Electrode Composition Patents (Class 600/395)
  • Patent number: 11779254
    Abstract: A wearable electronic device is provided. The electronic device includes a plurality of electrodes configured to measure a biometric signal, an offset correction circuit, at least one processor operatively connected with the plurality of electrodes and the offset correction circuit, and a memory operatively connected with the at least one processor, wherein the memory stores instructions executed to enable the at least one processor to measure an offset between voltages via at least two electrodes among the plurality of electrodes and correct the offset via the offset correction circuit to allow the measured offset to fall within a threshold range.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: October 10, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyunjun Jung, Gunwoo Jin
  • Patent number: 11759628
    Abstract: A tumor treating system for the delivery of tumor treating electric fields to a patient including a control device, a field generator, and electrodes. The control device has a frequency range, a firing configuration and a firing sequence. The field generator generates electrical signals within the frequency range. The electrodes are placed in optimized locations on the patient. Each electrode includes a ceramic layer, a metalized layer and a circuit element. The metalized layer is coupled to the ceramic layer on one side of the ceramic layer. The metalized layer has an outer surface facing away from the ceramic layer. The circuit element is coupled to the metalized layer. The coupling of the circuit element to the metalized layer is across substantially all of the outer surface of the metalized layer. The circuit element conducts the electrical signals to the metalized layer as directed by the control device.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: September 19, 2023
    Assignee: LifeBridge Innovations, PBC
    Inventors: Martin A. Pribula, Cory Michael Gloe, Jacob Edward Gefroh, Andrew David Dahl, John Richard Haley, Peter F. Travers, Richard Rotondo, Nathaniel R. Travers, Ken Watkins
  • Patent number: 11409070
    Abstract: Embodiments of the disclosure include a suspension assembly having a support member, a moving member movably coupled to the support member, and shape metal alloy wires coupled between the support and moving members by attachment structures. According to various embodiments, the attachment structures include at least one of: an adhesive disposed proximate to a side of the attachment structures and between the attachment structures.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: August 9, 2022
    Assignee: Hutchinson Technology Incorporated
    Inventors: Bryan J. Scheele, Dean E. Myers, Michael W. Davis, Erich W. Bierbrauer, Mark A. Miller
  • Patent number: 11393584
    Abstract: A wearable ambulatory external defibrillator system includes a garment configured to be worn by a patient and including electrocardiogram (ECG) sensing electrodes integrated into the garment, therapy delivery electrodes configured to deliver a therapy, and a wearable medical device controller including at least one processor. The at least one processor is configured to issue a first instance of an alarm in response to an indication of a cardiac abnormality and/or an event concerning one or more components of the system. The first instance of the alarm includes a visual alarm. The at least one processor is further configured to determine that no response to the first instance of the alarm was received within a target response time, adapt at least one characteristic of the alarm, and issue a second instance of the alarm having the at least one adapted characteristic. The second instance of the alarm includes an auditory alarm.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: July 19, 2022
    Assignee: ZOLL Medical Corporation
    Inventors: Thomas E. Kaib, Shane S. Volpe, John G. Clark
  • Patent number: 11364076
    Abstract: A combination patient return pad and surgical smoke evacuator includes a return electrode configured to attach to a surface and a suction tube for drawing surgical smoke from a surgical site.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: June 21, 2022
    Assignee: Covidien LP
    Inventors: Daniel Joseph, Tony Moua
  • Patent number: 11269047
    Abstract: A tracking method is disclosed. The method may include displaying visual content on a screen. A base station may be stationary with respect to the screen while the visual content is being displayed. In contrast, one or more objects may move with respect to the screen while the visual content is being displayed. The one or more objects may be tracked so that the movement thereof may be used to alter the visual content. Such tracking may involve the base station and the one or more objects sending and/or receiving one or more ultrasonic pulses. The tracked object also determines information using an inertial sensor assembly that receives a synchronization signal coordinated with the one or more ultrasonic pulses.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: March 8, 2022
    Inventors: Sebastian Riccardi, Richard J. Przbyla, David A. Horsley, Mitchell H. Kline
  • Patent number: 10993765
    Abstract: A method is disclosed including immersing electrodes disposed on a distal end of an electrosurgical wand, the immersing in a cavity defined within walls of a first material, the cavity comprising a conductive fluid different than the first material, and the electrodes comprising a first electrode and a second electrode. The method further includes applying a voltage across the first electrode and the second electrode, the first and second electrode spaced apart on the distal end of the wand such that the conductive fluid resides between the first and second electrodes. The method further includes measuring an impedance of the conductive fluid between the first and second electrodes; and determining temperature of the conductive fluid based on the measured impedance. The method further includes forming plasma proximate to an active electrode distinct from the first and second electrode, the plasma created based on voltage applied to the active electrode.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: May 4, 2021
    Assignee: Smith & Nephew, Inc.
    Inventor: Daniel B. Masse
  • Patent number: 10589106
    Abstract: An electronic module for a system for neural applications comprising a housing and a filtering element that form a closed, miniaturized Faraday cage a corresponding lead, active lead can, a controller and systems.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: March 17, 2020
    Assignee: Medtronic Bakken Research Center B.V.
    Inventors: Jeroen Jacob Arnold Tol, Edward Willem Albert Young, Egbertus Johannes Maria Bakker
  • Patent number: 10234306
    Abstract: A method and apparatus is disclosed for synchronizing a magnetic field transmitter and receiver to resolve phase ambiguity so that phase information for the position and orientation of the receiver may be derived and maintained. A synchronization process allows for the phase information to be initially derived based upon known information from other sources, and then tracked from one measurement to the next. In another embodiment, information from an inertial measurement unit (IMU) is used to determine the phase information or to correct for errors in the determination from receiver data of the position and orientation of a receiver, and prevent such errors from accumulating as the receiver moves away from a transmitter.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: March 19, 2019
    Assignee: Sixense Enterprises Inc.
    Inventors: Owen Walter Pedrotti, Oded Y. Zur
  • Patent number: 10111597
    Abstract: Aspects of the present disclosure are directed to electrochemical approaches for synthesis of platinum-iridium alloys with selected platinum-iridium ratio content and subsequently predetermined mechanical properties and electrochemical impedance properties. Such can provide a simple and cost-effective process for preparing these electrodes, as compared to conventional thin film processing techniques. A three-electrode electrochemical electrodeposition system is described including an electrochemical cell with a working electrode on which the electrodeposited film is deposited, a counter electrode to complete the electrochemical circuit and a reference electrode to measure and control surface potential. Mixed layers of platinum atoms and iridium atoms can be deposited from electrolyte solution onto the working electrode surface to create an electrically conductive surface with material properties related to the composition of the as-deposited film.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: October 30, 2018
    Assignee: University of Southern California
    Inventors: Artin Petrossians, Artak Arakelian, James D. Weiland, Florian B. Mansfeld, John J. Whalen, III
  • Patent number: 9913973
    Abstract: The present invention generally relates to the use of electrodes with human and animal subjects. More particularly, the present invention relates to electrical contacts which are applied to the surface of a subject for the purpose of delivering transranial direct current stimulation (TDCS).
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: March 13, 2018
    Assignee: Yani Skincare, LLC
    Inventor: Jamal S. Yanaki
  • Patent number: 9583903
    Abstract: A waterproof adapter that connects strip light to a standard power cord, such that the power cord can then be routed to a power source. The adapter has an internal vertical barrier to separate power and ground leads, and gripping structures that help to retain the strip light within the adapter. A gasket or gaskets within the adapter seal the adapter from the elements.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: February 28, 2017
    Assignee: Elemental LED, Inc.
    Inventors: Wesley Buck, James Stillman
  • Patent number: 9314615
    Abstract: A flexible circuit electrode array with more than one layer of metal traces comprising: a polymer base layer; more than one layer of metal traces, separated by polymer layers, deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; and a polymer top layer deposited on said polymer base layer and said metal traces. Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, or cortical stimulation many purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 19, 2016
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Jordan Matthew Neysmith, Neil Hamilton Talbot, James Singleton Little, Brian V. Mech, Robert J. Greenberg, Qingfang Yao, Dao Min Zhou
  • Publication number: 20150148647
    Abstract: An analyte sensor and a method for making the analyte sensor are disclosed. In one aspect, the analyte sensor includes a crosslinked, hydrophilic copolymer in contact with a surface of an electrode, and an analyte sensing component embedded within the crosslinked, hydrophilic copolymer. The method of making the analyte sensor includes depositing a precursor mixture containing monomers and an analyte sensing component onto an electrode, exposing the deposited precursor mixture to a controlled environment for a specified period of time, and photopolymerizing the deposited exposed precursor mixture into a copolymer layer in contact with a surface of the electrode. Exposing the deposited precursor mixture to a controlled environment can increase the sensitivity of the sensor by reducing the thickness of the copolymer layer and/or by causing the analyte sensitive component within the copolymer layer to have a non-uniform concentration within the layer.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: Google Inc.
    Inventors: Zenghe Liu, Huanfen Yao
  • Publication number: 20150005608
    Abstract: Systems and apparatus for monitoring physiological electrical activity of an individual include a first electrode unit for receiving a first signal indicative of electrical activity at a first location on a body of the individual and a second electrode unit for receiving a second signal indicative of electrical activity at a second location on the body of the individual. Each of the first and second electrode units may be operated in a field-sensing mode wherein the electrode unit is placed on or in proximity to the individual's skin. The first and second electrode units comprise a capacitive sensor element, and the capacitive sensor element of each of the electrode units comprising an electrodynamic sensor which is sensitive to electromagnetic waves; and an antenna comprising an electrically conductive radiating element for receiving electromagnetic waves.
    Type: Application
    Filed: August 13, 2014
    Publication date: January 1, 2015
    Inventors: Thomas Crannell EVANS, Efraim GAVRILOVICH, Rasvan Catalin MIHAI, Ion ISBASESCU
  • Publication number: 20150005610
    Abstract: It is recognized that, because of its unique properties, graphene can serve as an interface with biological cells that communicate by an electrical impulse, or action potential. Responding to a sensed signal can be accomplished by coupling a graphene sensor to a low power digital electronic switch that is activatable by the sensed low power electrical signals. It is further recognized that low power devices such as tunneling diodes and TFETs are suitable for use in such biological applications in conjunction with graphene sensors. While tunneling diodes can be used in diagnostic applications, TFETs, which are three-terminal devices, further permit controlling the voltage on one cell according to signals received by other cells. Thus, by the use of a biological sensor system that includes graphene nanowire sensors coupled to a TFET, charge can be redistributed among different biological cells, potentially with therapeutic effects.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventor: John H. Zhang
  • Patent number: 8906211
    Abstract: Embodiments of the invention include analyte-responsive compositions and electrochemical analyte sensors having a sensing layer that includes an analyte-responsive enzyme and a cationic polymer. Also provided are systems and methods of making the sensors and using the electrochemical analyte sensors in analyte monitoring.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: December 9, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Benjamin J. Feldman, Tianmei Ouyang, Zenghe Liu
  • Publication number: 20140357975
    Abstract: A coated electromyography needle including an anti-microbial, electrically insulative coating applied to non-tip portion of an electrode of the electromyography needle.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventor: Bruce Nesbitt
  • Publication number: 20140357974
    Abstract: A field effect nano-pillar transistor has a pillar shaped gate element incorporating a biomimitec portion that provides various advantages over prior art devices. The small size of the nano-pillar transistor allows for advantageous insertion into cellular membranes, and the biomimitec character of the gate element operates as an advantageous interface for sensing small amplitude voltages such as transmembrane cell potentials. The nano-pillar transistor can be used in various embodiments to stimulate cells, to measure cell response, or to perform a combination of both actions.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventors: Aditya RAJAGOPAL, Axel SCHERER, Michael D. HENRY, Sameer WALAVALKAR, Thomas A. TOMBRELLO, Andrew P. HOMYK
  • Patent number: 8903473
    Abstract: A radiopaque marker for inclusion within an implantable medical device (IMD) may comprise one or more radiopaque articles selected from a predetermined set of radiopaque articles. The one or more radiopaque articles may be carried by an object formed of or including, a desiccant. The predetermined set of radiopaque articles may undergo a single qualification process that approves the use of any combination of one or more of the articles as a radiopaque marker within an IMD. This allows a potentially-limitless number of markers to be made available based on a single qualification process. The radiopaque marker may serve to provide information such as the make, model, and feature set of the device.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: December 2, 2014
    Assignee: Medtronic, Inc.
    Inventors: Charles R. Rogers, David D. Differding, John M. Gray, Michael J. Baade, Katherine J. Bach, Steven D. Byland, Steven T. Deininger
  • Patent number: 8897888
    Abstract: An active implantable medical device (AIMD). The AIMD comprises: a knitted electrode assembly comprising: at least one biocompatible, electrically non-conductive filament arranged in substantially parallel rows each stitched to an adjacent row, and at least one biocompatible, electrically conductive filament having a first end intertwined with a first row of the at least one non-conductive filament, and a second end intertwined with a second row of the at least one non-conductive filament, wherein the first and second rows are spaced from one another.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: November 25, 2014
    Assignee: Saluda Medical Pty Limited
    Inventors: John L. Parker, David Robinson
  • Patent number: 8874184
    Abstract: MR conditional needle and surface electrode assemblies. The surface electrode utilizes a disc or cone-shaped structure with a bore with a concave bottom surface for receiving a conductive gel and an insulated wire with a connector for an EEG. The needle electrode assembly utilizes a cylindrical-shaped structure and is constructed of an MR conditional material having a needle and an insulated lead wire structure with a connector for an EEG.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: October 28, 2014
    Assignee: PMT Corporation
    Inventors: Alfred A. Iversen, Benjamin J. Osa, Wade Fredrickson, Joseph Copley, Eric Caille
  • Publication number: 20140316231
    Abstract: An ECG electrode is provided which can be placed within the direct path of x-rays during an imaging scan without inducing an x-ray induced erroneous current. The ECG electrode has a support element with a conductive post on one side electrically connected to a conductive plate on the other side. A dissipative anti-static element in or near the ECG electrode dissipates static electricity which forms on the surfaces of the insulating components in the ECG electrode. The dissipative anti-static element may be, for example, a slightly conductive property of the bulk material used to make the insulating material, or a conductive coating added to the insulating material surfaces. The dissipative anti-static element may also be incorporated in the clamp attached to the conductive post. In a further embodiment, an ion blower aimed at the ECG electrode may be used to remove static electricity.
    Type: Application
    Filed: November 13, 2012
    Publication date: October 23, 2014
    Inventors: Randall Peter Luhta, Allan Joseph Peusek, Brandon Keller Richards, James Thomas Richards, David Dennis Salk
  • Publication number: 20140303470
    Abstract: Conductive polymer fibers 10, in which a conductor 12 containing a conductive polymer impregnates and/or adheres to base fibers 11, and the aforementioned conductive polymer is PEDOT-PSS.
    Type: Application
    Filed: November 16, 2012
    Publication date: October 9, 2014
    Applicant: NIPPON TELEGRAPH AND TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Shingo Tsukada, Hiroshi Nakashima, Akiyoshi Shimada, Koji Sumitomo, Keiichi Torimitsu
  • Patent number: 8818483
    Abstract: A method of making an electrical stimulation lead includes coupling electrodes to a carrier. The carrier defines at least one set of perforations. The method further includes coupling the electrodes to conductors; forming a flexible paddle sheath over the carrier leaving a stimulation surface of each of the plurality of electrodes exposed; and, after forming the flexible paddle sheath, breaking the carrier along at least one of the at least one set of perforations.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: August 26, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Daniel James Romero
  • Publication number: 20140221809
    Abstract: A lead assembly includes a ring component having mechanical coupling features, and at least one polymer component mechanically coupled with the mechanical coupling features of the ring component. Elongate tubing is disposed over the polymer component and is secured with the polymer component.
    Type: Application
    Filed: March 24, 2014
    Publication date: August 7, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Paul E. Zarembo, Elliott Rodriguez Roman
  • Publication number: 20140213883
    Abstract: The invention provides an electrode and associated electrode holder that are used for physiological measurements, e.g. measurements of signals that can be processed to generate ECG and TBI waveforms. The electrode and electrode holder connect to each other using a magnetic interface. In embodiments, for example, the magnetic interface includes oppositely polled magnets integrated in both the electrode and electrode holder. The magnets are typically rare earth magnets coated with a thin, electrically conductive metal film. This way, when the magnets come in contact with each other, the metal films touch to form both a mechanical and electrical connection. Thus the magnetic interface can replace conventional mechanisms used to connect rivet-based electrodes to leads, which are typically used to secure electrodes for physiological measurements.
    Type: Application
    Filed: January 29, 2014
    Publication date: July 31, 2014
    Applicant: Perminova Inc.
    Inventors: Matt Banet, Susan Pede, Marshal Dhillon, Drew Terry
  • Publication number: 20140213882
    Abstract: The electrode structure for measuring a bio-signal and an apparatus for measuring an electrocardiogram using the same are disclosed. The electrode structure for measuring a bio-signal, comprises an electrode pad to measure bio-signals based on capacitive coupling between the electrode pad and human skin; an absorption layer formed at one side of the electrode pad; and a preamplifier which is electrically connected with the electrode pad and filters noise from the bio-signals from the electrode pad and amplifies and outputs the signals. Thus, the initial noise stabilization time can be reduced, and stable electrocardiogram signals can be obtained quickly without noises.
    Type: Application
    Filed: March 27, 2013
    Publication date: July 31, 2014
    Applicant: Pukyong National University Industry-University Cooperation Foundation
    Inventor: Pukyong National University Industry-University Cooperation Foundation
  • Publication number: 20140187901
    Abstract: An electrode system include a flowable and cohesive surface contact element comprising a hydrophilic polymer swollen with an electrolyte fluid, the contact element having a Q? ratio of at least 5 as defined by the equation Q ? = W W W G wherein WG is the dry weight of the hydrophilic polymer and WW is weight of water in the sample after absorption of the electrolyte fluid comprising water and an electrolyte salt. The surface contact element can consist essentially of the hydrophilic polymer swollen by the electrolyte fluid. Another electrode system includes a contact element including a crosslinked hydrophilic polymer matrix. The contact element has a Q? ratio of at least 5 as defined by the equation Q ? = W W W G . The contact elements can also have a Q? ratio of at least 6, at least 7, at least 10 or even at least 11.
    Type: Application
    Filed: March 4, 2014
    Publication date: July 3, 2014
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: XINYAN CUI, NICOLAS ALEXANDER ALBA, MINGUI SUN
  • Publication number: 20140163350
    Abstract: A silicon nano-crystal biosensor includes a flexible substrate transformed depending on a shape of a body organ, a light emitting device disposed on the flexible substrate and emitting light, and a light detector opposite to the light emitting device on the flexible substrate. The light detector absorbs the emitted light. A length of the flexible substrate is substantially equal to or greater than a radius of curvature of the body organ.
    Type: Application
    Filed: July 12, 2013
    Publication date: June 12, 2014
    Inventors: Chul Huh, Sang Hyeob Kim, Byoung-Jun Park, Eun Hye Jang, Myung-Ae Chung
  • Patent number: 8739397
    Abstract: A material 2 is used as the fabric of a shirt, and formed by knitting a blended yarn of polyester and urethane. The material 2 is flattened by a calendering process. A conductive ink is printed on an insulating layer serving as an underlayer to form wiring layers L1 to L10. The conductive ink contains carbon nanotubes. Consequently, wiring layers that ensure a sufficient conductivity can be obtained.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: June 3, 2014
    Assignees: Nihon Kohden Corporation, Asakura Senpu Co., Ltd.
    Inventors: Shinya Nagata, Nobumichi Iwasaki
  • Publication number: 20140142410
    Abstract: Described herein are nerve stimulating electrodes for use in evoked potential electrophysiological recording procedures and associated methods for use thereof. In one embodiment, a stimulating electrode assembly is provided that includes a non-conductive substrate, a first electrode mounted on the non-conductive substrate, and a second electrode mounted on the non-conductive substrate. The first and second electrodes are spaced apart along a longitudinal length of the assembly and extend along a lateral width of the assembly such that the electrode can be positioned at a plurality of laterally offsetting positions relative to a nerve extending longitudinally between the first and second electrodes while remaining in contact with the nerve.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 22, 2014
    Applicant: STROHL MEDICAL
    Inventors: Michael K. Erb, Clair L. Strohl
  • Publication number: 20140135608
    Abstract: A textile electrode device, for detection of electrophysiological signals from the skin of a subject, having: a substrate designed to be positioned on the skin; at least a first detection electrode arranged on the substrate; and at least a first conducting element, carried by the substrate and electrically connected to the first detection electrode. The first detection electrode has a plurality of textile fibres, including conductive fibres and, optionally, fibres of a super-absorbent material, arranged in a direction substantially orthogonal to an upper surface of the substrate and reciprocally in contact with each other, so as to ensure uniform electrical contact over the entire first detection electrode. In particular, the first detection electrode is obtained by means of the flocking technique.
    Type: Application
    Filed: April 2, 2012
    Publication date: May 15, 2014
    Applicant: POLITECNICO DI TORINO
    Inventors: Marco Gazzoni, Roberto Merletti
  • Patent number: 8682409
    Abstract: MR conditional needle and surface electrode assemblies. The surface electrode utilizes a disc or cone-shaped structure with a bore with a concave bottom surface for receiving a conductive gel and an insulated wire with a connector for an EEG. The needle electrode assembly utilizes a cylindrical-shaped structure and is constructed of an MR conditional material having a needle and an insulated lead wire structure with a connector for an EEG.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: March 25, 2014
    Assignee: PMT Corporation
    Inventors: Alfred A. Iversen, Benjamin J. Osa, Wade Fredrickson, Joseph Copley, Eric Caillé
  • Publication number: 20140066740
    Abstract: The multifunctional polymer nano-composite sensor system for detecting various biosignals, such as EKG, includes (1) a polymer nano-composite sensor material that is flexible, elastic, soft, and conductive, (2) a sensor material fabricated into a desired shape or form, and (3) a signal capturing interface for collecting, transmitting and processing the signals.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 6, 2014
    Applicant: Cleveland Medical Polymers, Inc.
    Inventors: Prasad Taranekar, Arunkumar Venkatesan, Nishant Negandhi, Asis Banerjie
  • Patent number: 8666471
    Abstract: Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: March 4, 2014
    Assignees: The Board of Trustees of the University of Illinois, Northwestern University, Trustees of Tufts College, The Trustees of the University of Pennsylvania
    Inventors: John A. Rogers, Dae-Hyeong Kim, Fiorenzo Omenetto, David L. Kaplan, Brian Litt, Jonathan Viventi, Yonggang Huang, Jason Amsden
  • Publication number: 20140027314
    Abstract: A binding enhancing apparatus according to the present invention includes: a first electrode; a second electrode spaced from the first electrode; a channel unit electrically connected at a portion with the first electrode and electrically connected at another portion with the second electrode; a stimuli source electrically connected with the channel unit and applying an electric stimulus; and probes connected to the channel unit and complementarily bound with target materials to sense.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 30, 2014
    Inventors: Young June PARK, Jun Myung WOO, Seok Hyang KIM, Jin Hong AHN
  • Patent number: 8636884
    Abstract: Embodiments of the invention include analyte-responsive compositions and electrochemical analyte sensors having a sensing layer that includes an analyte-responsive enzyme and a cationic polymer. Also provided are systems and methods of making the sensors and using the electrochemical analyte sensors in analyte monitoring.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: January 28, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Benjamin J. Feldman, Tianmei Ouyang, Zenghe Liu
  • Patent number: 8548557
    Abstract: The present disclosure provides electrodes that possess hydrogels for contacting skin. In embodiments, an electrode of the present disclosure may include a substrate and a conductive composition on at least a portion of a surface of the substrate, the conductive composition including at least one hydrogel and at least one component capable of providing either a cooling or warming sensation upon contact with tissue of a patient. Methods for forming these hydrogels and electrodes are also provided.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: October 1, 2013
    Assignee: Covidien LP
    Inventors: Erick Garstka, Kathleen Tremblay
  • Patent number: 8541020
    Abstract: The invention aims at providing a polymeric hydrogel which is highly resistant to water washing. The aim is attained by a polymeric hydrogel comprising a polymeric matrix formed by copolymerizing a nonionic polymerizable monomer with a crosslinking monomer, characterized in that the polymeric matrix contains a wetting agent and water, at least 50 wt % of the wetting agent is constituted of a polymer prepared by polymerizing a polyhydric alcohol monomer component containing a trihydric or more alcohol monomer, and the polymer is a water-soluble one which has an average molecular weight of 150 to 4000 and satisfies the relationship: {(number of ether groups in the polymer+number of hydroxyl groups in the polymer)/number of carbon atoms present in the polymer}?1/3.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: September 24, 2013
    Assignee: Seikisui Plastics Co., Ltd.
    Inventors: Shuichi Sasahara, Kazuhiro Yosikawa, Shinichi Wakamatsu, Takahiko Fujita
  • Publication number: 20130245416
    Abstract: A method is disclosed for fabricating a low-impedance nanoporous metal multiple electrode array for measuring electrophysiology activity. A patterned photoresist is applied to a substrate, in which the patterned photoresist corresponds to a pattern of the nanoporous metal multiple electrode array. A metal alloy including a sacrificial alloying element is deposited in the pattern of the nanoporous metal electrode array. The patterned photoresist is removed to expose the metal alloy as deposited. At least part of the sacrificial alloying element is removed from the metal alloy to create nanoporous metal electrode tips thereby forming the nanoporous metal multiple electrode array. The resultant nanoporous metal multiple electrode array has improved impedance characteristics in comparison to conventional multiple electrode arrays.
    Type: Application
    Filed: September 13, 2011
    Publication date: September 19, 2013
    Inventors: Martin L. Yarmush, Erkin Seker, Yevgeny Berdichevsky
  • Publication number: 20130237795
    Abstract: An electromyography needle electrode having an inner core and an outer elongated cannula surrounding the inner core, wherein the inner core includes tungsten. The inner core may comprise at least 99.95 percent tungsten. The outer elongated cannula forms an outer conductive electrode and the inner core forms an inner conductive electrode. At least one insulating layer may be formed between the outer elongated cannula and the inner core. The impedance of the anode and cathode may be matched more closely.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: CAREFUSION 2200, INC.
    Inventor: John Christopher CARR
  • Patent number: 8524311
    Abstract: Polymer materials make useful materials as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision. Regardless of which polymer is used, the basic construction method is the same. A layer of polymer is laid down. A layer of metal is applied to the polymer and patterned to create electrodes and leads for those electrodes. A second layer of polymer is applied over the metal layer and patterned to leave openings for the electrodes, or openings are created later by means such as laser ablation. Hence the array and its supply cable are formed of a single body.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: September 3, 2013
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith, Jerry Ok, Brian V. Mech
  • Publication number: 20130211226
    Abstract: An electrode set is disclosed that has two separable parts including an assembled base with printed circuit board basement, biasing member and top cover and an electrode. The basement and top cover may be made by metal or conductive material.
    Type: Application
    Filed: January 31, 2013
    Publication date: August 15, 2013
    Applicant: NEUROSKY, INC.
    Inventor: NEUROSKY, INC.
  • Publication number: 20130102872
    Abstract: The present invention relates to an electrode device for measuring impedance within a human body, and to an apparatus using the same for measuring impedance within a human body and performing acupuncture treatment using the measured impedance, which can automatically and precisely determine locations of meridians within the human body, form a three-dimensional image of the determined locations, and enable acupuncture treatment to be performed precisely. The electrode device for measuring impedance within a human body comprises: a cylindrical housing member having a guide rod mounted to an open side thereof; a cylindrical electrode member configured to be pressed against the skin of a human body and moved back and forth through the open side along the guide rod; and a resilient member interposed between the cylindrical electrode member and the cylindrical housing member to resiliently move the cylindrical electrode member back and forth along the guide rod.
    Type: Application
    Filed: May 22, 2012
    Publication date: April 25, 2013
    Inventor: Moon Seo Park
  • Patent number: 8419982
    Abstract: Conductive compositions for use with medical electrodes are provided. The conductive compositions utilize a surfactant capable of both reducing the surface tension of the conductive composition as well as increasing the viscosity of the conductive composition. Methods of preparing these conductive compositions are also provided.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: April 16, 2013
    Assignee: Covidien LP
    Inventors: Warren W. Copp-Howland, David Selvitelli
  • Patent number: 8412304
    Abstract: A method of adhering a protective layer applied to a substrate region of an implantable medical device (IMD) to form a covered substrate region. The method includes obtaining the IMD, depositing an intermediate layer on a portion of the substrate region of the IMD such that the intermediate layer binds to the portion of the substrate region to create a modified substrate region, and depositing the protective layer after depositing the intermediate layer onto the intermediate layer and adhering the protective layer to the intermediate layer. In an embodiment of the present invention, this method enhances the sealing characteristics of the protective layer by, for example, reducing the likelihood of delamination of the protective layer from the IMD relative to IMDs prepared by certain other methods.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: April 2, 2013
    Assignee: Cochlear Limited
    Inventors: Sule Kara, Martin Svehla, Edmond Capcelea
  • Patent number: 8406841
    Abstract: A dry electrode for biomedical signal measuring sensor includes a conductive sponge, a conductive fabric, and a thin metal film. The conductive fabric covers the whole conductive sponge, and the thin metal film is disposed on one face of the conductive fabric opposite to the conductive sponge. When using the dry electrode in measuring biomedical signal, it is not necessary to apply a conductive gel on a patient's skin, at where the biomedical signal is to be measured. Without the need of applying the conductive gel, the dry electrode is readily for measuring biomedical signal at any time and can be conveniently used in measuring signal over a long period of time without the problem of an attenuated signal due to gradually becoming dried conductive gel.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: March 26, 2013
    Assignee: National Chiao Tung University
    Inventors: Chin-Teng Lin, Lun-De Liao
  • Publication number: 20130066186
    Abstract: The present disclosure provides electrodes that possess components capable of indicating to an end-user when the electrode is in need of replacement. The electrode includes a substrate and a conductive composition on at least a portion of a surface of the substrate. In embodiments, the conductive composition includes at least one hydrogel and at least one component that precipitates from the hydrogel after repeated use of the electrode, thereby providing an indication to replace the electrode. In other embodiments, the electrodes include a hydrogel in combination with a pH indicator which changes its color or opacity upon repeated use of the electrode, thereby indicating an appropriate time for changing or replacing the electrode.
    Type: Application
    Filed: August 23, 2012
    Publication date: March 14, 2013
    Applicant: TYCO HEALTHCARE GROUP LP
    Inventors: Warren W. Copp, Erick Garstka, Christopher J. Hyatt, Kathleen Tremblay, Peter F. Meyer, Scott R. Coggins, Lee C. Burnes, David M. Selvitelli
  • Patent number: 8386055
    Abstract: An implantable lead for a medical device with an isolated contact connection for connecting a conductor to a contact reduces the opportunity for conductor material to migrate to a contact or into a patient. The implantable lead comprises a lead body having a proximal end and a distal end, at least one conductor, at least one contact carried on the proximal end, at least one contact carried on the distal end, at least one coupling. The lead has an exterior surface. The conductor is contained in the lead body and extends from the lead proximal end to the distal end. The conductor is electrically insulated. The contact carried on the proximal end is electrically connected to the conductor. The coupling has a conductor coupling and a contact coupling. The conductor coupling is placed over the conductor and attached to the conductor. The contact coupling exits the lead body and has a weld to connect the contact coupling to the contact.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: February 26, 2013
    Assignee: Medtronic, Inc.
    Inventor: Mary Lee Cole