Catheter Patents (Class 600/466)
  • Patent number: 11109836
    Abstract: Embodiments of the present invention allow more full characterization of a stenotic lesion by measuring both pressure drop across the stenotic lesion and the size of the vessel lumen adjacent the stenotic lesion, both with sensors delivered intravascularly to the stenotic lesion site. In preferred embodiments, the size (e.g., inner diameter, cross-sectional profile) of the vessel lumen adjacent the stenotic lesion can be measured via one or more intravascular ultrasound transducers. In preferred embodiments, the intravascular ultrasound transducer(s) can be delivered to the site of the stenotic lesion with the same delivery device that carries the pressure transducer(s).
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: September 7, 2021
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Jason F. Hiltner, Kendall R. Waters, Thomas C. Moore, Robert Zelenka
  • Patent number: 11040173
    Abstract: Various embodiments of the present disclosure can include a catheter. The catheter can include an elongate shaft that extends along a longitudinal axis. The elongate shaft can include a shaft proximal end and a shaft distal end. A magnetically permeable shaft strip can be disposed along a particular shaft length of the elongate shaft. The magnetically permeable shaft strip can longitudinally extend along the elongate shaft.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: June 22, 2021
    Assignee: St. Jude Medical International Holding S.à r.l.
    Inventors: Ryan Kenneth Buesseler, Troy T. Tegg
  • Patent number: 10980972
    Abstract: A catheter having a catheter shaft and a tip. The catheter shaft includes an inner layer, a first reinforcing layer disposed around an outer periphery of the inner layer, an intermediate layer, a second reinforcing layer disposed around an outer periphery of the intermediate layer, and an outer layer that covers the second reinforcing layer. The tip includes a proximal end portion that extends in an axial direction of the catheter and is joined to at least the intermediate layer and the outer layer, between the first reinforcing layer and the second reinforcing layer. The proximal end portion increases the joining strength between the intermediate layer and the tip and the joining strength between the outer layer and the tip. As a result, it is possible to prevent the tip from easily detaching from the catheter shaft.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: April 20, 2021
    Assignee: ASAHI INTECC CO., LTD.
    Inventor: Hirotomo Shimizu
  • Patent number: 10980558
    Abstract: There is provided an endoscope and a treatment tool-standing mechanism that allows a distal-end-portion body to be reduced in size while ensuring good operability of a standing base. In a distal-end-portion body of an endoscope, a standing lever is connected to a standing base through a rotating shaft, and the standing base is rotated by the rotation of the standing lever about the rotating shaft that is caused by the push and pull of an operation wire. The standing lever includes a first arm portion that extends from the rotating shaft and a second arm portion that extends in a direction different from the direction of the first arm portion, and a useless space formed on the proximal end side of the distal-end-portion body is reduced depending on the shape of the standing lever.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: April 20, 2021
    Assignee: FUJIFILM Corporation
    Inventor: Tomohiro Ohki
  • Patent number: 10960176
    Abstract: A multi-catheter infusion system and method for the localized delivery of medications while minimally affecting patient mobility for an extended period of time. The multi-catheter infusion system includes a cannula and a plurality of catheters. The cannula includes a first end for connecting to a drug delivery system and a second end for connecting to the plurality of catheters. The plurality of catheters are in fluid communication with the cannula for delivering a drug to a target area of a patient. Each catheter includes a multi-orifice distal end.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: March 30, 2021
    Assignee: Hospital for Special Surgery
    Inventor: Stavros Memtsoudis
  • Patent number: 10902585
    Abstract: A method for analyzing computed tomography angiography (CTA) data is provided. The method includes receiving, at a processor, three-dimensional (3D) CTA data. The method also includes automatically, via the processor, detecting objects of interest within the 3D CTA data. The method further includes generating, via the processor, a CTA image volume that only includes the objects of interest.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: January 26, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Brian Edward Nett
  • Patent number: 10849500
    Abstract: Various embodiments are directed toward a system and method for determining an orientation of an implantable medical device (“IMD”) and automatically adjusting a subcutaneous electrocardiogram (“ECG”) signal based on the determined orientation. The method can further include tagging generated SECG signals so as to identify whether a SECG signal had been generated from an implantable monitoring device with its first electrode being superior or inferior relative to its second electrode. Further embodiments can include automatically adjusting the orientation of the generated SECG signals to match that of a preferred orientation.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: December 1, 2020
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Hannes Kraetschmer, Jon Peterson
  • Patent number: 10806338
    Abstract: An endoscope includes an insertion part that includes a distal end and a proximal end, and a distal-end-portion body that is provided on a distal end side of the insertion part and formed with a treatment tool outlet from which a treatment tool is led out. The distal-end-portion body includes an observation window, a nozzle that ejects washing water to the observation window, a standing base that is disposed in a standing base-housing portion adjacent to the treatment tool outlet and is rotationally moved between a standing position and a falling position, and a guide wall that is disposed at a position facing the nozzle with the observation window interposed therebetween and guides the washing water to the standing base-housing portion. Washing water, which has been ejected from the nozzle and has passed the observation window, is guided to the standing base-housing portion by the guide wall.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: October 20, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Yasuhiko Morimoto, Shozo Iyama
  • Patent number: 10660567
    Abstract: An apparatus, system, and method are disclosed for mapping the location of a nerve. The apparatus includes at least one stimulation module, a stimulation detection module, a distance module, and a mapping module. The stimulation module stimulates a nerve with an electrical stimulation current from at least one stimulation electrode. A stimulation detection module detects a muscle reaction resulting from stimulation of the nerve by the at least one stimulation electrode. The distance module uses information from the at least one stimulation electrode and from the stimulation detection module to calculate a distance between the at least one stimulation electrode and the nerve. The mapping module maps a location on the nerve using at least two distances calculated by the distance module and position information of the at least one stimulation electrode for each of the at least two distances calculated.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: May 26, 2020
    Assignee: Cadwell Laboratories, Inc.
    Inventor: John A Cadwell
  • Patent number: 10621720
    Abstract: A computer-implemented method for performing deformable registration between Magnetic Resonance (MR) and Ultrasound (US) images include receiving an MR volume depicting an organ and segmenting the organ from the MR volume to yield a first 3D point representation of the organ in MR coordinates. Additionally, a US volume depicting an organ is received and the organ is segmented from the US volume to yield a second 3D point representation of the organ in US coordinates. Next, a plurality of point correspondences between the first 3D point representation and the second 3D point representation are determined. Then, a biomechanical model is applied to register the MR volume to the US volume. The plurality of point correspondences are used as displacement boundary conditions for the biomechanical model.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: April 14, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Thomas Pheiffer, Ankur Kapoor, Jin-hyeong Park, Ali Kamen
  • Patent number: 10383684
    Abstract: Apparatus and methods are provided for accessing a region within a patient's body and performing a procedure therein that includes a catheter including a tubular member comprising a proximal end, a distal end sized for introduction into a patient's body, an imaging assembly on the distal end, and a substantially transparent expandable member attached to the tubular member distal end such the imaging assembly is disposed within an interior of the expandable member, the imaging assembly imaging through a surface of the expandable member. The tubular member includes a drainage lumen communicating one or more drainage ports on the tubular member distal end proximal to the balloon for aspirating fluid from the patient's body. The catheter may be used to access a pericardial space and an ablation probe may be introduced through the catheter to treat heart tissue while fluid is infused and/or aspirated via the drainage ports.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: August 20, 2019
    Inventors: Randall J. Lee, Stephen A. Leeflang, Christian S. Eversull
  • Patent number: 10363395
    Abstract: The present invention relates to a direction-controllable drug injection catheter. According to the present invention, provided is the catheter extending along a central axis “A” including a drug injection part in which a drug injection channel has been formed; a channel opening and closing means which opens and closes the drug injection channel; and a steering structure which is rotationally asymmetric with respect to the central axis “A” and varies according to a pressure change of the drug injection channel for the purpose of steering.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: July 30, 2019
    Assignee: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Doo Yong Lee, Hye Hyun Han, Yun Jin Gu, Seung Gyu Kang, Myeong Jin Kim, Cheong Jun Kim, Seong Pil Byeon, Young Gi Jung, Su Bon Kim, Hyun Seok Lee, Dong Myoung Lee, Su Hwan Park, Ji Hye Hwang
  • Patent number: 10238299
    Abstract: At least a tip portion of a puncture needle 15 is inserted into a subject. The puncture needle 15 includes a light guide member which guides light from a laser unit 13, and a light emission unit which is provided in the vicinity of the tip portion and emits light guided by the light guide member, and generates a photoacoustic wave caused by light from the light emission unit in the tip portion. A probe 11 detects the photoacoustic wave from the puncture needle 15 in a state where the puncture needle 15 is inserted into the subject. A Photoacoustic image generation unit 25 generates a photoacoustic image based on the detected photoacoustic wave. A Light source control unit 30 controls the amount of light emitted from the light emission unit based on the photoacoustic image.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: March 26, 2019
    Assignee: FUJIFILM Corporation
    Inventor: Dai Murakoshi
  • Patent number: 10194994
    Abstract: A system and method for obtaining an OIS coordinate frame comprising an electronic control unit configured to determine a local 3D electric field loop, create a zero mean version of E(t) over a depolarization interval, compute an ? value at each of a plurality of time intervals, compute an initial estimate of ? from a cross product of E and the ? value for each of the plurality of time intervals, average the initial estimate of ? from each of the plurality of time for a best estimate of ?, determine a plurality of â(?) values and using the corresponding {circumflex over (n)}(?) values, compute a composite match score, and choose at least one best value for â and a best value for {circumflex over (n)}.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: February 5, 2019
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: D. Curtis Deno, Ram K. Balachandran, Stéphane Massé
  • Patent number: 10098616
    Abstract: Disclosed herein is an insertable probe for diagnosis of lesional tissue in real time. The insertable probe includes a guide needle inserted into the human body and having a hollow shape of a predetermined length, a storage connected to the guide needle, a tissue collection portion collecting a predetermined amount of tissue in the human body and moving the collected tissue to the storage through the guide needle, and an inspection unit inspecting the tissue stored in the storage. A method of manufacturing an electrode using the same is also disclosed.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: October 16, 2018
    Assignee: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jong Hyun Lee, Giseok Kang, Jae-Cheon Kim
  • Patent number: 10064598
    Abstract: A method for acoustic tomography within a patient may include generating a focused ultrasonic signal using a transducer is provided; the ultrasonic signal forming a path within the patient. The method includes directing the ultrasonic signal on a spot within the patient; scanning the spot in a predetermined pattern about a volume within the patient; receiving an ultrasonic echo in the transducer; converting the ultrasonic echo into a voltage; selecting a frequency band from the voltage; amplifying the voltage in the selected frequency band with a processing circuit; and generating an image of the volume within the patient structure utilizing the amplified voltage. A method for recanalization of a blood vessel including the above acoustic tomography steps is also provided.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: September 4, 2018
    Assignee: Volcano Corporation
    Inventors: Cheryl Rice, David Sheehan
  • Patent number: 9993614
    Abstract: Various embodiments provide a catheter positioning device with components for controlling actuators of the catheter in multiple axes. A catheter may be attached to a sled member by a modular plate with one or more actuator interfaces that may couple with the actuators of a catheter handle. One or more motors or drives in the sled member may move the actuator interfaces of the modular plate to control one or more actuators on the catheter in different axes. In various embodiments the sled member may have a clam shell design in which two or more sides of the sled member close around the catheter handle. In further embodiments, the sled member may include adjustable faces that can fit different types of modular plates and thereby control actuators on different types of the catheter.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: June 12, 2018
    Assignee: CATHETER PRECISION, INC.
    Inventors: Robert Pacheco, Steve Foley, David Jenkins
  • Patent number: 9848907
    Abstract: A rotational atherectomy system may include a drive shaft, a motor, and a clutch with a threshold torque where the clutch may include a motor plate rotationally connected to the motor, a drive shaft plate rotationally connected to the drive shaft, and a biasing clutch configured to rotationally engage the motor plate and the drive shaft plate, wherein torques less than the threshold torque are transmitted completely between the motor plate and the drive shaft plate, which remain rotationally coupled by static friction, and wherein torques greater than the threshold torque cause the motor plate and the drive shaft plate to rotate relative to one another and cause a residual torque to be transmitted between the motor and the drive shaft, the residual torque being less than the threshold torque and being determined by a kinetic coefficient of friction.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: December 26, 2017
    Assignee: Cardiovascular Systems, Inc.
    Inventors: Joseph Higgins, Jeffrey Allen McBroom
  • Patent number: 9717475
    Abstract: Rotational intravascular ultrasound (IVUS) imaging devices, systems, and methods are provided. Some embodiments are directed to transducer mounting configurations that enable polymer piezoelectric micro-machined ultrasonic transducers (PMUTs) to be used with a Doppler color flow rotational IVUS imaging system. In one embodiment, a rotational intravascular ultrasound (IVUS) device includes: a flexible elongate body; a piezoelectric micromachined ultrasound transducer (PMUT) coupled to a distal portion of the flexible elongate body; and an application-specific integrated circuit (ASIC) coupled to the distal portion of the flexible elongate body. The ASIC is electrically coupled to the PMUT and includes a pulser, an amplifier, a protection circuit, and timing and control circuitry for coordinating operation of the pulser, amplifier, and protection circuit.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: August 1, 2017
    Assignee: Volcano Corporation
    Inventor: Paul Douglas Corl
  • Patent number: 9629654
    Abstract: A thrombus removal apparatus (10) includes a catheter (12) having at its distal end (14) a solenoid coil section (16) within which there is disposed a piercing element (20) made of electromagnetic material. Within the solenoid coil section (16) there is provided a solenoid coil (26) which can be powered to generate an electromagnetic field which causes the piercing element (20) to reciprocate into and out of the coil section (16), in practice to pierce into and fragment a thrombus disposed in a patient's vessel. An aspiration unit may be provided for aspirating thrombus fragments into the assembly (10) for removal from the patient's vasculature. The apparatus (10) is able to remove dense thrombus material from within a patient, which cannot be otherwise removed by means of thrombolytic agents.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: April 25, 2017
    Assignee: Cook Medical Technologies LLC
    Inventor: Torben Peter Andersen
  • Patent number: 9402646
    Abstract: In a method for re-entry from extraluminal space into the central lumen of a vessel, a guidewire is advanced into the extraluminal space of the vessel, and then a directional catheter is advanced over the guidewire through the extraluminal space. Thereafter, the guidewire is removed from the directional catheter, an ultrasound device is placed through the directional catheter, and the ultrasound device is advanced through the extraluminal space into the central lumen and then activated.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: August 2, 2016
    Assignee: FLOWCARDIA, INC.
    Inventor: Henry Nita
  • Patent number: 9367965
    Abstract: The invention relates to systems and methods for three dimensional imaging of tissue. The invention provides systems and methods to provide a representation of tissue from three-dimensional data in the form of a montage of images having an indication of a spatial registration among the images.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: June 14, 2016
    Assignee: VOLCANO CORPORATION
    Inventor: Nathaniel J. Kemp
  • Patent number: 9314222
    Abstract: A method of operating a remote medical navigation system using ultrasound, employs ultrasound imaging from a medical device to supplement or to replace conventional x-ray imaging of the operating region during navigation.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: April 19, 2016
    Assignee: STEREOTAXIS, INC.
    Inventors: Francis M. Creighton, IV, Rogers C. Ritter, Raju R. Viswanathan, Nathan Kastelein, Jeffrey M. Garibaldi, William Flickinger
  • Patent number: 9254119
    Abstract: Disclosed herein is an ultrasound probe which may adjust curvature of an acoustic lens using a shape memory alloy. The ultrasound probe includes an acoustic lens, a focus adjusting unit installed on the acoustic lens and deforming the shape of the acoustic lens to adjust the focus of ultrasonic waves radiated through the acoustic lens, and a current applying unit applying current to the focus adjusting unit to contract or expand the focus adjusting unit.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: February 9, 2016
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventor: Beom Keun Yoo
  • Patent number: 9180043
    Abstract: An apparatus to minimize and/or eliminate the effects associated with reperfusion injury consisting of an external pump, heat exchanger and control unit creating a flow loop whereby blood is moved from the body via a pump, cooled by an external heat exchanger and reintroduced into a specific location, thereby locally cooling the surrounding tissue and inducing localized hypothermia to minimize tissue injury resulting from ischemia and the effects associated with reperfusion injury as an obstruction is removed and normal blood flow is restored and including the ability to locally measure pressure and temperature in the body.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: November 10, 2015
    Assignee: Focal Cool, LLC
    Inventors: Denise R. Merrill, Todd J. Nilsen, Jennifer Ellen Akers, Kyle Stever, Moshe Laifenfeld, Ravi Ramachandran
  • Patent number: 9149257
    Abstract: An interventional medical device is provided that incorporates a forward-directed ultrasound imaging system integrated into a single minimally invasive device. The medical device can be in the form of catheters and interventional devices having a tapered distal tip, particularly those suitable for minimally invasive direct introduction into the human or other mammalian body. The imaging system comprises one or more small ultrasound transducers that can be permanently integrated into the device or integrated into an interchangeable ultrasound transducer that may be inserted into and removed from the device to customize the device for a particular use. An ultrasound system can be provided in the device either alone or in combination with fiber optic imaging to provide a range of forward imaging and therapeutic capabilities of the device for direct access to a target site from the skin via an introducer needle.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: October 6, 2015
    Assignee: Perceptive Navigation LLC
    Inventor: Theodore P. Abraham
  • Patent number: 9084575
    Abstract: An imaging system comprises a catheter having a lumen, a rotatable imaging probe within the catheter lumen including a distal transducer and first and second conductors coupled to the transducer, and a coupler that couples the rotatable first and second conductors to non-rotatable third and fourth conductors, respectively. The coupler includes a rotary capacitive coupler.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: July 21, 2015
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Thomas C. Moore, Robert Zelenka
  • Patent number: 9039626
    Abstract: The present invention provides minimally invasive imaging probe/medical device having a frictional element integrated therewith for reducing non-uniform rotational distortion near the distal end of a medical device, such as an imaging probe which undergoes rotational movement during scanning of surrounding tissue in bodily lumens and cavities.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: May 26, 2015
    Assignee: SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventor: Brian Kent Courtney
  • Patent number: 9005144
    Abstract: An ultrasound medical treatment system includes an end effector insertable into a patient. The end effector includes a tissue-retaining device. The tissue-retaining device includes a first tissue-retaining member having an ultrasound medical-treatment transducer and includes a second tissue-retaining member. The first and second tissue-retaining members are operatively connected together to retain patient tissue between the first and second tissue-retaining members and to release patient tissue so retained. In one example, the second tissue-retaining member has an ultrasound reflector. In the same or a different example, the ultrasound medical-treatment transducer is an ultrasound imaging and medical-treatment transducer.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: April 14, 2015
    Inventors: Michael H. Slayton, Inder Raj Makin, Robert Dunki-Jacobs, Richard C. Pellegrino
  • Publication number: 20150094594
    Abstract: When transesophageal echocardiography is used to obtain a transgastric short axis view of the left ventricle of the heart, the best place to position the transducer is in the fundus of the stomach, aimed up through the left ventricle. The probes disclosed herein facilitate placement of the transducer in the optimum position within the fundus, despite wide variations in the distance between the lower esophageal sphincter and the fundus among different subjects. In one preferred embodiment, the ultrasound probe uses a bending section with a series of vertebrae and stiffening that is more flexible proximally and less flexible distally, which causes the probe to bend relatively sharply at the point where the probe exits the lower esophageal sphincter.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Applicant: Imacor Inc.
    Inventors: Edward Paul Harhen, Robert J. Krupa
  • Patent number: 8996099
    Abstract: A catheter imaging probe for a patient. The probe includes a conduit through with energy is transmitted. The probe includes a first portion through which the conduit extends. The probe includes a second portion which rotates relative to the conduit to redirect the energy from the conduit. A method for imaging a patient. The method includes the steps of inserting a catheter into the patient. There is the step of rotating a second portion of the catheter relative to a conduit extending through a first portion of the catheter, which redirects the energy transmitted through the conduit to the patient and receives the energy reflected back to the second portion from the patient and redirects the reflected energy to the conduit.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: March 31, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Marc D. Feldman, Thomas E. Milner, Shaochen Chen, Jihoon Kim, Li-Hsin Han, Jung-hwan Oh, Lee Ho
  • Patent number: 8989844
    Abstract: The invention concerns an imaging system to monitor at least one surgical instrument in an operative site inside a volume of the body of an animal, comprising: at least one endoscopic camera to obtain endoscopic data on the operative site, at least one ultrasound imaging device to obtain ultrasound data on the operative site, and a processing device to process the endoscopic and ultrasound data. The imaging system further comprising at least three markers intended to be positioned in the operative site, said markers being mobile relative to the instrument, each marker being adapted to be detected both by the endoscopic camera and by the ultrasound imaging device, so as to permit cross-mapping of the endoscopic and ultrasound data by the processing means.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: March 24, 2015
    Assignees: Endocontrol, Universite Joseph Fourier—Grenoble 1
    Inventors: Philippe Cinquin, Pierre Mozer, Sandrine Voros, Jean-Alexandre Long, Josselin Duchateau, Alexandre Moreau-Gaudry, Clement Vidal, Patrick Henri
  • Patent number: 8989849
    Abstract: The present invention relates to a rotating catheter tip for optical coherence tomography based on the use of an optical fiber that does not rotate, that is enclosed in a catheter, which has a tip rotates under the influence of a fluid drive system to redirect light from the fiber to a surrounding vessel and the light reflected or backscattered from the vessel back to the optical fiber.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: March 24, 2015
    Assignee: Board of Regents, the University of Texas System
    Inventors: Thomas E. Milner, Marc D. Feldman, Jung-Hwan Oh, Shaochen Chen, Paul Castella
  • Publication number: 20150065887
    Abstract: An ultrasound probe including a housing, a head part provided on the housing so as to enable expansion and contraction, an array provided in the housing and having one or more transducers, a rotary part provided at a rear surface of the array to rotate the array, a pressing part configured to expand the head part by applying pressure to the head part, and a control part, when the head part is inserted into a target object, configured to allow the array to control the pressing part such that the head part is expanded, and allow the array to be rotated in the expanded head part, by controlling the rotary part, thereby relieving pain involved with insertion of the ultrasound probe.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 5, 2015
    Inventors: Moon Kyu PARK, Jong Sik KIM, Gil Ju JIN, Jeong Un YOON
  • Patent number: 8961425
    Abstract: An intravascular ultrasound probe is disclosed, incorporating features for utilizing an advanced transducer technology on a rotating transducer shaft. In particular, the probe accommodates the transmission of the multitude of signals across the boundary between the rotary and stationary components of the probe required to support an advanced transducer technology. These advanced transducer technologies offer the potential for increased bandwidth, improved beam profiles, better signal to noise ratio, reduced manufacturing costs, advanced tissue characterization algorithms, and other desirable features. Furthermore, the inclusion of electronic components on the spinning side of the probe can be highly advantageous in terms of preserving maximum signal to noise ratio and signal fidelity, along with other performance benefits.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: February 24, 2015
    Assignee: Volcano Corporation
    Inventor: Paul Douglas Corl
  • Patent number: 8936554
    Abstract: The invention relates to a method for ultrasonic imaging of an organ in a patient's body through a part of the patient's respiratory tract, including: arranging an ultrasonic imaging device in or on the patient's body; introducing a flexible catheter carrying at least one inflatable member into the respiratory tract; positioning the inflatable member at a predetermined location in the respiratory tract; filling the inflatable member with an ultrasonic transmission fluid through the flexible catheter; and transmitting ultrasonic waves from the imaging device through the transmission fluid in the inflatable member to the organ to be imaged. The inflatable member is positioned in the respiratory tract by manipulating guide means that are attached to or integrated with the flexible catheter. The invention further relates to an ultrasonic imaging system for carrying out this method and to an assembly means for use in such an ultrasonic imaging system.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: January 20, 2015
    Assignee: Stroke2Prevent B.V.
    Inventor: Arno Nierich
  • Patent number: 8932226
    Abstract: An ultrasound catheter is described herein for insertion into a cavity such as a blood vessel to facilitate imaging within a vasculature. The catheter comprises an elongate flexible shaft, a capacitive microfabricated ultrasonic transducer, and a sonic reflector. The elongate flexible shaft has a proximate end and a distal end. A capacitive microfabricated ultrasonic transducer (cMUT) is mounted to the shaft near the distal end. The reflector is positioned such that a reflective surface redirects ultrasonic waves to and from the transducer. In other embodiments, the catheter comprises a plurality of cMUT elements and operates without the use of reflectors. In further embodiments, integrated circuitry is incorporated into the design.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: January 13, 2015
    Assignee: Volcano Corporation
    Inventors: Norman Hugh Hossack, Blair Walker, Stephen Charles Davies, Donald Stanley Mamayek, John F. Sheridan
  • Patent number: 8932223
    Abstract: A design and a fabrication method for an intravascular imaging and therapeutic catheters for combined ultrasound, photoacoustic, and elasticity imaging and for optical and/or acoustic therapy of hollow organs and diseased blood vessels and tissues are disclosed in the present invention. The invention comprises both a device—optical fiber-based intravascular catheter designs for combined IVUS/IVPA, and elasticity imaging and for acoustic and/or optical therapy—and a method of combined ultrasound, photoacoustic, and elasticity imaging and optical and/or acoustic therapy. The designs of the catheters are based on single-element catheter-based ultrasound transducers or on ultrasound array-based units coupled with optical fiber, fiber bundles or a combination thereof with specially designed light delivery systems. One approach uses the side fire fiber, similar to the one utilized for biomedical optical spectroscopy.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: January 13, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Stanislav Emelianov, Andrei Karpiouk, Bo Wang
  • Patent number: 8934962
    Abstract: Electrophysiology mapping and visualization systems are described herein where such devices may be used to visualize tissue regions as well as map the electrophysiological activity of the tissue. Such a system may include a deployment catheter and an attached hood deployable into an expanded configuration. In use, the imaging hood is placed against or adjacent to a region of tissue to be imaged in a body lumen that is normally filled with an opaque bodily fluid such as blood. A translucent or transparent fluid, such as saline, can be pumped into the imaging hood until the fluid displaces any blood, thereby leaving a clear region of tissue to be imaged via an imaging element in the deployment catheter. A position of the catheter and/or hood may be tracked and the hood may also be used to detect the electrophysiological activity of the visualized tissue for mapping.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: January 13, 2015
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Vahid Saadat, Ruey-Feng Peh, Edmund A. Tam
  • Publication number: 20150011891
    Abstract: A cable connection structure for connecting a plurality of cables to an electrode provided on a substrate includes an extended portion that is provided integrally with the plurality of cables, extends from the plurality of cables, and covers at least a connection part between the plurality of cables and the electrode.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Applicant: OLYMPUS CORPORATION
    Inventor: Junya YAMADA
  • Patent number: 8929969
    Abstract: A catheter assembly for use in an anatomy can include an elongated body, which can have a proximal end and a distal end. The body can also define a lumen from the proximal end to the distal end. The assembly can include at least one electrode, which can be coupled to the distal end to sense an electrical activity within the anatomy. The assembly can include a core wire, which can be received within the lumen from the proximal end to the distal end. The core wire can be configured to move the distal end from a first configuration to a second configuration. The assembly can also include a necked portion, which can be formed between the proximal end and the distal end to provide increased stiffness to the distal end of the body.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: January 6, 2015
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Edward M. Gillis, Christine Beltran
  • Patent number: 8905936
    Abstract: A catheter includes a catheter main body provided with a window portion through which an inspection wave passes, a drive shaft provided with a detection unit detecting the inspection wave and concurrently installed advanceably and retractably in an axial direction inside the catheter main body, and a bias member biasing a force onto the drive shaft for moving the drive shaft forward toward the distal side thereof.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: December 9, 2014
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Shigenobu Iwahashi
  • Patent number: 8884989
    Abstract: A system and method for generating a fused image is provided. The system comprises processing circuitry configured to access a plurality of images, group the images into a plurality of sets, fuse the images of each set to form a plurality of fused images and fuse the fused images to form a final fused image.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: November 11, 2014
    Assignee: Indian Institute of Technology Bombay
    Inventors: Subhasis Chaudhuri, Ketan Kotwal, Shanmuganathan Raman
  • Patent number: 8876723
    Abstract: Catheter navigation is coupled with ultrasound imaging to yield a context map showing the location on a heart of the ultrasonically imaged frame.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: November 4, 2014
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventor: John A. Hauck
  • Patent number: 8876722
    Abstract: An endoventricular injection catheter with integrated echocardiographic capability enables injections into heart tissue under visualization. The catheter includes an elongated body having a distal end and an imaging core arranged to be inserted into a heart. The imaging core is arranged to transmit ultrasonic energy and to receive reflected ultrasonic energy at the distal end to provide electrical signals representing echocardiographic images to enable cardiac visualization. The catheter further includes an injector carried on the elongated body with the imaging core. The injector is arranged to inject a therapeutic agent into tissue of the heart visualized by the imaging core.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: November 4, 2014
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Kendall R. Waters, Thomas C. Moore, Robert Zelenka, Paul Zalesky
  • Patent number: 8870779
    Abstract: A medical imaging system for imaging a patient's body includes a catheter having a position sensor and an ultrasonic imaging sensor wherein the position sensor transmits electrical signals indicating positional information of the catheter in the patient's body and the ultrasonic imaging sensor transmits ultrasonic energy at a target in the patient's body, receives ultrasonic echoes reflected from the target and transmits signals relating to the reflected ultrasonic echoes. A positioning processor is connected to the catheter for determining its positional information based on the electrical signals transmitted by the position sensor. The system includes a display and an image processor connected to the catheter, the positioning processor and the display. The image processor generates an ultrasonic image of the target and depicts the generated ultrasound image on the display in the same orientation as the catheter in the patient's body based on positional information from the position sensor.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: October 28, 2014
    Assignee: Biosense Webster, Inc.
    Inventors: Andres Claudio Altmann, Assaf Govari
  • Patent number: 8864675
    Abstract: An improved catheter is provided. The catheter may include a deflectable member located at a distal end of a catheter body. The deflectable member may comprise an ultrasound transducer array. The deflectable member may be interconnected to the catheter body by a live hinge. The catheter may include a lumen extending from a proximal end of the catheter body to the distal end. The lumen may be used to deliver an interventional device to a point distal to the distal end of the catheter body. The deflectable member may be selectively deflectable in a pivot-like manner through an arc of at least 90 degrees. In embodiments where the deflectable member includes an ultrasound transducer array, the ultrasound transducer array may be operable to image both when aligned with the catheter body and when pivoted relative to the catheter body.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: October 21, 2014
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Dennis R. Dietz, Curtis J. Franklin, John L. Loewen, David J. Messick, Craig T. Nordhausen, Clyde G. Oakley, Ryan C. Patterson, Jim H. Polenske, Shawn D. Quick, Daniel H. Todd, Thomas L. Tolt, David W. Wilson
  • Patent number: 8852113
    Abstract: In a distal end portion of a flexible sheath which is inserted integrally with an ultrasound transducer array, cell collecting hole portions each including a through-hole which allows a distal end portion outer periphery and an internal space of the flexible sheath to communicate with each other is provided, an edge for specimen cutting is formed at an opening portion of an outer circumferential side of each of the cell collecting hole portions, and after the flexible sheath is caused to reach a lesion part or the like of a subject, specimen collection is performed without additionally inserting a biological forceps or the like into the flexible sheath, whereby a specimen of a target site such as a lesion part is reliably collected without unnecessarily increasing the number of times of insertion and extraction of an instrument into and from a body, and the burden on an examinee is reduced.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: October 7, 2014
    Assignee: Olympus Medical Systems Corp.
    Inventors: Kenichi Nishina, Takuya Imahashi
  • Patent number: 8852112
    Abstract: An improved catheter is provided. The catheter may include a deflectable member located at a distal end of the catheter. The deflectable member may comprise an ultrasound transducer array. The catheter may include a lumen extending from a proximal end of the catheter to the distal end. The lumen may be used to deliver an interventional device to a point distal to the distal end of the catheter. The deflectable member may be selectively deflectable in a pivot-like manner through an arc of at least 90 degrees. In embodiments where the deflectable member includes an ultrasound transducer array, the ultrasound transducer array may be operable to image both when aligned with the catheter and when pivoted relative to the catheter. When pivoted relative to the catheter, the ultrasound transducer array may have a field of view distal to the distal end of the catheter.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: October 7, 2014
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Paul A. Bielewicz, Richard W. Denny, Dennis R. Dietz, Michael J. Fife, Joseph A. Huppenthal, David J. Messick, Craig T. Nordhausen, Clyde G. Oakley, Ryan C. Patterson, Jim H. Polenske
  • Patent number: 8845558
    Abstract: Embodiments of the invention relate to a catheter having an ultrasound energy emitting region that is both rotatable about and slidable along the shaft of the catheter. One embodiment is directed to a catheter comprising an ultrasound transducer coupled to the shaft, and at least one actuator coupled to the handle and the ultrasound transducer that is adapted to move the ultrasound transducer both longitudinally along the shaft and circumferentially about the shaft. Another embodiment of the invention is directed to a catheter comprising an ultrasound transducer coupled to the shaft, and at least one actuator that is adapted to move the sheath both longitudinally along the shaft and circumferentially about the shaft to orient a window of the sheath in a desired position.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: September 30, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: David MacAdam, Timothy Collins