Detecting Heartbeat Electric Signal And Diverse Cardiovascular Characteristic Patents (Class 600/513)
  • Patent number: 11931586
    Abstract: A cardiac pacing system having a pulse generator for generating therapeutic electric pulses, a lead electrically coupled with the pulse generator having an electrode, a first sensor configured to monitor a physiological characteristic of a patient, a second sensor configured to monitor a second physiological characteristic of a patient and a controller. The controller can determine a pacing vector based on variables including a signal received from the second sensor, and cause the pulse generator to deliver the therapeutic electrical pulses according to the determined pacing vector. The controller can also modify pacing characteristics based on variables including a signal received from the second sensor.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: March 19, 2024
    Assignee: AtaCor Medical, Inc.
    Inventors: Rick Sanghera, Alan Marcovecchio, Sean P. McGeehan
  • Patent number: 11925487
    Abstract: A system for assessing and monitoring the hemodynamic condition of a patient includes a signal processor and optionally a premise processing system. Additionally, the system can include a biosignal detection device, memory, a display, and any other suitable component. A method for assessing and monitoring the hemodynamic condition of a patient includes: receiving input data; determining a set of windows based on the input data; preprocessing each of the set of windows; processing each of the set of windows; determining a set of features for each of the set of windows; determining a hemodynamic condition for each window based on the set of features; and presenting the hemodynamic condition to a user.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: March 12, 2024
    Assignee: Fifth Eye Inc.
    Inventors: Ashwin Belle, Bryce Benson, Mark Salamango
  • Patent number: 11918365
    Abstract: An electrocardiogram (ECG) measurement device for a vehicle is provided. The ECG measurement device includes an impedance compensator that corresponds to an electrode in contact with a body of a driver and configured to compensate an impedance of each of electrode signals received from the electrode. An electrode selector sequentially selects the electrode signals in response to receiving the electrode signals from the electrode. A differential amplifier differentially amplifies the electrode signals. In particular, each electrode signal has the compensated impedance. Additionally, a signal quality evaluator evaluates quality of an ECG signal output from the differential amplifier and a compensation controller then adjusts an impedance compensation value of each of the impedance compensators as a result of evaluating the quality of the ECG signal.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: March 5, 2024
    Assignees: Hyundai Motor Company, Kia Corporation
    Inventors: Yoon Jong Choi, Hyun Wook Jun, Yeong Joon Gil, Min Yong Shin, Soo Hwan Kim
  • Patent number: 11883190
    Abstract: An autonomous drug delivery system advantageously utilizes physiological monitor outputs so as to automatically give a bolus of a rescue drug or other necessary medication when certain criteria and confidence levels are met. An emergency button is provided to manually trigger administration of the rescue drug. The rescue drug may be an opioid antagonist in response to an analgesia overdose, a hypotensive drug to avert an excessive drop in blood pressure or an anti-arrhythmia drug to suppress abnormal heartbeats, to name a few.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: January 30, 2024
    Assignee: Masimo Corporation
    Inventor: Jerome J. Novak, Jr.
  • Patent number: 11857315
    Abstract: A system and method to help maintain quality control and reduce cannibalization of accessories and attached probes in a highly sensitive patient monitor, such as a pulse oximetry system. One or more attached components may have information elements designed to designate what quality control mechanisms a patient monitor should look to find on that or another component or designate other components with which the one component may properly work. In a further embodiment, such information elements may also include data indicating the appropriate life of the component.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: January 2, 2024
    Assignee: MASIMO CORPORATION
    Inventor: Ammar Al-Ali
  • Patent number: 11826174
    Abstract: A patient monitoring device includes an ECG sensor coupled to a patient, a sensor coupled to the patient and configured to detect bio-vibrational signals, and a radio frequency monitoring device configured to produce information responsive to electromagnetic energy reflected from the patient's thoracic cavity. A processor processes the ECG signals, the bio-vibrational signals, and the radio frequency information to generate a plurality of physiological parameters of the patient. The processor also performs at least one of a predictive analysis and a trend analysis of the plurality of physiological parameters to determine a current clinical condition of the patient. The trend analysis includes determining a substantial relationship between changes in the plurality of physiological parameters.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: November 28, 2023
    Assignee: ZOLL Medical Corporation
    Inventors: Kent Volosin, Gary A. Freeman
  • Patent number: 11806115
    Abstract: Various methods and systems are provided for selecting sensors for acquiring physiological data of a patient. In one embodiment, a system comprises a plurality of sensors, a dynamic selection switch communicatively coupled to the plurality of sensors, a plurality of acquisition channels communicatively coupled to the dynamic selection switch, and a processor communicatively coupled to the dynamic selection switch and configured with executable instructions in non-transitory memory that when executed cause the processor to: select a subset of sensors; control the dynamic selection switch to connect the subset of sensors to the plurality of acquisition channels; and acquire, from the subset of sensors via the plurality of acquisition channels, physiological data of a patient. In this way, a subset of sensors in a plurality of sensors may be dynamically selected in real-time for acquiring physiological data of the patient.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: November 7, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Thomas Valent, Mohammad Khair
  • Patent number: 11806169
    Abstract: An electronic device is disclosed that includes: communication circuitry, a memory operatively coupled to a processor and storing instructions which, when executed, cause the processor to: receive first physiological data and second physiological data obtained by measuring a physiological state of a user's body, obtain measurement environment data for an environment where each of the first physiological data and the second physiological data is measured, determine validity of each of the first physiological data and the second physiological data based on at least a portion of the measurement environment data, generate integrated data of the first physiological data and the second physiological data based on at least one of comparing the first physiological data with the second physiological data and the measurement environment data, based on the first physiological data and the second physiological data being valid, and control a display to display the integrated data on the display.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: November 7, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hongji Lee
  • Patent number: 11793449
    Abstract: A method and an apparatus for analyzing heart rate Variability (HRV), and use thereof are provided. A low-cost, portable and wearable signal acquisition device is utilized to acquire electrocardiography (ECG) signals of epilepsy patients for 24 hours before treatment, and a time domain index, a frequency domain index and a nonlinear index of the ECG during a long term and during a short term are calculated with a programmed HRV analysis method, and the efficacy of vagus nerve stimulation (VNS) treatment for patients with medically intractable epilepsy is accurately and efficiently predicted based on characteristic parameters for characterizing an effect level of the vagus nerve regulating the heart rate, i.e., vagus nerve activity, thereby avoiding unnecessary costs and avoiding the delay of the optimal treatment timing. In addition, the characteristic parameters obtained by the HRV analysis on the ECG may be utilized to clearly select VNS treatment indication patients.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: October 24, 2023
    Assignees: TSINGHUA UNIVERSITY, BEIJING PINS MEDICAL CO., LTD
    Inventors: Luming Li, Hongyun Liu, Zhao Yang
  • Patent number: 11768222
    Abstract: A portable connector assembly includes a belt having a clasp for creating a closed loop with the belt. A receiver has port and control electronics. A battery is removably securable in the port of the receiver. The assembly also includes an industrial connector electrically connected to the receiver for electrically connecting the control electronics with a product connector.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: September 26, 2023
    Assignee: Test Products, Incorporated
    Inventors: Carlton R. Babcock, Thomas A. Gillespie, John P. Bergmann, John D. Bruszewski
  • Patent number: 11759113
    Abstract: Intravascular devices, systems, and methods are disclosed. In some embodiments, the intravascular devices include at least one mounting structure within a distal portion of the device. In that regard, one or more electronic, optical, and/or electro-optical component is coupled to the mounting structure. In some instances, the mounting structure is formed of a plurality of material layers. In some embodiments, the material layers have substantially constant thicknesses. Methods of making and/or assembling such intravascular devices/systems are also provided.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: September 19, 2023
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventor: David H. Burkett
  • Patent number: 11730418
    Abstract: In one example, a cardiac monitoring system comprises a processor to receive a segment of an electrocardiogram (ECG) signal of a patient, and a memory to store the segment of the ECG. The processor is configured to identify QRS complexes in the segment of the ECG signal, generate a supraventricular (SV) template for SV complexes in the QRS complexes, identify SV complexes in the QRS complexes using the template, identify normal sinus rhythm (NSR) complexes in the segment of the ECG signal, obtain an atrial template for atrial waveforms in the NSR complexes, measure a range of a P-wave of the atrial waveforms from the NSR complexes, save the measured P-waves, and classify the identified SV complexes as either atrial fibrillation (AF) or supraventricular tachycardia (SVT) using the atrial template. Other examples and related methods are also disclosed herein.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: August 22, 2023
    Assignee: West Affum Holdings DAC
    Inventor: Jaeho Kim
  • Patent number: 11724028
    Abstract: The disclosure describes systems and techniques for detection of pump thrombosis in mechanical circulatory support (MCS) devices. An example pump thrombosis detection system includes a transducer and processing circuitry. The transducer may be configured to generate a signal representative of a mechanical wave from a mechanical circulatory support device. The processing circuitry is communicatively coupled to the transducer. The processing circuitry may be configured to determine an indication of pump thrombosis based on the signal and, based on the indication of pump thrombosis, control the pump thrombosis detection system to at least one of generate an alert or initiate an intervention.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Aleksandre T. Sambelashvili, David A. Anderson, James K. Carney, David M. Steinhaus, Narendra K. Simha
  • Patent number: 11727511
    Abstract: A system and method for personalized food item designer and culinary fulfillment. The system is a cloud-based network containing a food item design server, portals for restaurants and patrons, to enter their information, and a recipe generator which creates a unique dietary experience for patrons based on a multitude of variables associated with the business enterprises, patrons historic culinary transactions, dietary needs and preferences both explicit and inferred. The system may be accessed through web browsers or purpose-built computer and mobile phone applications.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: August 15, 2023
    Assignee: ROCKSPOON, INC.
    Inventor: Nagib Georges Mimassi
  • Patent number: 11717693
    Abstract: A wearable therapeutic device is provided. The wearable therapeutic device includes a garment, and the garment includes an electrode and a conductive thread. A control unit is coupled to the conductive thread and identifies an electrical connection between a conductive surface of the electrode and the conductive thread, and an alarm module can provide information about the positioning of the electrode in the garment based on the electrical connection.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: August 8, 2023
    Assignee: ZOLL MEDICAL CORPORATION
    Inventors: Emil Oskin, Philip C. Skalos, Thomas E. Kaib
  • Patent number: 11717226
    Abstract: A bioinformation acquiring apparatus includes at least one processor; and a memory configured to store a program to be executed in the processor. The processor acquires bioinformation in a chronological order; derives outlier level parameters, the outlier level parameter indicating a level of inclusion of outliers of the bioinformation in pieces of bioinformation acquired within a first duration; derives correction terms based on the bioinformation after removal of the outliers of the bioinformation from pieces of bioinformation acquired within a second duration that is longer than the first duration; selects one or both of a first correction procedure and a second correction procedure based on the outlier level parameters, as a correction procedure, the first correction procedure using the correction terms, the second correction procedure involving interpolation irrelevant to the correction terms; and corrects the outliers of the bioinformation within the first duration by the selected correction procedure.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: August 8, 2023
    Assignee: CASIO COMPUTER CO., LTD.
    Inventors: Mitsuyasu Nakajima, Kouichi Nakagome, Takashi Yamaya, Yasushi Maeno, Akira Hamada, Shinichi Matsui
  • Patent number: 11707600
    Abstract: Embodiments of the present invention provide for maintaining a level set of a pulmonary artery catheterization apparatus that includes a pulmonary artery pressure sensor in communication with a pulmonary artery catherization manifold affixed to a pulmonary artery catheter. The method includes calibrating leveling of the pulmonary artery pressure sensor (at the level of the right atrium) with the pulmonary artery catheterization manifold by recording a vertical level of a leveling base positioned at a common level to the manifold, relative to a vertical level of a leveling sensor positioned at a common level to the pulmonary artery pressure sensor. The method further includes monitoring a difference between the recorded vertical level of the leveling base relative to the vertical level of the leveling sensor. Finally, the method includes generating an alert in a user interface element of the leveling sensor in response to the monitored difference exceeding a threshold value.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: July 25, 2023
    Assignee: CARDIODRIVEN, INC.
    Inventors: David F. Snipelisky, Jonathan Hack, Joshua Friedman
  • Patent number: 11701028
    Abstract: In one aspect, a computer-implemented method includes receiving a signal corresponding to impedance across a patient's chest cavity; filtering the signal using one or more filters that reduce noise and center the signal around a zero baseline; adjusting an amplitude of the filtered signal based on a threshold value; separating the amplitude-adjusted signal into component signals, where each of the component signals represents a frequency-limited band; detecting a fractional phase transition of a component signal of the component signals; selecting a dominant component signal from the component signals based on amplitudes of the component signals at a time corresponding to the detected fractional phase transition; determining a frequency of the dominant component signal at the time corresponding to the detected fractional phase transition; and determining a respiratory rate of the patient based on the determined frequency.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: July 18, 2023
    Assignee: VIOS MEDICAL, INC.
    Inventors: Carlos A. Ricci, Vladimir V. Kovtun, Scott Thomas Mazar
  • Patent number: 11694811
    Abstract: Systems and methods for vital sign monitors are disclosed herein. In some cases, a warning score is calculated based on first measurements of a first biological condition and second measurements of a second biological condition. In particular cases, the first measurements and the second measurements are automatically measured during the same time period. The warning score may be calculated based on an average of the first measurements and an average of the second measurements. Based on determining that the warning score is outside of a predetermined range, a clinical device may output an alert.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: July 4, 2023
    Assignee: Hill-Rom Services, Inc.
    Inventors: Johannes de Bie, Yuan Shi
  • Patent number: 11660052
    Abstract: A vital signs monitoring system includes a peak pattern detection module configured to output a peak prediction signal from sensor signals based on a peak prediction algorithm; a vital sign estimating module configured to estimate a vital sign based on the peak prediction signal; an activity and context detector module configured to output a context signal based on at least one environmental condition and/or activity level of the person; and a concept drift detection module configured to output a drift signal based on drift detected in the estimated vital sign. The peak pattern prediction module is configured to update the peak prediction algorithm based on the context signal and the drift signal.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: May 30, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Christian Peters, Mohak Shah, Zubin Abraham, Thomas Rocznik, Seow Yuen Yee
  • Patent number: 11660041
    Abstract: The disclosure provides for a systems and methods for monitoring uterine contractions of a uterus of a mammal by reconstructing three-dimensional images of uterine surface electrical activity based on a noninvasively obtained body-uterus geometry and a plurality of body surface electrical potential maps.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: May 30, 2023
    Assignee: Washington University
    Inventors: Alison G. Cahill, Phillip S. Cuculich, Yong Wang, Alan Schwartz
  • Patent number: 11638533
    Abstract: The invention provides a body-worn system that continuously measures pulse oximetry and blood pressure, along with motion, posture, and activity level, from an ambulatory patient. The system features an oximetry probe that comfortably clips to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. Analog versions of these signals pass through a low-profile cable to a wrist-worn transceiver that encloses a processing unit. Also within the wrist-worn transceiver is an accelerometer, a wireless system that sends information through a network to a remote receiver, e.g. a computer located in a central nursing station.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: May 2, 2023
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Jim Moon, Devin McCombie, Marshal Dhillon, Matthew Banet
  • Patent number: 11623102
    Abstract: In some examples, an apparatus configured to be worn by a patient for cardiac defibrillation comprises sensing electrodes configured to sense a cardiac signal of the patient, defibrillation electrodes, therapy delivery circuitry configured to deliver defibrillation therapy to the patient via the defibrillation electrodes, communication circuitry configured to receive data of at least one physiological signal of the patient from at least one sensing device separate from the apparatus, a memory configured to store the data, the cardiac signal, and a machine learning algorithm, and processing circuitry configured to apply the machine learning algorithm to the data and the cardiac signal to probabilistically-determine at least one state of the patient and determine whether to control delivery of the defibrillation therapy based on the at least one probabilistically-determined patient state.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: April 11, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Randal C. Schulhauser, Jian Cao, David Probst, Daniel Hahn, Eric C. Maass, Patrick W. Kinzie
  • Patent number: 11577012
    Abstract: A blood treatment machine includes a patient comfort feedback mechanism configured to be adjusted by a patient to indicate comfort levels of the patient. The machine is configured to adjust one or more treatment parameters based on the patient feedback.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: February 14, 2023
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: David Yuds, Eric Bergman, Ken Chhi, Stephen Merchant, Christopher Yim Chau, Roland Levin
  • Patent number: 11547347
    Abstract: Improvements in ingestible electronics with the capacity to sense physiologic and pathophysiologic states have transformed the standard of care for patients. Yet despite advances in device development, significant risks associated with solid, non-flexible gastrointestinal transiting systems remain. Here, we disclose an ingestible, flexible piezoelectric device that senses mechanical deformation within the gastric cavity. We demonstrate the capabilities of the sensor in both in vitro and ex vivo simulated gastric models, quantified its key behaviors in the GI tract by using computational modeling, and validated its functionality in awake and ambulating swine. Our piezoelectric devices can safely sense mechanical variations and harvest mechanical energy inside the gastrointestinal tract for diagnosing and treating motility disorders and for monitoring ingestion in bariatric applications.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: January 10, 2023
    Assignees: Massachusetts Institute of Technology, The Brigham & Women's Hospital, Inc.
    Inventors: Canan Dagdeviren, Carlo Giovanni Traverso, Robert S. Langer
  • Patent number: 11517211
    Abstract: An apparatus and a method of measuring bioinformation are provided. The apparatus for measuring bioinformation includes a first sensor configured to measure a first biosignal including arterial pulse wave information, a second sensor configured to measure a second biosignal including venous or capillary pulse wave information, and a bioinformation estimator configured to estimate bioinformation of a user based on a time delay between the first biosignal and the second biosignal.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: December 6, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sangyun Park, Younho Kim, Yongjoo Kwon, Seungwoo Noh
  • Patent number: 11478176
    Abstract: In a microrunner structure, there are provided with components for a cleaning procedure required to conduct electrochemical sensing when a biosensor is activated for sensing; and a urine signal detection device that is a SoC (System on a Chip), which has a wireless transceiving circuit for receiving a urine measurement method and channel information transmitted from an intelligent device, and in turn, outputting a stimulus signal to trigger a biosensor or a non-biosensor in a multi-channel structure to conduct urine sense processing for a sensing area, as well as transmitting detection processing for a concentration of urine substances from the electrochemical sensing to the intelligent device through the wireless transceiving circuit to assess a risk index between a heart disease or diabetes and a kidney disease.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: October 25, 2022
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Shuenn-Yuh Lee, Ju-Yi Chen, Meng-Dar Shieh, Chia-Yu Lin, Yu-Jin Lin, Ding-Siang Ciou
  • Patent number: 11452476
    Abstract: A detection report data generation method including acquiring event type information of an electrocardiogram event corresponding to electrocardiogram event data, wherein the event data has one or more pieces of event type information; screening the event data according to signal quality evaluation indexes so as to obtain report conclusion data and report entry data; carrying out quality assessment on an event segment included in the event data according to the signal quality evaluation indexes, and determining a pre-selected sample segment according to a quality assessment result; determining position information of an event heart beat in the pre-selected sample segment, and determining segment interception parameters; carrying out interception processing on the pre-selected sample segment according to the segment interception parameters so as to obtain a typical data segment; generating report graphic data according to the typical data segment; and outputting the entry data, the graphic data and the conclusi
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 27, 2022
    Assignee: Shanghai Lepu CloudMed Co., Ltd
    Inventors: Kaifeng Zang, Haitao Lu, Pengfei Zhao, Yan Jiang, Baoquan Wang, Jun Cao
  • Patent number: 11413468
    Abstract: Signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In some examples, detected events are analyzed to identify changes in detected event amplitudes. When detected event amplitudes are dissimilar from one another, a first set of detection parameters may be invoked, and, when detected event amplitudes are similar to one another, a second set of detection parameters may be invoked. Additional examples determine whether the calculated heart rate is “high” or “low,” and then may select a third set of detection parameters for use when the calculated heart rate is high.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: August 16, 2022
    Assignee: CAMERON HEALTH, INC.
    Inventors: Venugopal Allavatam, Surekha Palreddy, Rick Sanghera, Jay A. Warren
  • Patent number: 11406562
    Abstract: A device, system, and method to control activation of oxygen saturation (SpO2) measurements in a cardio-pulmonary resuscitation (CPR) procedure. When compressions are present, only a PPG-based pulse detection algorithm is performed. When a spontaneous pulse has been detected and compressions are not detected during a predetermined time period, both a PPG-based pulse detection algorithm and an SpO2 measurement algorithm are performed. Depending on whether a chest compression is delivered manually or automatically, parameter selections for the compression detection algorithm, the PPG-based pulse detection algorithm, and the SpO2 measurement algorithm are adjusted accordingly.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: August 9, 2022
    Assignee: Koninklijke Philips N.V.
    Inventors: Ralph Wilhelm Christianus Gemma Rosa Wijshoff, Jakob Van De Laar, Jens Muehlsteff
  • Patent number: 11304646
    Abstract: Systems and methods for detecting atrial tachyarrhythmias (AT) such as atrial fibrillation (AF) are disclosed. A medical system can include a cardiac signal sensor circuit to sense a cardiac electrical signal and a heart sound (HS) sensor to sense heart a HS signal A cardiac electrical signal metric, including a cycle length variability or a detection of atrial electrical activity, can be generated from the cardiac electrical signal A HS metric can be generated from the HS signal, including a status of detection of S4 heart sound or a S4 heart sound intensity indicator. The system can include an AT detector circuit that can detect an AT event, such as an AF event, using the cardiac electrical signal metric and the HS metric. The system can additionally classify the detected AT event as an AF or an atrial flutter event.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: April 19, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Bin Mi, Howard D. Simms, Jr., Qi An, John D. Hatlestad, Keith R. Maile
  • Patent number: 11278724
    Abstract: Limited-number-of-use neuromodulator apparatuses that may be comfortably worn on the skin of a user to non-invasively apply transdermal electrical stimulation (TES). The apparatuses described herein may be include a flexible/bendable substrate and an elastomeric cover (e.g., formed of an elastomeric fabric). These apparatuses may be simplified, to run autonomously. These apparatuses may also include improved power management features.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: March 22, 2022
    Assignee: Thync Global, Inc.
    Inventors: Wing Law, Isy Goldwasser, Remi Demers, Sumon K. Pal
  • Patent number: 11259745
    Abstract: An autonomous drug delivery system advantageously utilizes physiological monitor outputs so as to automatically give a bolus of a rescue drug or other necessary medication when certain criteria and confidence levels are met. An emergency button is provided to manually trigger administration of the rescue drug. The rescue drug may be an opioid antagonist in response to an analgesia overdose, a hypotensive drug to avert an excessive drop in blood pressure or an anti-arrhythmia drug to suppress abnormal heartbeats, to name a few.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: March 1, 2022
    Assignee: MASIMO CORPORATION
    Inventor: Jerome J. Novak, Jr.
  • Patent number: 11253184
    Abstract: Systems and methods for reconstructing heart sounds from heart sound samples taken under a sub-optimal condition, such as at a low sampling rate, are discussed. An exemplary system receives acceleration information from a patient sensed at a first sampling rate, and generate a heart sound ensemble of portions of acceleration information over multiple cardiac cycles. The system can reconstruct a heart sound segment to have a second sampling rate, higher than the first sampling rate, using the generated heart sound ensemble. A heart sound metric can be generated using the reconstructed heart sound segment, and used for detecting a cardiac event, such as a cardiac arrhythmia episode, or a worsening heart failure event.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: February 22, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan Bennett Shute, Bin Mi, Qi An
  • Patent number: 11234658
    Abstract: Systems, methods, and computer program products are disclosed that may be used for photoplethysmogram data analysis and presentation. For example, photoplethysmogram (PPG) signal data is received as communicated by a PPG sensor of a wearable device worn by a user. A heartbeat interval may be determined from at least the PPG signal data. Also, an electrocardiogram (ECG)-type waveform spanning the heartbeat interval may be generated at a graphical interface.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: February 1, 2022
    Assignee: LIVMOR, INC.
    Inventors: Ken Persen, Weiguang Shao
  • Patent number: 11207526
    Abstract: A medical device is configured to produce a cardiac motion signal by sampling a signal produced by an axis of a motion sensor, starting a blanking period, suspending the sampling of the signal during at least a portion of the blanking period, and restarting the sampling of the signal at the sampling frequency before the blanking period has expired. The medical device may detect a cardiac event from the cardiac motion signal and generate a pacing pulse in response to detecting the cardiac event in some examples.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: December 28, 2021
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Vincent P. Ganion, Greggory R. Herr, Michael L. Hudziak, Juliana E. Pronovici, Paul R. Solheim
  • Patent number: 11207028
    Abstract: A system and method adapted for at least one health-related application selected from physiological monitoring, defibrillation, and pacing in the presence of electromagnetic interference (EMI) using the time-domain features of EMI patterns and physiological waveforms. The invention enables EMI detection and identification in a plurality of signals, including various physiological signals, which may contain both physiological information and EMI-generated artifacts. The system utilizes adaptive and versatile modular architecture with a set of modules for various filtering, conditioning, processing, and wireless transmission functions, which can be assembled in different configurations for different settings. In some preferred embodiments, the method and system of this invention are incorporated into (or attached to) an external cardiac defibrillator/monitor or cardiac pacing device.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: December 28, 2021
    Inventor: Vladimir Shusterman
  • Patent number: 11202601
    Abstract: This document discusses, among other things, systems and methods for monitoring a patient at risk of epilepsy. A system comprises a sensor circuit that senses from the patient at least first and second physiological or functional signals. A wellness detector circuit can detect an epileptic event using the sensed physiological or functional signals, or additionally classify the epileptic event into one of epileptic seizure types. The system can generate a wellness indicator based on a trend of the physiological or functional signal during the detected epileptic event. The wellness indicator indicates an impact of the detected epileptic event on the health status of the patient. The system includes an output unit configured to output the detection of the epileptic event or the wellness indicator to a user or a process.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: December 21, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Pramodsingh Hirasingh Thakur, Qi An, Amy Jean Brisben, Stephen B. Ruble, Keith R. Maile
  • Patent number: 11197637
    Abstract: A system includes a controller coupled to one or more sensors. The controller receives sensor data indicative of biometric data an occupant of a vehicle seat from the sensors. The controller receives the sensor data and analyzes the data to provide biometric data associated with the occupant of the vehicle seat.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: December 14, 2021
    Assignee: Faurecia Automotive Seating, LLC
    Inventors: Sean M. Montgomery, Pioter Drubetskoy
  • Patent number: 11172835
    Abstract: A method of monitoring sleep comprises simultaneously recording a person's electrocardiogram (ECG) and photoplethysmogram (PPG), deriving a plurality of parameters from the recorded data, and providing an output indicative of a sleep characteristic based upon an analysis of the parameters. The ECG and PPG may be recorded using an apparatus which is a combination of a Holter monitor and a pulse oximeter, which is wearable in ambulatory manner.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: November 16, 2021
    Inventors: Conor Heneghan, Eric Chern-Pin Chua, Gareth McDarby
  • Patent number: 11170499
    Abstract: A method is for the automated evaluation of at least one image data record of a patient recorded with a medical image recording device for the preparation of diagnostic findings. In the method, at least one item of input data describing the patient and/or the recording process and/or the examination target is determined after completion of the recording of the image data record. A selection algorithm which evaluates the image data record and the input data is used for determining at least one automated evaluation process to be applied and applicable and at least one image quality measure with regard to the evaluation process is determined by evaluating the image data record. The selected automated evaluation process is only performed for an image quality measure meeting a threshold quality requirement.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: November 9, 2021
    Assignee: SIEMENS HEALTHCARE. GMBH
    Inventor: Razvan Ionasec
  • Patent number: 11160484
    Abstract: A system includes an ambulatory medical device and a server.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: November 2, 2021
    Assignee: ZOLL Medical Corporation
    Inventors: Adam Sullivan, Thomas E. Kaib, Francesco Nicolo, Steven J. Szymkiewicz, Jason T. Whiting
  • Patent number: 11154255
    Abstract: A method for analyzing heart rate variability, and an apparatus and use thereof, the method for analyzing heart rate variability including collecting ECG data in vitro; digitizing and denoising the ECG data; forming the processed ECG data into a sinus NN interval sequence; selecting sinus NN interval data of 4 hours in an awake state; performing MSE calculation on the sinus NN interval sequence of 4 hours in an awake state; and extracting parameters representing the complexity of a heart rate by using MSE curves. The present invention may provide accurate and efficient screening for drug-refractory epilepsy patients who are suitable for vagus nerve stimulation surgery, thus avoiding unnecessary expenses, and avoiding missing the most opportune moment for treatment. At the same time, patients suitable for VNS surgery are selected by using MSE complexity feature parameters of ECG, thus improving the overall efficacy of VNS therapy.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: October 26, 2021
    Assignees: TSINGHUA UNIVERSITY, BEIJING PINS MEDICAL CO.. LTD.
    Inventors: Luming Li, Hongyun Liu, Zhao Yang
  • Patent number: 11147499
    Abstract: A method of determining atrial fibrillation includes determining if a patient's pulse beats form an irregular pattern. If so, presence of an irregular pulse is indicated to a patient and, an electrocardiogram is obtained for determining atrial fibrillation. Initially, a pulse is detected at regular time intervals from a first appendage when motionless, using a pulse detector and pulse rhythms from a succession of time intervals, each corresponding to a respective interval of time between successive pulse beats of a sequence of the pulse beats. Then, a second appendage makes contact with an electrically conductive unit, and electrocardiogram signals are detected simultaneously with pulse rhythms while the first appendage is motionless and both appendages are relaxed. The signals are then analyzed to determine whether, in combination, they are indicative of atrial fibrillation.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: October 19, 2021
    Inventor: Joseph Wiesel
  • Patent number: 11143562
    Abstract: A device for detecting a pressure of a fluid medium is described. The device includes at least one housing having at least two pressure feeds; at least one sensor module, the sensor module being accommodated in the housing, the sensor module including at least one support element, the support element including at least one substrate and at least one molding compound, the support element further including at least one passage opening, the passage opening entirely penetrating the support element; at least one pressure sensor element for detecting the pressure, the pressure sensor element including at least one diaphragm, the pressure sensor element covering the passage opening; at least one control and evaluation unit, the control and evaluation unit being at least partially enclosed by the molding compound. A method for manufacturing the device is also described.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: October 12, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Markus Reinhard, Masoud Habibi, Winfried Kuhnt
  • Patent number: 11116416
    Abstract: The present disclosure describes a method and device to monitor the heart of a subject using radio signals. Availability of a portable heart monitor that can be used in a subject's home can increase patient compliance and improve diagnosis rates of cardiac conditions. A mobile heart monitor can be especially useful to those subjects who are elderly, incapacitated, or do not have easy access to a clinic, doctor's office, or hospital.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: September 14, 2021
    Assignees: Cardiac Motion, LLC, The Regents of the University of California
    Inventors: Dennis Matthews, Xiaoguang Liu, Songjie Bi
  • Patent number: 11112937
    Abstract: An incident management system with graphical user interface mechanisms for control of the routing of incoming calls and other information regarding a plurality of ongoing incidents. Thumbnail icons, each corresponding to a different defined geographic area, are displayed and, in response to a user input selecting a thumbnail icon, a map is displayed identifying a defined geographic area corresponding to the selected thumbnail icon with a plurality of call icons and at least one incident icon. The call icons each correspond to a different active incoming call from within the defined geographic area and are each positioned on the map accordingly. At least one of the displayed call icons is assigned to an incident group and an incident icon is displayed for each ongoing incident managed by the system to which at least one displayed call icon has been assigned.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: September 7, 2021
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Nicolas Therrien, Erik Fournier, Chantal Levert, Jean-Yves Poulin
  • Patent number: 11070391
    Abstract: The present invention relates to a method for configuring a management unit connected to at least one home automation equipment (17) comprising at least one home automation device (D) and at least one central control unit (U), the method being implemented by a management unit (Sv) and comprising the following steps: configuring (EcfSv2) an alert (AI) corresponding to the triggering of a notification (N) and/or an action (Ac) when a triggering condition (Cnd, Cndp) is produced relating to at least one state variable (S) for a home automation device (D), a group of home automation devices (D), a type of home automation device (DT) or a group of types of home automation devices (DT); the step of configuring an alert (AI) being carried out on the basis of instructions of a first user (Usr1) having a first user profile type (UsrT1); declaring (ECfUsr25) the monitoring of an assembly (SDS) of home automation devices (D) comprising at least one home automation device (D) for which at least one alert (AI) has been de
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: July 20, 2021
    Assignee: OVERKIZ
    Inventor: Sylvain Pognant
  • Patent number: 11004035
    Abstract: This disclosure describes systems and methods for a graphical interface including a graphical representation of medical data. The graphical interface platform may receive medical data and provide medical safety reporting capabilities including reporting of history data and real-time visual monitoring data. The graphical interface platform may be configured to identify potential problems and corrections to medical devices in operation while a reporting cycle is underway through visual representation of performance metrics.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: May 11, 2021
    Assignee: ICU Medical, Inc.
    Inventors: James A. Hume, Robert Mayer, Devy Amy Lee, Gabriele Christensen, Candida Arvelo, Timothy L. Ruchti, Tamas Ban, Mohammad M. Khair, Nancy G. Hedlund
  • Patent number: 10950342
    Abstract: A medical ventilator (100, 200) including a first user interface (114) having a touch-sensitive display having a display area; and at least one controller (104) which determines whether a second user interface (122, 222) having a touch-sensitive display is coupled to the medical ventilator, enables the first user interface when it is determined that the second user interface is not coupled to the medical ventilator, and enables the second user interface when it is determined that the second user interface is coupled to the medical ventilator.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: March 16, 2021
    Assignee: Koninklijke Philips N.V.
    Inventors: Dongxing He, Norbert Daberko, Oliver Smith