Force Applied Against Skin To Close Blood Vessel Patents (Class 600/490)
  • Patent number: 10980488
    Abstract: Apparatuses and methods for displaying a blood pressure monitoring instrument reading along with inaccuracy values that vary over apparatus life and according to current operating conditions are disclosed. These inaccuracy values account for variability under different operating environments, over time and number of device measurement cycles, and across the range of possible instrument reading conditions. Determination of inaccuracy values may be based both on apparatus history and measurement under the current operating condition. Methods can further include informing a user of confidence in the instrument's current measurements based on the instrument's measurements and inaccuracy.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: April 20, 2021
    Assignee: PACIFIC DELTA LLC
    Inventor: Stephen Christopher Himley
  • Patent number: 10952625
    Abstract: An apparatus, method and computer program, the apparatus comprising: processing circuitry and memory circuitry including computer program code, the memory circuitry and the computer program code arranged to, with the processing circuitry, cause the apparatus to: obtain an audio signal from an audio sensing means wherein the audio signal comprises a subject's heartbeat; obtain a further signal from a further sensing means wherein the further signal also comprises the subject's heartbeat; use the further signal to identify individual heart beats in the audio signal; and analyse the individual heartbeats of the audio signal to enable the audio signal to be classified.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: March 23, 2021
    Assignee: WITHINGS
    Inventors: Ugo Marchand, David Campo
  • Patent number: 10939832
    Abstract: A device for measuring blood pressure and for indicating the presence of atrial fibrillation, includes an inflatable cuff, a pump, at least one pressure sensor for measuring the pressure inside the cuff, a pressure relief valve for deflating the cuff, and a control unit for controlling the pump and the valve. A calculating unit determines the presence or absence of atrial fibrillation on the basis of pressure variation sensed by the sensor. The calculating unit is adapted to independently determine the presence of atrial fibrillation on the basis of at least one, preferably two sequences, of pulse beats. The control unit is configured to maintain the pressure in a predefined range or to restore the pressure to a predefined range for an additional sequence, and to determine the presence of atrial fibrillation only if the calculating unit determines the presence of atrial fibrillation during a first and/or preceding sequence.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: March 9, 2021
    Assignee: MICROLIFE INTELLECTUAL PROPERTY GMBH
    Inventors: Gerhard Frick, Joseph Wiesel
  • Patent number: 10921886
    Abstract: This invention is a wearable circumferential array of electromyographic (EMG) sensors with a plurality of rings and columns of sensors which collect electromagnetic energy data concerning neuromuscular activity and functions as a Human-to-Computer Interface (HCI). In an example, it can be incorporated into a wearable device or clothing accessory such as an arm band, wrist band, finger ring, leg band, ankle band, bracelet, or watch strap. In an example, it can be incorporated into the cuff or sleeve of an article of clothing such as a shirt or a pair of shorts.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: February 16, 2021
    Assignee: Medibotics LLC
    Inventor: Robert A. Connor
  • Patent number: 10893837
    Abstract: Handheld medical diagnostic instrument that provides high time-resolution pulse waveforms associated with multiple parameters including blood pressure measurements, blood oxygen saturation levels, electrocardiograph (ECG) measurements, and temperature measurements. The device stores and analyzes the pulse waveforms simultaneously obtained from all tests, and thereby allows an unusually detailed view into the functioning of the user's cardiovascular heart-lung system. The device is designed for use by unskilled or semi-skilled users, thus enabling sophisticated cardiovascular measurements to be obtained in a home environment. Data from the device can be analyzed onboard, with local computerized devices, and/or with remote server based systems. The device or remote server may be configured to analyze this data according to various algorithms chosen by the physician to be most appropriate to that patient's particular medical condition (e.g. COPD patient algorithms).
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: January 19, 2021
    Assignee: Cloud Dx, Inc.
    Inventors: Sandeep S. Kohli, David Widman, Sara Ross-Howe, Robert Kaul
  • Patent number: 10874308
    Abstract: An aspect of the disclosure pertains to a blood pressure measurement device and methods of obtaining pulse information from a blood pressure measurement. An inflatable bladder defines, at least in part, a pressurizable volume. The inflatable bladder may be inflated to pressurize a user's appendage and temporarily occlude blood flow in the user's appendage, where the inflatable bladder is inflated to a pressure greater than a maximum amplitude pressure from oscillometric data in a pressure profile. The inflatable bladder may be deflated and then re-inflated to a target pressure and held at the target pressure to generate pulse information, or the inflatable bladder may be deflated to the target pressure and held at the target pressure to generate the pulse information.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: December 29, 2020
    Assignee: Fitbit, Inc.
    Inventors: Xi Zhang, Keith Adam Wong, Andrew Larsen Axley, Dan Stefan Tudose, Conor Joseph Heneghan, Radu Dobroiu, Alexandru-Mihai Şolot
  • Patent number: 10849555
    Abstract: The present disclosure generally relate s to blood pressure monitoring. In some embodiments, methods and devices for measuring a mean arterial pressure and/or for monitoring blood pressure changes of a user are provided. Blood pressure measured by one or more pressure sensors may be adjusted using one or more correction factors. The use of the one or more correction factors disclosed herein may allow for more compact, convenient, and/or accurate wearable blood pressure measurement devices and methods. In particular, wrist-worn devices may be provided which are less bulky than current devices and may facilitate more frequent and accurate blood pressure monitoring.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: December 1, 2020
    Assignee: Apple Inc.
    Inventors: Thomas J. Sullivan, Ravi K. Narasimhan, Rui Qiao, Derek Park-Shing Young, Robert K. Montgomery, II, Mohsen Mollazadeh, Zijing Zeng, Vasco D. Polyzoev, Richard C. Kimoto
  • Patent number: 10842926
    Abstract: A method comprising: receiving patient assessment information concerning one or more subjective characteristics of a patient; determining a patient assessment score based on the received patient assessment information; and modifying operation of a medical fluid treatment machine based on the patient assessment score.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: November 24, 2020
    Assignee: Fresenius Medical Care Deutschland GmbH
    Inventors: Maria Teresa Parisotto, Francesco Pelliccia, Cristina Miriunis, Stefano Stuard
  • Patent number: 10806845
    Abstract: A system for intra-operative blood salvage autotransfusion is provided. The system comprises at least one inlet configured to receive whole blood of a patient; at least one curvilinear microchannel in fluid flow connection with the at least one inlet, the at least one curvilinear microchannel being adapted to isolate circulating tumor cells in the whole blood, based on cell size, along at least one portion of a cross-section of the at least one curvilinear microchannel; and at least two outlets in fluid flow connection with the at least one curvilinear microchannel, at least one outlet of the at least two outlets being configured to flow the circulating tumor cells isolated from the whole blood, and at least one other outlet of the at least two outlets being configured to flow at least a portion of a remainder of the whole blood, cleansed of the isolated circulating tumor cells, for return to the patient.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: October 20, 2020
    Assignees: Massachusetts Institute of Technology, National University of Singapore
    Inventors: Majid Ebrahimi Warkiani, Guofeng Guan, Kah Ping Andy Tay, Lidan Wu, Jongyoon Han, Chwee Teck Lim
  • Patent number: 10772515
    Abstract: The embodiment provides a blood pressure measurement device equipped with a pressing surface having plural pressure sensors arranged in one direction, an air bag for pressing the pressing surface against a living body part in a state that the one direction crosses a direction in which the radius artery T runs, an air bag drive unit, a rotational drive unit for driving the pressing surface rotationally about at least one of axes X and Y, and a control unit which performs a rotation control on the basis of pressure pulse waves that were detected by the pressure sensors in a process that the pressing force was increased and calculates blood pressure values on the basis of pressure pulse waves that were detected by the pressure sensors after the rotation control in a process that the pressing force was decreased.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: September 15, 2020
    Assignees: OMRON HEALTHCARE Co., Ltd., Omron Corporation
    Inventors: Tsuyoshi Kitagawa, Shingo Yamashita, Toshihiko Ogura, Masayuki Fukutsuka, Daizo Oka, Naomi Matsumura, Kentaro Mori, Hiroyuki Kinoshita, Masayuki Wakamiya
  • Patent number: 10765327
    Abstract: Disclosed is finger cuff that is connectable to a patient's finger to aid in measuring the patient's blood pressure. The finger cuff may comprise: a shell, a bladder, and a clamping mechanism. The shell may have a finger cavity. The finger cavity of the shell may be placed under a patient's finger to receive the patient's finger. Further, the finger cavity may include a light emitting diode (LED)—photodiode (PD) pair. The bladder may include a pair of openings and the bladder may be mountable within the finger cavity such that the pair of openings surround the LED-PD pair, respectively. The clamping mechanism may be used to suitably clamp the patient's finger received in the finger cavity of the shell against the bladder mounted within the finger cavity of the shell.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: September 8, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Peiyuan Li, Hendrik Petrus Van Der Weij, Jeroen Van Goudoever
  • Patent number: 10736507
    Abstract: Systems and method for monitoring patient physiological data are presented herein. In one embodiment, a physiological sensor and a mobile computing device can be connected via a cable or cables, and a processing board can be connected between the sensor and the mobile computing device to conduct advanced signal processing on the data received from the sensor before the data is transmitted for display on the mobile computing device.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: August 11, 2020
    Assignee: Masimo Corporation
    Inventors: Bilal Muhsin, Sujin Hwang, Benjamin C. Triman
  • Patent number: 10722163
    Abstract: Methods, devices, systems and kits for obtaining blood samples are provided. Devices include a cuff, a pressure source, and a timing mechanism. Devices may further include one or more of a: warming mechanism, lancing mechanism; automated sample collection device, automated sample analysis device, and communication unit. Systems include such a device, and may include sample collection, sample analysis, or communication devices. Methods include placing a cuff on a digit of a subject, inflating the cuff, and obtaining a small volume blood sample. Methods may further include warming a digit; lancing a digit; pulsing the cuff; and providing a signal indicating the end of the sample collection time period. Kits may include a device, a sample collection vessel, and may include a disposable for use in sample collection. These methods, devices, systems and kits for obtaining blood samples may be used to easily, reliably, and consistently obtain blood samples from subjects.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: July 28, 2020
    Assignee: Labrador Diagnostics LLC
    Inventors: Patricia McHale, William Westrick
  • Patent number: 10719980
    Abstract: A method of analyzing a tube system in particular by image processing of images of the tube system is provided by the present invention. In order to achieve a simulation of a medium flow through a calculated tube model, the present invention gathers a tube model from a specific tube data set. By defining the necessary parameters of a virtual injection of the medium by the user, the medium flows through the model. Using this displayed simulation for generating at least two images leads to an artificial image sequence that might support a person, which wants to examine a real structure, that corresponds to the calculated model. This might be seen in.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: July 21, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Sabine Mollus, Joerg Bredno, Juergen Weese, Drazenko Babic
  • Patent number: 10682095
    Abstract: A method of monitoring a health status of a patient using a monitoring system comprising a pair of finger ring electrocardiogram (ECG) monitors. Each finger ring monitor comprises an inner ring member and an outer ring member positioned radially outward from and operably connected to the inner ring member. The inner ring member of each monitor features a conductor characterized by at least one physiological-type sensor, and an annular bladder that defines an adjustable aperture sized to receive a left-hand finger of a patient and a right-hand finger of the patient, respectively. Upon triggering by positioning the pair of finger ring ECG monitors substantially together, the conductors of each of the finger ring ECG monitors are configured to receive biopotential signals from skin on the fingers of the patient.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: June 16, 2020
    Assignee: Medicomp, Inc.
    Inventors: Sean Marcus, Chris Chang, Scott Baskerville, Anthony Balda
  • Patent number: 10679757
    Abstract: The embodiments of the present disclosure disclose a method and apparatus for establishing a blood pressure model. The method comprises: acquiring pulse wave data, electrocardiographic data, blood pressure data and body mass indexes of a plurality of subjects to be examined; determining pulse wave transit time and pulse wave intensity ratios based on the pulse wave data and the electrocardiographic data; establishing a blood pressure model based on the blood pressure data, the pulse wave transit time, the pulse wave intensity ratios, and/or the body mass index.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: June 9, 2020
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Hui Li
  • Patent number: 10660653
    Abstract: An esophageal device is used to recognize, diagnose, characterize, or relieve an impact of an abnormal or defective UES anatomy, physiology, or functionality. In one implementation, the esophageal device measures a UES response to esophageal fluid infusion to detect or characterize an abnormality or defective UES anatomy, physiology, or functionality. An Upper Esophageal Sphincter compression device is used to increase intra-luminal pressure within the Upper Esophageal Sphincter of a patient in order relieve an impact of an abnormal or defective UES anatomy, physiology, or functionality.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: May 26, 2020
    Assignee: The Medical College of Wisconsin, Inc.
    Inventor: Reza Shaker
  • Patent number: 10610239
    Abstract: A non-invasive cerebral perfusion increasing device including four cuffing pad units and a control unit which is connected to the cuffing pad units and is equipped with a blood pressure sensing module and a compression control module. In the non-invasive cerebral perfusion increasing device each cuffing pad unit respectively includes a compression pad, a compression control member and a blood pressure sensing member. The blood pressure sensing module uses the blood pressure sensing members to sense the systolic blood pressure values of the portions of each of the limbs where they are attached and the compression control module controls the degree of compression of each compression pad by controlling the compression control member to a setting desired by the user based on the sensed blood pressure value, such that the blood flow applied to the limbs is blocked and, indirectly, cerebral perfusion is increased.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: April 7, 2020
    Assignee: AJOU UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION
    Inventor: Ji Man Hong
  • Patent number: 10582861
    Abstract: The embodiment provides a blood pressure measurement device equipped with an air bag drive unit, a pressing surface formed with pressure sensors, and a control unit which calculates first blood pressure values on the basis of a first pressure pulse wave that was detected by the pressure sensors, generates calibration data using the first blood pressure values, and calculates second blood pressure values by calibrating, using the calibration data, a second pressure pulse wave that is detected by the pressure sensors in a state that the pressing force is set at an optimum pressing force. The control unit performs the processing of calculating second blood pressure values by calibrating the second pressure pulse wave if detection conditions of the second pressure pulse wave coincide with detection conditions of a pressure pulse wave used for generation of the calibration data.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: March 10, 2020
    Assignees: OMRON HEALTHCARE Co., Ltd., Omron Corporation
    Inventors: Tsuyoshi Kitagawa, Shingo Yamashita, Toshihiko Ogura, Masayuki Fukutsuka, Daizo Oka, Naomi Matsumura, Kentaro Mori, Hiroyuki Kinoshita, Masayuki Wakamiya
  • Patent number: 10568582
    Abstract: A diagnostic tool 104 and method 300 are used to modify vascular age scoring systems using flow-mediated dilation (FMD) data. The resulting FMD-adjusted vascular age calculator can be used to diagnose a person's potential for developing cardiovascular disease.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 25, 2020
    Assignee: Everist Genomics, Inc.
    Inventors: Peter F. Lenehan, Thomas Stephen Everist, III
  • Patent number: 10433743
    Abstract: A method for secure physiological data acquisition and storage is provided. An identifier of a physiological monitoring device that is configured to store the identifier within a cryptographic circuit is obtained by a programming wand. A password for accessing physiological monitoring data collected using that device is generated based on at least a portion of the identifier. The password is encrypted using a secret key, and password is loaded into the cryptographic circuit. The secret key is loaded into a monitor recorder, wherein the monitor recorder retrieves the identifier and the password from the device, decodes the password, and offloads the physiological monitoring data together with the identifier and the decoded password. The identifier and the password are reported to at least one server. The offloaded physiological monitoring data is stored using the identifier. Access to the data is granted upon receipt of the decoded password from a user.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: October 8, 2019
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jason Felix, Ezra M. Dreisbach, Jon Mikalson Bishay, Corey Bailey Williamson, Gust H. Bardy
  • Patent number: 10413199
    Abstract: An adapter includes a substantially rigid body having a distal portion, a proximal portion, a central opening formed at least in part by an inner wall of the body, and a longitudinal axis extending substantially centrally through the opening. The distal portion includes an annular ring having a top surface and a ridge disposed opposite the top surface, the ridge extending substantially perpendicular to the longitudinal axis. The distal. The adapter also includes a seal configured to form a substantially fluid-tight seal with a surface of a fitting removably attachable to the adapter.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: September 17, 2019
    Assignee: Welch Allyn, Inc.
    Inventors: Sean R. Karla, Raymond A. Lia, Scott A. Martin, Robert L. Vivenzio, Thaddeus J. Wawro, Chris R. Roberts, Jeffrey J. Perkins
  • Patent number: 10413349
    Abstract: A surgical system and corresponding methods for identifying tissue or vessels and assessing their conditions includes a probing signal source for applying a probing signal to the tissue and a response signal monitor for monitoring a response signal that varies according to the level of blood circulation in the tissue or vessels. The response signal monitor monitors the response signal over an interval equal to or longer than an interval between two successive cardiac contractions. The surgical system includes a microprocessor that analyzes the amplitude and/or phase of the response signal to determine the level of blood circulation in the tissue or in different portions of the tissue, and determines a tissue parameter based upon the level of blood circulation. The surgical system may monitor a cardiac signal related to cardiac contractions and correlate the response signal and the cardiac signal to determine a level of blood circulation in the tissue.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: September 17, 2019
    Assignee: COVIDIEN LP
    Inventors: Nataliya Chernova, Igoris Misuchenko, Georgy Martsinovskiy, Mikhail Verbitsky
  • Patent number: 10416811
    Abstract: Systems and methods for calibrating a force input device are disclosed. The force input device includes a force-sensitive structure with a number of individual force sensors that compress or expand in response to input. The force input device measures an electrical property of the force sensors of the force-sensitive structure. After the force sensors are measured, the values obtained are adjusted based on a mechanical model of the response of the force sensitive structure. Upon receiving a force input event of high magnitude, the force input device recalibrates the mechanical model.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: September 17, 2019
    Assignee: Apple Inc.
    Inventors: Golnaz Abdollahian, Wayne C. Westerman
  • Patent number: 10357166
    Abstract: A blood pressure monitor includes a cuff and main unit. The cuff includes a fluid bladder, tube, and approximately cylindrical plug attached to a leading end of the tube, and a through-hole is provided in peripheral wall of plug. An inner diameter of a part of plug further on leading end side of plug than through-hole is set variably, in accordance with the type of cuff, to a diameter?inner diameter of a part of plug aside from part further on leading end side. Main unit includes a plug receiving portion that communicates with pump via a pipe, a first pressure sensor that detects pressure in pipe, second pressure sensor that detects an inner pressure of plug inserted into plug receiving portion, and cuff type determining unit that determines type of cuff connected to main unit on basis of difference between pressures detected by first and second pressure sensor.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: July 23, 2019
    Assignee: OMRON HEALTHCARE CO., LTD.
    Inventor: Tameo Ashida
  • Patent number: 10349841
    Abstract: A blood pressure cuff assembly for an ambulatory blood pressure monitor may include a hollow cuff and an elastic liner provided on the reverse side of the cuff. An airbag may be provided in the cuff. A first connection part and a second connection part may be provided on the cuff. A third connection part and a fourth connection part may be correspondingly provided on the liner. The effect of tight inside and loose outside is achieved by the combination of the elastic liner and the cuff. When worn on an upper arm, the elastic liner has an elastic deformation and consequently tightens around the upper arm so as to realize certain slip resistance, and the cuff will not slip down even tied a bit loosely when located on the upper arm. The feeling of constraint from the cuff is reduced significantly and the comfort is improved.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: July 16, 2019
    Assignee: XI'AN SHEN MINDRAY MEDICAL ELECTRONICS RESEARCH INSTITUTE CO., LTD.
    Inventor: Guang Li
  • Patent number: 10297143
    Abstract: Provided are techniques for detecting quality of physiologic data using contact pressure data for alarm generation. First data is received that comprises physiologic data and an alarm condition. Second data is received from pressure-sensitive sensors, wherein the second data comprises contact pressure data. In response to determining that the second data indicates movement of an entity, a delay is created for generation of an alarm for the alarm condition. In response to determining that the delay has expired, it is determined whether the first data has changed to indicate that the alarm condition is resolved. In response to determining that the first data has changed to indicate that the alarm condition is resolved, the alarm condition is cleared. In response to determining that the first data has not changed to indicate that the alarm condition is resolved, the alarm is generated.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: May 21, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Perry R. Giffen, James R. Green, Shermeen Nizami
  • Patent number: 10137233
    Abstract: A monitoring device (7) operates on a pressure signal from a blood processing apparatus, e.g. a dialysis machine, which has an extracorporeal blood circuit connected to a vascular system of a subject for pumping blood through a dialyzer, and a treatment fluid supply system for pumping a treatment fluid through the dialyzer. The monitoring device (7) has a first input block (50) for obtaining a first pressure signal (y) from a first pressure sensor (6a) in the extracorporeal blood circuit, and a second input block (51) for obtaining a second pressure signal (w) from a second pressure sensor (6b) in the treatment fluid supply system.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: November 27, 2018
    Assignee: GAMBRO LUNDIA AB
    Inventors: Jan Sternby, Mattias Holmer, Bo Olde, Kristian Solem, Anders Wallenborg, Per Hansson
  • Patent number: 10016139
    Abstract: The blood pressure measurement apparatus includes a pressure sensor that detects the pressure in a cuff and outputs a cuff pressure signal, and a pulse wave detection unit that detects a pulse wave in the cuff pressure signal. The pulse wave detection unit includes an analog HPF that extracts a high-frequency component from the cuff pressure signal, an A/D conversion unit, a signal storage unit that stores a signal obtained by performing A/D conversion on the cuff pressure signal detected at the time when the pressurizing pressure changes from increasing to decreasing, a subtraction unit that subtracts the signal stored by the signal storage unit from an output signal of the A/D conversion unit, and a digital HPF that extracts a high-frequency component from the output signal of the subtraction unit.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: July 10, 2018
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventors: Hiroyuki Kinoshita, Hironori Sato, Toshihiko Ogura
  • Patent number: 9955885
    Abstract: A system and method for secure physiological data processing and delivery are provided. A log of identifiers of physiological monitoring patches and of passwords is maintained in a secure database. Physiological monitoring data obtained using one of the patches is received by at least one server together with the identifier and the password associated with that patch. The received identifier and password are compared with the identifiers and passwords stored in the log. The received physiological monitoring data is stored in electronic medical records associated with the matching identifier. The password and the identifier associated with the physiological monitoring data are received from a user device over the data communications network. The received password and identifier are compared to the password and the identifier associated with the electrical medical records. The electronic medical records are provided by to the user device over the data communication network based on the comparison.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: May 1, 2018
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jason Felix, Ezra M. Dreisbach, Jon Mikalson Bishay, Corey Bailey Williamson, Gust H. Bardy
  • Patent number: 9931490
    Abstract: A control system for an arterial catheter operable to selectively impede blood flow includes a processor and a storage medium accessible to the processor that bears instructions which when executed by the processor cause the processor to execute logic including receiving a first signal representing a physical parameter associated with a patient in whom the catheter is disposed, receiving a second signal representative of time, and causing inflation of a first balloon on the catheter to impede blood flow in the first artery. Based at least in part on the first signal satisfying a first condition, the instructions include causing deflation of the first balloon. Based at least in part on the second signal indicating elapse of a predetermined time period, the instructions include causing deflation of the first balloon regardless of whether the first signal satisfies the first condition.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: April 3, 2018
    Assignee: ZOLL CIRCULATION, INCORPORATED
    Inventors: Richard A. Helkowski, Mark Glenn Mitchell
  • Patent number: 9916418
    Abstract: Embodiments are directed to detecting and uploading measurement data of a non-connected medical measuring device. Embodiments include capturing an image of an identification object and a beginning event image of a medical measuring device and extracting identification data from the image of the identification object. Based on detecting that the identification object has been removed, an ending event image of the medical measuring device is captured. Embodiments include determining if a measurement event has occurred by comparing the ending event image and the beginning event image. Based on determining that the measurement event occurred, a measurement data of the ending event image is extracted and upload to a personal health record database.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: March 13, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jen-Hao Hsiao, Ci-Wei Lan, Ya-Fan Yeh
  • Patent number: 9848781
    Abstract: The equipment has at least one pressure sensor (28) disposed for being placed onto the surface of the body of the user and being held attached thereto by means of a band. The attachment force is selected such that the pressure signal from the pressure sensor (28) contains variations caused by the pulse. An attachment pressure sensor (52) or a band tension sensor (18?) generates an electrical signal depending on the attachment pressure. The microprocessor (36) determines the diastolic and systolic blood pressure values from the pressure signal, taking into account the signal from the attachment pressure sensor (52) or the band tension sensor (18?).
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: December 26, 2017
    Assignee: STBL Medical Research AG
    Inventors: Heinz Suesstrunk, Etienne Hirt
  • Patent number: 9833154
    Abstract: Disclosed herein is a system for monitoring a patient that includes a cuff configured to inflate to at least partially occlude an artery of the patient and a cuff controller configured to inflate the cuff during a dynamic phase and generally maintain inflation of the cuff at about a target pressure during a static phase. The system also includes a sensor configured to receive a signal associated with the at least partially occluded artery and generate an output signal based on the received signal, and a cuff control module configured to determine the target pressure during the dynamic phase and based on the output signal, and control the cuff controller during the dynamic phase and the static phase.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: December 5, 2017
    Assignee: Welch Allyn, Inc.
    Inventors: John A. Lane, David E. Quinn, Matthew J. Kinsley, Tyson B. Whitaker
  • Patent number: 9814396
    Abstract: In a pulse wave signal processor, a first filter attenuates a frequency component in an acquired pulse wave signal or in a differentiated pulse wave signal, and the attenuated frequency component is more than or equal to a first frequency. A second filter attenuates a frequency component in the acquired pulse wave signal, and the attenuated frequency component is less than the first frequency and more than or equal to a second frequency. A characteristic-point extractor extracts a characteristic point that exists in each single pulse of the pulse wave signal filtered by the second filter, and a signal separator partitioning the pulse wave signal or the differentiated signal filtered by the first filter into sections such that each section includes one of the extracted characteristic points. The partitioned sections are overlapped such that the characteristic points are coincident with each other, and arithmetically averaged.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: November 14, 2017
    Assignee: DENSO CORPORATION
    Inventors: Kouki Futatsuyama, Taiji Kawachi, Tsuyoshi Nakagawa
  • Patent number: 9801780
    Abstract: Single- or dual-bladder devices for automated delivery of remote ischemic conditioning treatment via partial limb occlusion involve various methods of operating the cuff in which partial or full limb occlusion is achieved during the periods of cuff inflation. Achieving clinical benefits of remote ischemic conditioning without extended cessation of limb blood flow are advantageous due to lower required cuff pressure and reduced risk of clot formation in the limb vasculature.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: October 31, 2017
    Assignee: LifeCuff Technologies Inc.
    Inventor: Boris Leschinsky
  • Patent number: 9779352
    Abstract: An identification device includes, but is not limited to, a deformable substrate; a sensor assembly including one or more identity sensors configured to generate identity sense signals associated with at least one physical characteristic of an individual subject; circuitry including a comparison module configured to compare the identity sense signals to reference data indicative of one or more physical characteristics associated with an identity of at least one individual; and an adhesive coupled to a surface of the deformable substrate and configured to adhere the deformable substrate to a skin surface, the adhesive configured to transition from an adhesive state to a non-adhesive state responsive to one or more energy signals from the circuitry responsive to a correspondence between the identity sense signals and the physical characteristics associated with the identity being below a threshold correspondence.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: October 3, 2017
    Assignee: ELWHA LLC
    Inventors: Roderick A. Hyde, Jordin T. Kare, Gary L. McKnight, Robert C. Petroski, Elizabeth A. Sweeney
  • Patent number: 9750419
    Abstract: A method of determining a blood pressure of a patient includes determining a plurality of pressure pulses, wherein each pressure pulse of the plurality of pressure pulses comprises a profile having a maximum profile height. The method also includes determining a pulse score associated with the plurality of pressure pulses, wherein the pulse score is determined based on the profiles of the pressure pulses and the maximum profile heights. The method further includes determining that the pulse score is above a pulse score threshold, and generating, in response to determining that the pulse score is above the pulse score threshold, a pulse curve based on the maximum profile heights. The method also includes determining the blood pressure of the patient without completely occluding a blood vessel of the patient, wherein the blood pressure is determined based on a plurality of values corresponding to respective points on the pulse curve.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: September 5, 2017
    Assignee: Welch Allyn, Inc.
    Inventors: Tyson B. Whitaker, David E. Quinn, Shawn C. St. Pierre, Matthew J. Kinsley, John A. Lane, Joseph Buchanon
  • Patent number: 9737693
    Abstract: A control system for an arterial catheter operable to selectively impede blood flow includes a processor and a storage medium accessible to the processor that bears instructions which when executed by the processor cause the processor to execute logic including receiving a first signal representing a physical parameter associated with a patient in whom the catheter is disposed, receiving a second signal representative of time, and causing inflation of a first balloon on the catheter to impede blood flow in the first artery. Based at least in part on the first signal satisfying a first condition, the instructions include causing deflation of the first balloon. Based at least in part on the second signal indicating elapse of a predetermined time period, the instructions include causing deflation of the first balloon regardless of whether the first signal satisfies the first condition.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: August 22, 2017
    Assignee: ZOLL CIRCULATION, INC.
    Inventors: Richard A. Helkowski, Mark Glenn Mitchell
  • Patent number: 9730594
    Abstract: An arterial-wall stiffness evaluation system of the present invention includes: a cuff to be attached to a part of a living body; a pressure sensor for detecting pressure in the cuff; a cuff-pressure control section for controlling the pressure in the cuff to be increased or decreased up to a predetermined value, based on a value detected by the pressure sensor; and a data processing section for calculating, based on pulse waves detected by the pressure sensor, pulse-wave amplitudes of cuff-pressure pulse waves and blood-pressure pulse waves, and for evaluating arterial-wall stiffness based on the pulse-wave amplitudes. The arterial-wall stiffness is evaluated by a pressure-diameter characteristic curve, which represents a relationship between vascular diameter and transmural pressure applied to a vascular wall, or by estimation from shapes and amplitudes of the detected pulse waves.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: August 15, 2017
    Assignees: NATIONAL INSTITUTE OF ADVANCE INDUSTRIAL SCIENCE AND TECHNOLOGY, SHISEI DATUM CO., LTD.
    Inventors: Hidehiko Komine, Yoshiyuki Asai, Takashi Yokoi, Yukiyoshi Saito
  • Patent number: 9706933
    Abstract: In a sphygmomanometer, a value representing a perimeter of a measuring portion is obtained. A parameter for controlling a drive voltage of a pump is determined based on the value. The drive voltage is determined based on the parameter and an internal pressure of a fluid bladder to pressurize the fluid bladder. In pressurizing process, a diastolic blood pressure value is calculated. A systolic blood pressure value is estimated, and when the internal pressure of the fluid bladder reaches the pressure, the pressurizing is stopped. A gap of a valve for discharging the fluid from the fluid bladder is determined based on a perimeter of a measuring portion, and the fluid bladder is depressurized with the gap constant. In the depressurizing process, the systolic blood pressure value is calculated. When the systolic blood pressure value is calculated, the fluid is discharged from the fluid bladder, and the measurement is terminated.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: July 18, 2017
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventors: Mika Eto, Yukiya Sawanoi, Shingo Yamashita
  • Patent number: 9689729
    Abstract: A small and light-weight flowmeter realizes the compensation of a zero point drift. A mass flowmeter includes: a centrifugal force/centripetal force detection strain gauge adhered to a part acted upon by a centrifugal force or a centripetal force of fluid in a pipe line in which the fluid flows and a flow rate zero point drift compensation strain gauge adhered to a position different from that of the centrifugal force/centripetal force detection strain gauge. A pulse wave propagation time between the two points is used to compensate a zero point drift of a flow rate.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: June 27, 2017
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Ryo Kosaka, Kyouhei Fukuda, Takashi Yamane
  • Patent number: 9610213
    Abstract: Single- or dual-bladder devices for remote ischemic preconditioning and blood pressure monitoring are disclosed along with various oscillometry-based and other methods for detecting systolic and diastolic blood pressure while the ischemic preconditioning treatment is in progress. The devices and methods of the invention provide for delivery of ischemic preconditioning at the lowest effective cuff pressure while closely monitoring patient's hemodynamics. Advantageously, the device of the invention allows both ischemic preconditioning and blood pressure monitoring to be done on the same limb. Disposable battery-powered version of the device of the present invention is especially useful for emergency use with patients suffering from acute myocardial infarction, acute stroke, or acute trauma. Additional device configurations are described for use in a percutaneous intervention and vascular sealing settings.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: April 4, 2017
    Assignee: LifeCuff Technologies Inc.
    Inventor: Boris Leschinsky
  • Patent number: 9603533
    Abstract: The present invention relates to a method and a system for carrying out the method of determining at least one cardiovascular quantity of a mammal. The method comprises (i) selecting a measuring site of a vessel; (ii) determining or estimating a mean diameter of the vessel at the measuring site; (iii) determining a pulse wave velocity and/or another elasticity related quantity of the vessel at the measuring site; (iv) determining a distension of the vessel at the measuring site; and (v) calculating the at least one cardiovascular quantity from the determined mean diameter, elasticity related quantity and distension of the vessel at the measuring site.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 28, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Lars Lading, David Böttcher Bæk
  • Patent number: 9596996
    Abstract: A sphygmomanometer, in a deflation process after inflation to prescribed pressure adjusts a drive voltage of an exhaust valve such that a deflation speed of a fluid bag achieves a prescribed deflation speed during an adjustment period, which is a prescribed period after starting deflation. When the adjustment period ends or when the deflation speed of the fluid bag achieves the prescribed speed, control is subsequently performed to fix the drive voltage of the exhaust valve and deflate the fluid bag while holding a gap of the exhaust valve constant.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: March 21, 2017
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventors: Hiroyuki Kinoshita, Shingo Yamashita, Yukiya Sawanoi, Mika Eto
  • Patent number: 9572500
    Abstract: A first oscillation circuit and a second oscillation circuit are connected to a first pressure sensor and a second pressure sensor, respectively, and oscillate based on the capacity values of the corresponding pressure sensors. The first oscillation circuit and the second oscillation circuit operate in response to instruction from a CPU. The one of the first oscillation circuit and the second oscillation circuit that has received an activation signal from the CPU outputs a signal having a frequency that corresponds to the capacity value of the corresponding pressure sensor. An adjustment circuit is connected to the first oscillation circuit and the second oscillation circuit, and allows one of the frequency signals to pass therethrough, outputting the signal to the CPU.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: February 21, 2017
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventors: Ryosuke Doi, Takanori Nishioka, Kohei Takeoka, Yukiya Sawanoi, Kenichi Horibata, Masataka Yanagase, Izumi Hachimaru
  • Patent number: 9532722
    Abstract: A patient monitoring system includes an inflatable cuff, a gas reservoir containing a compressed gas, and a sensor. When the inflatable cuff is coupled to a wearer, the gas reservoir supplies gas to the inflatable cuff to inflate the inflatable cuff via gas pathways. As the inflatable cuff inflates, a patient monitor can receive blood pressure data from the sensor and use the blood pressure data to determine the blood pressure of the wearer. The patient monitor can also receive blood pressure data during deflation of the inflatable cuff to determine the blood pressure of the wearer.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: January 3, 2017
    Assignee: MASIMO CORPORATION
    Inventors: Marcelo Lamego, Massi Joe E. Kiani, Ken Lam, Cristiano Dalvi, Hung Vo
  • Patent number: 9526449
    Abstract: An esophageal device is used to recognize, diagnose, characterize, or relieve an impact of an abnormal or defective UES anatomy, physiology, or functionality. In one implementation, the esophageal device measures a UES response to esophageal fluid infusion to detect or characterize an abnormality or defective UES anatomy, physiology, or functionality. An Upper Esophageal Sphincter compression device is used to increase intra-luminal pressure within the Upper Esophageal Sphincter of a patient in order relieve an impact of an abnormal or defective UES anatomy, physiology, or functionality.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: December 27, 2016
    Assignee: The Medical College of Wisconsin, Inc.
    Inventor: Reza Shaker
  • Patent number: 9526456
    Abstract: A system and method for evaluating a patient status from sampled physiometry for use in heart failure assessment is presented. Physiological measures, including at least one of direct measures regularly recorded on a substantially continuous basis by a medical device and measures derived from the direct measures are stored. At least one of those of the physiological measures, which relate to a same type of physiometry, and those of the physiological measures, which relate to a different type of physiometry are sampled. A status is determined for a patient through analysis of those sampled measures assembled from a plurality of recordation points. The sampled measures are evaluated. Trends that are indicated by the patient status, including one of a status quo and a change, which might affect cardiac performance of the patient, are identified. Each trend is compared to worsening heart failure indications to generate a notification of parameter violations.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: December 27, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Gust H. Bardy
  • Patent number: 9492094
    Abstract: In a blood pressure monitor, when a main unit is mounted on a mounting surface such as a desk, a bulging region of a first tube and a bulging region of a second tube, both located at a rear surface of the main unit, come into contact with the mounting surface. This can avoid the main unit from sliding even when the main unit is pulled by the first and second tubes. Consequently, a blood pressure monitor has a configuration in which the main unit is less likely to slide over the mounting surface even when the main unit is pulled by tubes connected to the main unit.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: November 15, 2016
    Assignee: OMRON HEALTHCARE Co., Ltd.
    Inventors: Masashi Kitamura, Kai Zhong, Chun-Peng Zhang