemer, Calina Ciuhu
-
Patent number: 10980485Abstract: A measuring apparatus as an aspect of the present invention includes: a first signal acquirer that acquires a pulse wave signal of a living body; a second signal acquirer that acquires a body motion signal of the living body; a frequency analyzer that converts the pulse wave signal and the body motion signal to a frequency domain to generate frequency domain signals, and estimates a frequency of a pulse wave of the living body on the basis of the frequency domain signals; and a time domain analyzer that calculates biological information about the living body on the basis of the frequency.Type: GrantFiled: September 14, 2017Date of Patent: April 20, 2021Assignee: Kabushiki Kaisha ToshibaInventors: Yasuhiro Kanishima, Takashi Sudo
-
Patent number: 10945618Abstract: Methods and apparatus for monitoring a subject are described. A monitoring device configured to be attached to a body of a subject includes a sensor that is configured to detect and/or measure physiological information from the subject and at least one motion sensor configured to detect and/or measure subject motion information. The physiological sensor and motion sensor are in communication with a processor that is configured to receive and analyze signals produced by the physiological sensor and motion sensor. The processor is configured to process motion sensor signals to identify an activity characteristic of the subject.Type: GrantFiled: March 15, 2018Date of Patent: March 16, 2021Assignee: Valencell, Inc.Inventors: Michael Edward Aumer, Steven Francis LeBoeuf
-
Patent number: 10898122Abstract: A system for measuring and monitoring physiologically relevant motion of a subject includes at least a motion sensor to measure movement of the subject and produce a series of movement data representing the movement of the subject over a period of time. The system also includes at least a biometric sensor to simultaneously measure biometrics of the subject and produce a series of biometric values of the subject over the period of time. The system is configured to determine a noise-to-signal ratio for the series of movement data as a function of biometric intervals in the series of biometric values and identify at least a portion of the series of movement data as corresponding to a physiologically relevant biorhythm. The system can be used to diagnose and monitor a disease or disorder, including a neurological disorder or a traumatic brain injury.Type: GrantFiled: June 8, 2017Date of Patent: January 26, 2021Assignee: Rutgers, The State University of New JerseyInventor: Elizabeth B. Torres
-
Patent number: 10881310Abstract: Aspects of the present disclosure are directed toward devices, apparatus, and methods for interfacing a PPG apparatus with the skin surface of a patient and sensing artifacts due to surface motion attributable to contact-based surface motion at or near where the apparatus in contact with the skin surface of the patient. The devices, apparatus, and methods include circuitry that contacts the skin surface of the patient, illuminates tissue at the surface, and senses a pulse photoplethysmography (PPG) signal of the patient in response thereto. Further, the circuitry senses artifacts due to surface motion, and responds to the sensed PPG signal by processing the sensed PPG signal relative to the sensed artifacts to produce a version of the sensed PPG signal that is indicative local blood volume and composition of the patient, and filtered to suppress noise therein due to the contact-based surface motion.Type: GrantFiled: August 23, 2013Date of Patent: January 5, 2021Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventor: Laurent B. Giovangrandi
-
Patent number: 10810752Abstract: A system includes a neural network implemented by one or more computers, in which the neural network includes an image depth prediction neural network and a camera motion estimation neural network. The neural network is configured to receive a sequence of images. The neural network is configured to process each image in the sequence of images using the image depth prediction neural network to generate, for each image, a respective depth output that characterizes a depth of the image, and to process a subset of images in the sequence of images using the camera motion estimation neural network to generate a camera motion output that characterizes the motion of a camera between the images in the subset. The image depth prediction neural network and the camera motion estimation neural network have been jointly trained using an unsupervised learning technique.Type: GrantFiled: April 29, 2020Date of Patent: October 20, 2020Assignee: Google LLCInventors: Anelia Angelova, Martin Wicke, Reza Mahjourian
-
Patent number: 10743773Abstract: A computing device includes a thermal map generator (142) that generates a thermal map for image data voxels or pixels representing a volume or region of interest of a subject based on thermometry image data, which includes voxels or pixels indicating a change in a temperature in the volume or region of interest, and a predetermined change in value to temperature lookup table (144) and a display (145) that visually presents the thermal map in connection with image data of the volume of interest. A method includes generating a thermal map for image data voxels or pixels representing a volume or region of interest of a subject based on thermometry image data, which includes voxels or pixels indicating a change in a temperature in the volume or region of interest, and a predetermined change in voxel or pixel value to temperature lookup table.Type: GrantFiled: April 26, 2013Date of Patent: August 18, 2020Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Nadine Abi-Jaoudeh, Ming Li, Samuel Kadoury, Ankur Kapoor, Nicolaas Jan Noordhoek, Alessandro Guido Radaelli, Bart Carelsen, Bradford Johns Wood
-
Patent number: 10674921Abstract: Device for measuring blood pressure hemodynamically in blood vessels at one or more body locations comprising light source; at least three sensors including an array of at least three optical sensors, for receiving light and for obtaining a signal over time comprising temporal per pixel information for at least two wavelengths of light, and corresponding to a flow of blood within a blood vessel over time; a processing unit configured to receive the signal and generate a continuous dynamic blood pressure reading by using the temporal per pixel information for the at least two wavelengths of light to produce heart rate signals from the blood flow, and by applying a modified Windkessel model on the signal such that the blood pressure also depends on a spatial temporal pressure resistance function over time that depends on a body location of the blood flow over time, the pressure resistance function representing elastance/stiffness.Type: GrantFiled: January 3, 2017Date of Patent: June 9, 2020Assignee: CNOGA MEDICAL LTD.Inventor: Yosef Segman
-
Patent number: 10568525Abstract: In one embodiment, a method for creating a blood oxygen saturation (SpO2) value, the method comprises receiving one or more photoplethysmography (PPG) signals for SpO2 detection from one or more PPG sensors; receiving one or more PPG signals for characterizing a heart rate from the one or more PPG sensors; using the one or more PPG signals for SpO2 detection, forming one or more SpO2 datasets wherein the SpO2 datasets respectively comprise one or more noise components; removing the one or more noise components from the one or more SpO2 datasets that are inconsistent with a feature of the one or more PPG signals characterizing the heart rate to produce one or more filtered SpO2 datasets; and using the one or more filtered SpO2 datasets, creating and storing the SpO2.Type: GrantFiled: December 12, 2016Date of Patent: February 25, 2020Assignee: Fitbit, Inc.Inventors: Anjian Wu, Chris H. Sarantos, Peter W. Richards, Shelten Gee Jao Yuen
-
Patent number: 10524720Abstract: A biosensor includes an optical sensor circuit that emits light directed at skin tissue of a patient at a plurality of wavelengths. A first and second spectral response of light reflected from the tissue is obtained around a first wavelength in a UV range and a second wavelength in an IR range. A measurement of a substance in blood flow is then determined from the spectral responses. A risk of a health condition is obtained using the measurement. The health condition may include one or more of hyperglycemia, diabetes or hypoglycemia.Type: GrantFiled: April 20, 2018Date of Patent: January 7, 2020Assignee: SANMINA CORPORATIONInventor: Robert Steven Newberry
-
Patent number: 10444067Abstract: An optical sensing apparatus including a light sensor, a plurality of light-emitting devices, and a controller is provided. The light sensor is disposed on a substrate. The light sensor senses a light reflection signal in a sensing area of the optical sensing apparatus. The light-emitting devices are disposed on the substrate and around the light sensor. The light-emitting devices provide an optical signal to be transmitted into the human tissue. Then, the optical signal is reflected by the human tissue to generate the light reflection signal. The controller determines whether the position of the human tissue has been changed in the sensing area. The controller drives at least one light-emitting device of the light-emitting devices and adjusts the light intensity thereof to provide the appropriate optical signal. Besides, a measuring method of the optical sensing apparatus is proposed.Type: GrantFiled: December 29, 2014Date of Patent: October 15, 2019Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Chia-Hao Hsu, Chun-Te Chuang, Chih-Jen Chen, Yu-Tang Shen
-
Patent number: 10314499Abstract: A device for monitoring heart rate or blood oxygen level during exercise is disclosed having sensors and emitters, wherein the sensors are used to monitor transmission from each of the emitters in turn. This provides a possibility that a smaller device can be provided since less sensors and emitters can be used while obtaining more number of observations. In some embodiments, the repeated use of sensors with different emitters introduces redundancy into the device so that the device is more robust and may function even in the event that one or two of the emitters and sensors have broken down.Type: GrantFiled: July 22, 2014Date of Patent: June 11, 2019Assignee: WELL BEING DIGITAL LIMITEDInventors: Ming Yip Wallace Wong, Chor Tin Ma
-
Patent number: 10258267Abstract: Systems, methods, and devices of the various embodiments provide a pulse oximeter capable of taking blood oxygen readings based on readings from an accelerometer. The various embodiments may provide an electronic patch including a pulse oximeter and accelerometer connected to a processor, wherein the processor is configured with processor executable instructions to control the operation of the pulse oximeter based at least in part on data received from the accelerometer. In various embodiments the electronic patch may further include a coin cell battery, or other low power source, that may power the pulse oximeter.Type: GrantFiled: July 16, 2015Date of Patent: April 16, 2019Assignee: CAPSULE TECHNOLOGIES, INC.Inventors: Robert Scott Ballam, Robert Bruce Ganton
-
Patent number: 10117590Abstract: An embodiment of the disclosure provides a method for measuring change in blood volume using a transcutaneous measurement system applied to a patient's skin. The method involves placing a sensor in contact with the skin of a patient, where the sensor includes a light emitter and a photodetector. An intensity of light emanating from the light emitter is set and an initial intensity of light received at the photodetector is determined, where the light received at the photodetector has traveled through the patient's tissue. A later determination is then made of the intensity of the light received at the photodetector. A change in the blood volume is determined based on the intensity of the light emanating from the light emitter, the initial intensity of light received at the photodetector and the final intensity of light received at the photodetector.Type: GrantFiled: June 22, 2016Date of Patent: November 6, 2018Assignee: Fresenius Medical Care Holdings, Inc.Inventors: Louis L. Barrett, David W. Peterson, Peter Kotanko
-
Patent number: 10045702Abstract: The present invention relates to a device (12) for obtaining a vital sign of a subject (14), comprising an interface (22) for receiving a set of image frames (24) of a subject (14), a signal extraction unit (26) for extracting a photoplethysmographic (PPG) signal of the subject (14) from said set of image frames (24), a signal evaluation unit (28) for determining a feature of said PPG signal indicative of the information content of the extracted PPG signal with respect to a desired vital sign of the subject (14), a processing unit (30) for determining a binning configuration based on the determined feature of the extracted PPG signal, said binning configuration being provided for controlling binning of image pixels of an image frame; and a vital signs determination unit (32) for determining vital sign information from the extracted PPG signal.Type: GrantFiled: September 28, 2014Date of Patent: August 14, 2018Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Vincent Jeanne, Hendrikus Petrus Maria Sterken
-
Patent number: 9974468Abstract: Systems and methods provided relate to patient sensors and/or patient monitors that recognize and/or identify a patient with physiological signals obtained from the sensor. A scalogram may be produced by applying a wavelet transform for the physiological signals obtained from the sensor. The scalogram may be a three dimensional model (having time, scale, and magnitude) from which certain physiological information may be obtained. For example, unique human physiological characteristics, also known as biometrics, may be determined from the scalograms. More specifically, monitoring the changes in the morphology of the photoplethysmographic (PPG) waveform transforms (e.g., scalogram) may determine patient-specific information that may be used to recognize and/or identify the patient, and that may be used to determine a proper or improper association between the patient and the wireless sensor and/or patient monitor.Type: GrantFiled: March 15, 2013Date of Patent: May 22, 2018Assignee: Covidien LPInventors: Paul S. Addison, James N. Watson
-
Patent number: 9904761Abstract: The present invention covers the integration and utility of accelerometer features into a clinical analysis system. For example, measurement of dynamic acceleration and orientation of a blood-testing instrument with respect to Earth's gravitational field may be used to determine reliability of a test procedure and optionally to provide corrective elements thereof.Type: GrantFiled: December 6, 2013Date of Patent: February 27, 2018Assignee: Abbot Point of Care Inc.Inventors: Gary Vandersleen, Pierre Emeric, Paul Wasserman, Narendra Soman, Graham Davis
-
Patent number: 9877650Abstract: Systems and method for monitoring patient physiological data are presented herein. In one embodiment, a physiological sensor and a mobile computing device can be connected via a cable or cables, and a processing board can be connected between the sensor and the mobile computing device to conduct advanced signal processing on the data received from the sensor before the data is transmitted for display on the mobile computing device.Type: GrantFiled: September 20, 2013Date of Patent: January 30, 2018Assignee: MASIMO CORPORATIONInventors: Bilal Muhsin, Sujin Hwang, Benjamin C. Triman
-
Patent number: 9839397Abstract: A method and apparatus for determining a heart rate of a biological body are disclosed. In the method and apparatus, light having a first wavelength and light having a second wavelength are emitted at the biological body. The first wavelength is associated with a first absorption coefficient for blood components and the second wavelength is associated with a second absorption coefficient for the blood components that is less than the first absorption coefficient. A first reflected signal is captured as a result of the light having the first wavelength being reflected from the biological body and a second reflected signal is captured as a result of the light having the second wavelength being reflected from the biological body. A heart rate signal is obtained based on the first and second reflected signals. A heart rate of the biological body is determined based on the heart rate signal.Type: GrantFiled: December 14, 2015Date of Patent: December 12, 2017Assignee: STMicroelectronics S.r.l.Inventor: Alessandro Gumiero
-
Patent number: 9743838Abstract: Some embodiments relate to a device, method, and/or computer-readable medium storing processor-executable process steps to remove a component of a signal corresponding to ambient light in a photoplethysmographic sensor device, including capturing a first detected light signal representing an ambient light at a first time, causing a light emitter to generate a source light signal driven at a first level, capturing a second detected light signal representing the source light signal after interacting with a user's tissue plus the first detected light signal, generating a first output signal based on the second detected light signal adjusted by the first detected light signal, causing the light emitter to generate a source light signal driven at a second level, capturing a third detected light signal representing the source light signal driven at the second level after interacting with the user's skin plus the first detected light signal, and generating a second output signal based on the third detected light sigType: GrantFiled: October 2, 2015Date of Patent: August 29, 2017Assignee: FITBIT, INC.Inventor: Peter W. Richards
-
Patent number: 9706952Abstract: A system for heart performance characterization and abnormality detection detects peaks and at least one of, a valley and a baseline comprising a substantially zero voltage level, of received signal data representing oxygen content of blood in a patient vessel over multiple heart beat cycles. The signal processor determines signal parameters including at least one of, (a) a signal amplitude magnitude between a maximum peak and minimum valley, of the received signal data, (b) a signal amplitude magnitude between a maximum peak and a baseline, of the received signal data and (c) a signal amplitude magnitude between a second highest maximum peak and minimum valley, of the received signal data. The system compares a determined signal parameter or value derived from the determined signal parameter, with a threshold value and generates an alert message associated with the threshold, in response to the comparison.Type: GrantFiled: September 19, 2011Date of Patent: July 18, 2017Assignee: Siemens Healthcare GmbHInventor: Hongxuan Zhang
-
Patent number: 9402571Abstract: Disclosed herein is a framework for facilitating biological tissue function analysis. In accordance with one aspect, saturation of hemoglobin with oxygen (SPO2) signal data is synchronized with respiration signal data. One or more waveform parameters may be generated based on the synchronized SPO2 signal data and the respiration signal data. One or more respiration-SPO2 parameters may then be determined based on the one or more waveform parameters and used to characterize the biological tissue function.Type: GrantFiled: February 26, 2014Date of Patent: August 2, 2016Assignee: Siemens Medical Solutions USA, Inc.Inventor: Hongxuan Zhang
-
Patent number: 9289167Abstract: A method and an apparatus to analyze two measured signals that are modeled as containing desired and undesired portions such as noise, FM and AM modulation. Coefficients relate the two signals according to a model defined in accordance with the present invention. In one embodiment, a transformation is used to evaluate a ratio of the two measured signals in order to find appropriate coefficients. The measured signals are then fed into a signal scrubber which uses the coefficients to remove the unwanted portions. The signal scrubbing is performed in either the time domain or in the frequency domain. The method and apparatus are particularly advantageous to blood oximetry and pulserate measurements. In another embodiment, an estimate of the pulserate is obtained by applying a set of rules to a spectral transform of the scrubbed signal. In another embodiment, an estimate of the pulserate is obtained by transforming the scrubbed signal from a first spectral domain into a second spectral domain.Type: GrantFiled: December 5, 2012Date of Patent: March 22, 2016Assignee: MASIMO CORPORATIONInventors: Mohamed K. Diab, Rex J. McCarthy
-
Patent number: 9216001Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates optical characteristics of light transmitted into a patient to ascertain physiological signals, such as pulsatile changes in general blood volume proximate a light detector module. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.Type: GrantFiled: October 30, 2012Date of Patent: December 22, 2015Assignee: PHYSIO-CONTROL, INC.Inventors: James M. Owen, Cynthia P. Jayne, William E. Crone
-
Patent number: 9211095Abstract: A patient monitor including a physiological measurement logic engine receives physiological data from a physiological sensor. The logic engine abstracts one or more features of the physiological data and determines a category for the abstracted feature. The logic engine further encodes the category of each of the one or more features and determines an action to perform based on the encoded categories.Type: GrantFiled: March 20, 2012Date of Patent: December 15, 2015Assignee: MASIMO CORPORATIONInventor: Ammar Al-Ali
-
Patent number: 9135631Abstract: Methods, apparatuses and systems directed to sponsored story generation from an photo upload in an organic activity stream in a social networking site. A social networking system may apply computer image algorithms to detect image objects in user-uploaded images and videos, and promote them as sponsored stories.Type: GrantFiled: August 18, 2011Date of Patent: September 15, 2015Assignee: Facebook, Inc.Inventors: Justin Mitchell, Samuel Odio, David Harry Garcia
-
Publication number: 20150148637Abstract: Systems, methods and devices for reducing noise in health monitoring including monitoring systems, methods and/or devices receiving a health signal and/or having at least one electrode or sensor for health monitoring.Type: ApplicationFiled: December 9, 2014Publication date: May 28, 2015Applicant: RHYTHM DIAGNOSTICS SYSTEMS, INC.Inventors: George Stefan Golda, Daniel Van Zandt Moyer, Mark P. Marriott, Sam Eletr, Bruce O'Neil
-
Publication number: 20150094552Abstract: Systems, methods and devices for reducing noise in health monitoring including monitoring systems, methods and/or devices receiving a health signal and/or having at least one electrode or sensor for health monitoring.Type: ApplicationFiled: December 9, 2014Publication date: April 2, 2015Applicant: RHYTHM DIAGNOSTICS SYSTEMS, INC.Inventors: George Stefan Golda, Daniel Van Zandt Moyer, Mark P. Marriott, Sam Eletr, Bruce O'Neil
-
Patent number: 8957777Abstract: A method for establishing a connection between a first electronic computing device and a second electronic computing device includes moving the second electronic computing device so that it is proximal to the first electronic computing device. When the first electronic computing device detects the proximity of the first electronic computing device relative to the second electronic computing device, a radio on the first electronic device is set to a connectable and discoverable state. A wireless connection is automatically established between the first electronic computing device and the second electronic computing device. Data is transmitted between the first electronic computing device and the second electronic computing device.Type: GrantFiled: June 30, 2010Date of Patent: February 17, 2015Assignee: Welch Allyn, Inc.Inventors: Steven D. Baker, Braxton L. Lathrop
-
Patent number: 8954127Abstract: According to embodiments, techniques for estimating scalogram energy values in a wedge region of a scalogram are disclosed. A pulse oximetry system including a sensor or probe may be used to receive a photoplethysmograph (PPG) signal from a patient or subject. A scalogram, corresponding to the obtained PPG signal, may be determined. In an arrangement, energy values in the wedge region of the scalogram may be estimated by calculating a set of estimation locations in the wedge region and estimating scalogram energy values at each location. In an arrangement, scalogram energy values may be estimated based on an estimation scheme and by combining scalogram values in a vicinity region. In an arrangement, the vicinity region may include energy values in a resolved region of the scalogram and previously estimated energy values in the wedge region of the scalogram. In an arrangement, one or more signal parameters may be determined based on the resolved and estimated values of the scalogram.Type: GrantFiled: December 22, 2012Date of Patent: February 10, 2015Assignee: Nellcor Puritan Bennett IrelandInventors: James Nicholas Watson, Paul Stanley Addison, Braddon M. Van Slyke
-
Patent number: 8948835Abstract: The disclosure includes pulse oximetry systems and methods for determining point-by-point saturation values by encoding photoplethysmographs in the complex domain and processing the complex signals. The systems filter motion artifacts and other noise using a variety of techniques, including statistical analysis such as correlation, or phase filtering.Type: GrantFiled: May 17, 2013Date of Patent: February 3, 2015Assignee: Cercacor Laboratories, Inc.Inventor: Mohamed K. Diab
-
Patent number: 8942777Abstract: The present invention involves a method and an apparatus for analyzing measured signals, including the determination of a measurement of correlation in the measured signals during a calculation of a physiological parameter of a monitored patient. Use of this invention is described in particular detail with respect to blood oximetry measurements.Type: GrantFiled: May 25, 2007Date of Patent: January 27, 2015Assignee: Masimo CorporationInventors: Mohamed K. Diab, Esmaiel Kiani-Azarbayjany, Walter M. Weber
-
Patent number: 8929963Abstract: The present disclosure relates generally to patient monitoring systems and, more particularly, to wireless patient sensors and patient monitors. In an embodiment, a patient sensor device includes an emitter configured to emit light into a tissue of a patient as well as a detector configured to detect the light from the tissue of the patient and produce a corresponding electrical signal. The patient sensor also includes signal processing circuitry configured to receive and convert the electrical signal of the detector into detector signal data. The patient sensor also includes a wireless module communicatively coupled to a patient monitor and configured to transmit a physiological parameter value, the detector signal data, or both, to the patient monitor. The patient sensor also includes a processor configured to determine whether the patient sensor or the patient monitor should calculate the physiological parameter value based, at least in part, on the detector signal data.Type: GrantFiled: July 14, 2011Date of Patent: January 6, 2015Assignee: Covidien LPInventor: Daniel Lisogurski
-
Patent number: 8923945Abstract: Methods and systems are provided for transmitting and receiving photon density waves to and from tissue, and processing the received waves using wavelet transforms to identify non-physiological signal components and/or identify physiological conditions. A pulse oximeter may receive the photon density waves from the tissue to generate a signal having phase and amplitude information. A phase signal may be proportional to a scattering by total particles in the tissue, and an amplitude signal may correlate to an absorption by certain particles, providing information on a ratio of different particles in the tissue. Processing the phase and amplitude signals with wavelet transforms may enable an analysis of signals with respect to time, frequency, and magnitude, and may produce various physiological data.Type: GrantFiled: September 13, 2010Date of Patent: December 30, 2014Assignee: Covidien LPInventor: Edward M. McKenna
-
Patent number: 8909312Abstract: A signal acquisition circuit detects a wanted signal in a composite signal containing the wanted signal and an unwanted signal, where the highest frequency in the unwanted signal is higher than the highest frequency in the wanted signal. A sensor captures the composite signal and an analog-to-digital converter samples and converts the composite signal to digital format, and a filter subtracts the unwanted signal from the composite signal. The sampled signal contains a first component containing the sum of the wanted signal and the unwanted signal sampled at a first rate at least equal to the Nyquist rate for the wanted signal but less than a second rate that is at least equal to the Nyquist rate for the unwanted signal, and a second component containing the unwanted signal sampled at the second rate.Type: GrantFiled: May 17, 2011Date of Patent: December 9, 2014Assignee: Microsemi CorporationInventors: Didier Serge Sagan, Reghu Kunnath Rajan
-
Publication number: 20140343385Abstract: Methods and systems for determining a physiological parameter in the presence of correlated artifact are provided. One method includes receiving two waveforms corresponding to two different wavelengths of light from a patient. Each of the two waveforms includes a correlated artifact. The method also includes combining the two waveforms to form a plurality of weighted difference waveforms, wherein the plurality of weighted difference waveforms vary from one another by a value of a multiplier. The method further includes identifying one of the weighted difference waveforms from the plurality of weighted difference waveforms using a characteristic of one or more of the plurality of weighted difference waveforms and determining a characteristic of the correlated artifact based at least in part on the identified weighted difference waveform.Type: ApplicationFiled: August 4, 2014Publication date: November 20, 2014Inventor: Clark R. Baker, JR.
-
Patent number: 8892180Abstract: A transform for determining a physiological measurement is disclosed. The transform determines a basis function index from a physiological signal obtained through a physiological sensor. A basis function waveform is generated based on basis function index. The basis function waveform is then used to determine an optimized basis function waveform. The optimized basis function waveform is used to calculate a physiological measurement.Type: GrantFiled: July 29, 2013Date of Patent: November 18, 2014Assignee: Masimo CorporationInventors: Walter M. Weber, Ammar Al-Ali, Lorenzo Cazzoli