Heart Patents (Class 600/508)
  • Patent number: 11502464
    Abstract: A USB cable that includes a cable coupling element selected from a first connector, a printed circuit board, or a device, as well as a multi-port connector that includes a multi-port connector including a housing, at least two ports defined by the housing, at least two female USB connectors disposed within the housing, and at least two retention arms extending from the housing. The USB cable also includes conductors electrically coupling the first connector to the at least two female USB connectors and a jacket extending between the first connector and the multi-port connector, wherein the conductors are at least partially disposed within the jacket. In another USB cable, in addition to or as an alternative to the retention arms, each of the at least two female USB connectors is spaced at least 10 mm from the opening of the port through which the female USB connector is accessible.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: November 15, 2022
    Assignee: National Products, Inc.
    Inventors: Jeffrey D. Carnevali, Scott Anderson
  • Patent number: 11484453
    Abstract: A system for automatically assessing orthostatic hypotension for a patient supported on a patient support apparatus. The system receives position data identifying a first position of a patient supported on a patient support apparatus, and after a delay, receives vital signs data of the patient. The system receives position data identifying a second position of the patient supported on the patient support apparatus, and after a delay, receives vital signs data of the patient. The system determines an orthostatic hypotension assessment based on a difference in the vital signs data between the first and second positions. Based on the orthostatic hypotension assessment, the system modifies one or more conditions on the patient support apparatus to mitigate a risk for patient fall.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: November 1, 2022
    Assignee: Hill-Rom Services, Inc.
    Inventors: Kristen Keaton Lightcap, Timothy Receveur, Matthew Mccormick Riordan, Eugene Urrutia
  • Patent number: 11471691
    Abstract: Embodiments herein relate to implantable medical devices including a power subunit with a first biocompatible electrically conductive shell configured for direct contact with an in vivo environment. In some embodiments a lithium anode can be disposed within the first biocompatible electrically conductive shell in direct electrical communication with a feedthrough pin, wherein the feedthrough pin is electrically isolated from the first biocompatible electrically conductive shell. A cathode can also be disposed within the first biocompatible electrically conductive shell and can be in direct electrical communication with the first biocompatible electrically conductive shell. The first biocompatible electrically conductive shell has a positive electrical potential. The implantable medical device further includes an electronics control subunit with a control circuit disposed within a second biocompatible electrically conductive shell. Other embodiments are included herein.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: October 18, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Troy Anthony Giese, Ignacio Chi, Michael J. Root, Larry Michael Killeen
  • Patent number: 11457865
    Abstract: The invention relates to wearable electronic equipment and method for measuring heart rate or muscular activity of a person. The equipment comprises one or more heartbeat or muscular activity sensors for providing a heartbeat or muscular activity signal, respectively, and a motion sensor for providing a motion signal corresponding to movement of the person. In addition, there are provided processing means for detecting from the heartbeat or muscular activity signal first events corresponding to individual heartbeats or muscle activations, respectively, and from the motion signal second events corresponding to movement changes stronger than a predefined threshold. The processing means are further programmed to form a first time series of said first events, and to determine the heartbeat or muscular activity parameter using the first time series.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: October 4, 2022
    Assignee: Suunto Oy
    Inventors: Mikko Martikka, Heikki Nieminen, Kimmo Pernu, Olli-Pekka Ojanen, Erik Lindman
  • Patent number: 11426088
    Abstract: Provided are a system and method of generating an aggregated stability map of one or more rotational sources associated with a heart rhythm disorder. In accordance therewith, a plurality of rotational area profile maps is accessed for a plurality of analysis intervals. Each of the profile maps includes rotation intensity values for a plurality of locations associated with rotation of the one or more rotational sources. An aggregated stability map is generated based on the profile maps, wherein the stability map includes a plurality of locations. Each location includes a rotation intensity value based at least on a filter number of highest rotation intensity values from corresponding locations of the profile maps, the filter number being automatically determined from a plurality of filter numbers such that the plurality of profile maps as filtered includes a predetermined number of rotation intensity values in excess of a threshold intensity value.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: August 30, 2022
    Assignee: Topera, Inc.
    Inventors: William Robert Macneil, Carey Robert Briggs, Christopher Todd Schuster, Heather A. Drury
  • Patent number: 11424036
    Abstract: Embodiments include a system for determining patient cardiovascular information which includes at least one computer system configured to receive patient-specific data regarding a geometry of an anatomical structure of a patient; create a model representing at least a portion of the anatomical structure of the patient based on the patient-specific data; determine a first blood flow rate at at least one point of interest in the model by using relations of individual-specific anatomic data to functional estimates of blood flow characteristics generated from a plurality of individuals; modify the model; determine a second blood flow rate at a point in the modified model corresponding to the at least one point of interest by using the relations of individual-specific anatomic data to functional estimates of blood flow characteristics; and determine a fractional flow reserve value as a ratio of the second blood flow rate to the first blood flow rate.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: August 23, 2022
    Assignee: HeartFlow, Inc.
    Inventors: Timothy A. Fonte, Leo Grady
  • Patent number: 11419559
    Abstract: A device, system, and method is provided for detecting pain in a cardiac-related region of the body and determining whether that pain is cardiac or non-cardiac. The device, system, and method may include calculating or determining a first feature based on a variation in activity level and a variation in the detected heartrate measurement and a second feature based on a variation in the detected ECG features and a first feature and then subjecting at least the first feature and the second feature to a cardiac pain classifier to determine a cardiac classification.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: August 23, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Vikram Basawaraj Patil Okaly, Ravindra Balasaheb Patil, Rithesh Sreenivasan, Krishnamoorthy Palanisamy
  • Patent number: 11406307
    Abstract: A system and method for measuring the impedance of one or more of a plurality of leads in an electrocardiogram (ECG) are disclosed. These may include applying a plurality of leads to a patient's body, applying a plurality impedance pads to the patient's body, providing a burst pulse from the catheter electrode of the ECG, measuring impedance signals across ones of the plurality of impedance pads and the plurality of leads, and determining the impedance for one or more leads from the measured impedance signals. The plurality of impedance pads may define a first axis from the right side of the patient's chest to the left side of the patient's chest, a second axis from the upper chest area of the patient to the lower abdomen area of the patient, and a third axis from the center of the patient's back to the center of the patient's chest.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: August 9, 2022
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Assaf Govari, Yaron Ephrath
  • Patent number: 11399735
    Abstract: A method includes, in a calibration phase, positioning a calibration-tool, including a mapping-electrode and a sensor of a location-measuring system, in an organ. The calibration-tool is tracked at different positions in the organ using the location-measuring system. A set of calibration data points is generated at the respective different positions, each calibration data point including signal-values obtained using the mapping-electrode and a corresponding position measurement of the sensor by the location-measuring system. The method further includes, in an investigation phase that is subsequent to the calibration phase, positioning an investigation-tool at a location in the organ. The signal-values at the location are measured using a mapping-electrode of the investigation-tool.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: August 2, 2022
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventor: Assaf Govari
  • Patent number: 11375902
    Abstract: A physiological signal processing system for a physiological waveform that includes a cardiovascular signal component provides a variable high pass filter that is responsive to the physiological waveform, and that is configured to high pass filter the physiological waveform in response to a corner frequency that is applied. A heart rate metric extractor is responsive to the variable high pass filter and is configured to extract a heart rate metric from the physiological waveform that is high pass filtered. A corner frequency adjuster is responsive to the heart rate metric extractor and is configured to determine the corner frequency that is applied to the variable high pass filter, based on the heart rate metric that was extracted. Analogous methods may also be provided.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: July 5, 2022
    Assignee: Valencell, Inc.
    Inventor: Eric Douglas Romesburg
  • Patent number: 11369309
    Abstract: A system for monitoring medical conditions including pressure ulcers, pressure-induced ischemia and related medical conditions comprises at least one sensor adapted to detect one or more patient characteristic including at least position, orientation, temperature, acceleration, moisture, resistance, stress, heart rate, respiration rate, and blood oxygenation, a host for processing the data received from the sensors together with historical patient data to develop an assessment of patient condition and suggested course of treatment, including either suspending or adjusting turn schedule based on various types of patient movement. Compliance with Head-of-Bed protocols can also be performed based on actual patient position instead of being inferred from bed elevation angle.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: June 28, 2022
    Assignee: LEAF HEALTHCARE, INC.
    Inventors: Barrett J. Larson, Mark Weckwerth, Charles Matthew Peterson Hammond, Daniel Z. Shen
  • Patent number: 11363993
    Abstract: Systems and methods are described for subject rehospitalization management. In an example, multiple physiologic signals can be obtained from a subject using multiple sensors. In response to a hospitalization event, pre-hospitalization characteristics of the multiple physiologic signals can be identified. Post-hospitalization characteristics of the multiple physiologic signals can be identified, including characteristics that differ from their corresponding pre-hospitalization characteristics. Later subsequent physiologic signals can be further monitored after the hospitalization event, such as using the same multiple sensors, and subsequent physiologic signal characteristics can be identified. In an example, a heart failure diagnostic indication can be determined using information about the pre-hospitalization characteristics, the post-hospitalization characteristics, and the subsequent characteristics.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: June 21, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Qi An, Barun Maskara, Julie A. Thompson
  • Patent number: 11342913
    Abstract: Provided is a reverse current switch. The reverse current switch includes: a comparison unit including a first input end, a second input end, and a first output end; and a switch resistance unit, where a first end of the switch resistance unit is connected to the first input end, a second end of the switch resistance unit is connected to the second input end, and a third end of the switch resistance unit is connected to the output end of the comparison unit, and the switch resistance unit is controlled by a voltage of the first output end. This reverse current switch has a simple structure and can implement working under low voltage conditions.
    Type: Grant
    Filed: November 16, 2019
    Date of Patent: May 24, 2022
    Assignee: SHENZHEN GOODIX TECHNOLOGY CO., LTD.
    Inventor: Mengwen Zhang
  • Patent number: 11331003
    Abstract: A method for contextually aware determination of respiration includes obtaining, by an electronic device, context information and selecting, by the electronic device, a set of sensor data associated with respiratory activity of a subject, based on the context information. The method further includes selecting, based on the selected set of sensor data, an algorithm from a plurality of algorithms for determining a respiration rate of the subject, and determining, by applying the selected algorithm to the selected set of sensor data associated with respiratory activity of the subject, the respiration rate for the subject.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: May 17, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Md Mahbubur Rahman, Ebrahim Nemati, Jilong Kuang, Nasson Boroumand, Jun Gao
  • Patent number: 11317830
    Abstract: A system for monitoring a person may include a person-worn sensor device including at least one sensor (e.g., at least one accelerometer, magnetometer, altimeter, etc.) configured to collect sensor data and a processor to process data from the person-worn sensor device. The processor may be configured to determine or access an orientation of a physical support apparatus (e.g., bed, table, wheelchair, chair, sofa, or other structure for supporting the person), receive sensor data collected by the person-worn sensor device, calculate an orientation of the person relative to the physical support apparatus based on (a) the orientation of the physical support apparatus and (b) the sensor data collected by the person-worn sensor device, and identify, based on the determined orientation of the person relative to the physical support apparatus, a physical support apparatus exit condition indicating an occurrence or anticipated occurrence of the person exiting the physical support apparatus.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: May 3, 2022
    Assignee: LEAF HEALTHCARE, INC.
    Inventors: Daniel Shen, Barrett Larson, Mark Weckwerth
  • Patent number: 11304617
    Abstract: Some embodiments of the present disclosure relate to electronic technologies, and provide a detection circuit. According to embodiments of the present disclosure, the detection circuit includes a first load module, a second load module, a third load module, a first detection module, a second detection module, and an obtaining module. A first end of the first detection module is connected to a junction between a first detection electrode and the first load module, a second end of the first detection module is connected to the obtaining module, a first end of the second detection module is connected to a junction between a second detection electrode and the second load module, and a second end of the second detection module is connected to the obtaining module.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: April 19, 2022
    Assignee: Shenzhen Goodix Technology Co., Ltd.
    Inventors: Chenyang Kong, Si Herng Ng
  • Patent number: 11305111
    Abstract: A medical electrical lead and methods of implanting medical electrical leads in lumens. Leads in accordance with the invention employ preformed biases to stabilize the lead within a lumen and to orient electrodes in a preferred orientation.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: April 19, 2022
    Assignee: ZOLL RESPICARDIA, INC.
    Inventors: Randy W. Westlund, Mark C. Lynn
  • Patent number: 11304663
    Abstract: Systems and methods for detecting an anomaly in a cardiovascular signal using hierarchical extremas and repetitions. The traditional systems and methods provide for some anomaly detection in the cardiovascular signal but do not consider the discrete nature and strict rising and falling patterns of the cardiovascular signal and frequency in terms of hierarchical maxima points and minima points. Embodiments of the present disclosure provide for detecting the anomaly in the cardiovascular signal using hierarchical extremas and repetitions by smoothening the cardiovascular signal, deriving sets of hierarchical extremas using window detection, identifying signal patterns based upon the sets of hierarchical extremas, identifying repetitions in the signal patterns based upon occurrences and randomness of occurrences of the signal patterns and classifying the cardiovascular signal as anomalous and non-anomalous for detecting the anomaly in the cardiovascular signal.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: April 19, 2022
    Assignee: TATA CONSULTANCY SERVICES LIMITED
    Inventors: Soma Bandyopadhyay, Arijit Ukil, Chetanya Puri, Rituraj Singh, Arpan Pal, C A Murthy
  • Patent number: 11309888
    Abstract: Provided is a reverse current switch. The reverse current switch includes: a comparison unit including a first input end, a second input end, and a first output end; and a switch resistance unit, where a first end of the switch resistance unit is connected to the first input end, a second end of the switch resistance unit is connected to the second input end, and a third end of the switch resistance unit is connected to the output end of the comparison unit, and the switch resistance unit is controlled by a voltage of the first output end. This reverse current switch has a simple structure and can implement working under low voltage conditions.
    Type: Grant
    Filed: November 16, 2019
    Date of Patent: April 19, 2022
    Assignee: SHENZHEN GOODIX TECHNOLOGY CO., LTD.
    Inventor: Mengwen Zhang
  • Patent number: 11298081
    Abstract: Systems and methods for monitoring patients with a chronic disease such as heart failure are disclosed. The system may include a physiological sensor circuit to sense physiological signals and generate signal metrics from the physiological signals. The system may include a health status analyzer circuit to use the signal metrics to generate one or more stability indicators of patient health status, such as stability of heart failure status. The system may additionally generate one or more health status indicators indicating patient health status such as heart failure progression. A patient disposition decision may be generated using the health status indicators and the stability indicators to provide an indication of readiness for patient discharge from or a risk of admission to a hospital.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: April 12, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Jeffrey E. Stahmann, Pramodsingh Hirasingh Thakur, Viktoria A. Averina, Keith R. Maile
  • Patent number: 11291846
    Abstract: A long-range wireless charging enhancement structure for implantable medical devices (IMDs) is disclosed. The abovementioned enhancement structure provides a possibility for long-range charging the IMDs, which maintains the quality of user's lives and also reduces the risks of replacing the batteries through surgeries. The enhancement structure includes an enhancer, which comprises an emitter, a carrier, an IMD, and an enhancement module. The enhancement module is set within the carrier and disposed at the outer surface of user's skin between the emitter and the IMD. The charging signals emitted by the emitter is enhanced by the enhancement module and further transmitted for charging the IMD inside the user's tissue.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: April 5, 2022
    Assignee: ORION BIOTECH INC.
    Inventor: Ming-Fu Chiang
  • Patent number: 11284836
    Abstract: The present disclosure provides systems and methods for predicting fluid responsiveness. Embodiments include sensors configured to obtain a high-resolution electrocardiogram signal and a computer system connected to the sensors, the computer system including a memory, a processor, and a display device. Computer system may be configured to receive the electrocardiogram signal from the sensors. Processor may be configured to detect and process changes in at least one of length, amplitude, slope, area, depth, and height of at least one of P, Q, R, S, T, and U complex of the electrocardiogram signal caused by the influence of physiological variables on each other to create a prognostic index. Processor may be further configured to analyze, quantify, and combine the prognostic index of the changes in the electrocardiogram signal and generate a fluid responsiveness prediction. Display device may display the results of the fluid responsiveness prediction.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: March 29, 2022
    Assignee: CN MEDICAL RESEARCH LLC
    Inventor: Cvetko Nikolic
  • Patent number: 11284803
    Abstract: An endoscopic system can include an endoscope shaft having a proximal end and a distal end, and an electrically active sensor system including at least one sensor mounted proximate the distal end and positioned to sense at least one characteristic of an environment in which the distal end is located. The capacitance of the sensor system relative to earth ground maintains current leakage to a level that meets a cardiac float rating.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: March 29, 2022
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Dominique Brichard, Peter M. Herzlinger, David D. Scott, Klaus Zietlow
  • Patent number: 11278231
    Abstract: Methods of generating a graphical representation of cardiac information on a display screen are provided. The method comprises: electronically creating or acquiring an anatomical model of the heart including multiple cardiac locations; electronically determining a data set of source information corresponding to cardiac activity at the multiple cardiac locations; electronically rendering the data set of source information in relation to the multiple cardiac locations on the display screen. Systems and devices for providing a graphical representation of cardiac information are also provided.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: March 22, 2022
    Assignee: ACUTUS MEDICAL, INC.
    Inventors: Christoph Scharf, Graydon E. Beatty, Gunter Scharf, Randell L. Werneth, Timothy J. Corvi, J. Christopher Flaherty, Maxwell R. Flaherty
  • Patent number: 11278237
    Abstract: A system for monitoring medical conditions including pressure ulcers, pressure-induced ischemia and related medical conditions comprises at least one sensor adapted to detect one or more patient characteristic including at least position, orientation, temperature, acceleration, moisture, resistance, stress, heart rate, respiration rate, and blood oxygenation, a host for processing the data received from the sensors together with historical patient data to develop an assessment of patient condition and suggested course of treatment, including either suspending or adjusting turn schedule based on various types of patient movement. The sensor can include one or more of bi-axial or tri-axial accelerometers, magnetometers and altimeters as well as resistive, inductive, capacitive, magnetic and other sensing devices, depending on whether the sensor is located on the patient or the support surface, and for what purpose.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: March 22, 2022
    Assignee: LEAF HEALTHCARE, INC.
    Inventors: Barrett J Larson, Daniel Z. Shen, Mark V. Weckwerth, Charles Matthew Peterson Hammond
  • Patent number: 11278209
    Abstract: Disclosed are devices, systems, and methods for determining the dipole densities on heart walls. In particular, a triangularization of the heart wall is performed in which the dipole density of each of multiple regions correlate to the potential measured at various located within the associated chamber of the heart. To create a database of dipole densities, mapping information recorded by multiple electrodes located on one or more catheters and anatomical information is used. In addition, skin electrodes may be implemented. Additionally, one or more ultrasound elements are provided, such as on a clamp assembly or integral to a mapping electrode, to produce real time images of device components and surrounding structures.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: March 22, 2022
    Assignee: ACUTUS MEDICAL, INC.
    Inventors: Christoph Scharf, Gunter Scharf, Randell L. Werneth
  • Patent number: 11272864
    Abstract: A monitoring and alerting system can be used in any condition with a respiration component. Respiratory symptoms as well as supporting physiological functions are tracked against the user's baseline and alerts the user when there is a worsening trend. The system is self-contained in a wearable that detects and logs the signals, analyzes them and generates alerts. The wearable is untethered during use and may be attached to the body in various manners, such as with adhesives, clothing, clips, belts, chains, necklaces, ear pieces, clothing circuits or the like. Information can further be transmitted both wirelessly and via wire to devices, cloud storage, or the like.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: March 15, 2022
    Assignee: HEALTH CARE ORIGINALS, INC.
    Inventor: Jared Dwarika
  • Patent number: 11272860
    Abstract: A user-wearable sensor device may be configured to be directly or indirectly secured to a user or to an article worn by the user. The user-wearable sensor device may include at least one sensor configured to collect sensor data associated with an orientation of the user, a display unit including at least one LED or other visual indicator, a battery configured to provide power to at least the display unit, and a control system. The control system may be configured to determine the orientation of the user based on sensor data collected by the at least one sensor, maintain the display unit in a deactivated state in the absence of a defined activation input, detect a defined activation input, activate the deactivated display unit in response to detecting the defined activation input, and control the activated display unit based on the determined orientation of the user.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: March 15, 2022
    Assignee: LEAF HEALTHCARE, INC.
    Inventors: Barrett Larson, Mark Weckwerth
  • Patent number: 11273302
    Abstract: A method includes acquiring a bipolar signal from a first electrode and a second electrode contacting a first location and a second location, respectively, in a heart of a living subject. The method further includes acquiring a unipolar signal from the first electrode while in contact with the first location, and deriving from the bipolar signal and the unipolar signal a point in time at which the first location is generating the unipolar signal. The method also includes computing a metric for a conduction velocity of the unipolar signal at the first location based on a shape of the unipolar signal at the point in time.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: March 15, 2022
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Lior Botzer, Amir Ben-Dor, Yoram Chmiel, Aharon Turgeman, Liron Shmuel Mizrahi, Noga Salomon, Galia Givaty
  • Patent number: 11266843
    Abstract: Aspects of the present disclosure are directed toward apparatuses, systems, and methods that may comprise a medical device having a header, a core assembly, and a scaffold assembly. The scaffold assembly may be configured to interface with the core assembly and position and support one or more circuit component relative to one or more other circuit components.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: March 8, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jean M. Bobgan, James M. English, David P. Stieper, Richard Percy, Patrick J. Barry, Ernest Beaudet, Matthew Couri, Mark A. Lamberty
  • Patent number: 11263739
    Abstract: A repair length determination method that can accurately calculate a repair region (repair length) in which repair is to be performed in a structure and an apparatus are provided. The repair length determination method has: an image acquiring step of acquiring an image obtained by imaging a repair target region; a detection step of detecting a crack from the image; a display step of displaying a crack; a pointing step of pointing a plurality of points including two points at both ends of the crack; an interpolation curve creating step of creating an interpolation curve by using the pointed points; and a repair length determining step of measuring a length of the interpolation curve and determining a repair length. The apparatus is used for the determination method.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: March 1, 2022
    Assignee: FUJIFILM Corporation
    Inventor: Makoto Yonaha
  • Patent number: 11259750
    Abstract: A guidewire system includes an elongated wire configured for insertion into a luminal space, such as the vasculature, of a body. The wire is conductive and configured to conduct electrical signals. One or more sensors are coupled to a distal section of the wire and configured to send and receive the electrical signals via the wire. The wire through which the one or more sensors are coupled is the only wire through which the one or more sensors send and receive the electrical signals.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: March 1, 2022
    Assignee: XENTER, INC.
    Inventors: Richard J. Linder, Edwin Meade Maynard, Scott Kenneth Marland, Cory Rex Estes, Steven Matthew Quist, Nathan J. Knighton
  • Patent number: 11246499
    Abstract: A far-infrared emitters with physiological signal detection and method of operating the same is disclosed. A far-infrared beam module is switched on and generates far-infrared beam irradiating to a human body when a control unit starting up a microwave detecting module detecting physiological signal of the human body. The control unit is switched off when the time that the far-infrared beam irradiating on the human body reach a presetting period of time, thereby achieving the purpose of energy conservation.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: February 15, 2022
    Assignees: NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, TAIPEI MEDICAL UNIVERSITY
    Inventors: San-Liang Lee, Chao-Hsiung Tseng, Ling-Hsiu Hung, Yung-Ho Hsu, Cheng-Hsien Chen
  • Patent number: 11219410
    Abstract: A system and method for accurately estimating cutaneous water loss resulting from exercise. The system comprises a component to determine the ambient temperature and a component to determine the total energy expenditure resulting from exercise. The cutaneous water loss is calculated with the equation: Cutaneous Water Loss=(m*(air temperature)+b)*(energy expenditure) where m is a function of air temperature and h is a constant.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: January 11, 2022
    Assignee: SPORTS SCIENCE SYNERGY, LLC
    Inventor: Samuel N. Cheuvront
  • Patent number: 11207122
    Abstract: A power device is configured couple to an electrosurgical generator (410). The power device includes at least one connector (420, 422, 423, 510, 511), a rectifier (113), an energy storage device (115), and a bipolar energy controller (101). The at least one connector (420, 422, 423, 510, 511) is configured to couple to the electrosurgical generator (410) and receive electrosurgical energy. The rectifier (113) is configured to rectify at least a portion of the electrosurgical energy and provide rectified energy. The energy storage device (115) is configured to store at least a portion of the rectified energy. The bipolar energy controller (101) is configured to be powered by the energy storage device (115) and to control providing of an output bipolar energy.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: December 28, 2021
    Assignee: COVIDIEN LP
    Inventor: Scott E. M. Frushour
  • Patent number: 11157380
    Abstract: Methods, apparatus, and processor-readable storage media for device temperature impact management using machine learning techniques are provided herein. An example computer-implemented method includes obtaining one or more notifications pertaining to temperature information associated with one or more devices; generating one or more predictions pertaining to at least one potential problem with at least one of the one or more devices by applying one or more machine learning models to the one or more obtained notifications; determining one or more automated actions related to the one or more predictions by utilizing at least one neural network to process data associated with temperature control for the at least one device; and automatically initiating the one or more automated actions.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: October 26, 2021
    Assignee: Dell Products L.P.
    Inventors: Parminder Singh Sethi, Hung T. Dinh, Sabu K. Syed, Kannappan Ramu
  • Patent number: 11147463
    Abstract: An apparatus includes a sensor module, a data processing module, a quality assessment module and an event prediction module. The sensor module provides biosignal data samples and motion data samples. The data processing module processes the biosignal data samples to remove baseline and processes the motion data samples to generate a motion significant measure. The quality assessment module generates a signal quality indicator based on the processed biosignal data sample segments and the corresponding motion significance measure using a first deep learning model. The event prediction module generates an event prediction result based on the processed biosignal data sample segments associated with a desired signal quality indicator using a second deep learning model.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: October 19, 2021
    Inventors: Alireza Aliamiri, Yichen Shen
  • Patent number: 11147517
    Abstract: The described embodiments relate to systems, methods, and apparatuses for reducing interference of signals transmitted by a physiological measurement device (108, 210, 312), such as an electrocardiogram device. The physiological measurement device can employ filters (308) that use coefficients to reduce time-domain differences between response signals of the physiological measurement device. The coefficients can be derived during a calibration process where each channel of the physiological measurement device is supplied a test signal (202) for identifying the channel with the slowest or most delayed response. Thereafter, when a monitor signal is compiled from response signals filtered using the coefficients, differences in timing between the response signals will not result in distortion of the monitor signal, thereby rendering the monitor signal more accurate for measurement purposes.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: October 19, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Christoph Florian Franck
  • Patent number: 11122990
    Abstract: A new apparatus, algorithm, and method are introduced herein to support navigation and placement of an intravascular catheter using the electrical conduction system of the heart (ECSH) and control electrodes placed on the patient's skin.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: September 21, 2021
    Assignee: Bard Access Systems, Inc.
    Inventors: Sorin Grunwald, Isabella B. Hurezan
  • Patent number: 11127499
    Abstract: A method for a device detects periodic breathing in a patient. The method may include receiving a series of event intervals bounded by apnea or hypopnea events detected in respiration of the patient, and processing, upon closure of an event interval, the event interval to determine a character of the event interval, such as any of: probably a periodic breathing cycle; probably not a periodic breathing cycle; and uninformative. The method may further include determining whether to change a current periodic breathing state that indicates whether a periodic breathing episode is in progress, based on a history of event interval characters that is long compared to the typical length of a periodic breathing cycle real-time detection of periodic breathing.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: September 21, 2021
    Inventor: Dinesh Ramanan
  • Patent number: 11116989
    Abstract: A computer implemented method for determining heart arrhythmias based on cardiac activity that includes under control of one or more processors of an implantable medical device (IMD) configured with specific executable instructions to obtain far field cardiac activity (CA) signals at electrodes located remote from the heart, and obtain acceleration signatures, at an accelerometer of the IMD, indicative of heart sounds generated during the cardiac beats. The IMD is also configured with specific executable instructions to declare a candidate arrhythmia based on a characteristic of at least one R-R interval from the cardiac beats, and evaluate the acceleration signatures for ventricular events (VEs) to re-assess a presence or absence of at least one R-wave from the cardiac beats and based thereon confirming or denying the candidate arrhythmia.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: September 14, 2021
    Assignee: PACESETTER, INC.
    Inventors: Jong Gill, Gene A. Bornzin
  • Patent number: 11096619
    Abstract: A neural analysis and treatment system includes a computing device with a memory for storing an application that is executable on a processor to receive amplitude-integrated electroencephalography (aEEG) and range-EEG (rEEG) measurements associated with a patient. The systems determine a spectral edge frequency (SEF) measurement from the received EEG measurements, and determine one or more neural characteristics of the patient according to the determined SEF, aEEG, and rEEG measurements. These neural characteristics may then be used to identify and implement an appropriate therapeutic treatment.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: August 24, 2021
    Assignee: Innara Health, Inc.
    Inventors: Steven M. Barlow, David L. Stalling, Kenneth Aron
  • Patent number: 11102306
    Abstract: Systems and methods for continuous measurement of an analyte in a host are provided. The system generally includes a continuous analyte sensor configured to continuously measure a concentration of analyte in a host and a sensor electronics module physically connected to the continuous analyte sensor during sensor use, wherein the sensor electronics module is further configured to directly wirelessly communicate displayable sensor information to a plurality of different types of display devices.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: August 24, 2021
    Assignee: DexCom, Inc.
    Inventors: Michael Robert Mensinger, John Michael Dobbles, Apurv Ullas Kamath, Beat Stadelmann, Deborah M. Ruppert, Nasser Salamati, Richard C. Yang
  • Patent number: 11090022
    Abstract: The invention discloses a quality testing method dynamic test phantom simulating cardiovascular motion for quality evaluation of CT imaging, and its control principle and quality testing method.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: August 17, 2021
    Assignee: THE SECOND AFFILIATED HOSPITAL OF PLA ARMY MEDICAL UNIVERSITY
    Inventors: Peng Zhao, YinBao Chong, WenCai Pan, Lang Lang, Jiaqing Yang, Jingjing Xiao, Jieshi Ma, ShiHui Zhang
  • Patent number: 11083388
    Abstract: A near-field sensor method and device for obtaining cardiovascular information is disclosed. A transmission-line aperture arrangement configured to guide electromagnetic waves and emit near-field fringing energy, is placed near the skin. The transmission line is excited at a narrow-band Gigahertz frequency. The near-field fringing energy emitted by the sensor device penetrates at least partially into the skin and underlying blood vessels, and this energy is partially absorbed and partially phase shifted in a time varying manner according to the changes in physiology of the skin. The status of the sensor device is monitored over a plurality of time intervals, and changes in both the phase and the amplitude of the signals passing though the transmission line are used to determine the cardiovascular information such as heart rates. Various transmission-line configurations, and various reference transmission-line methods to reduce low-frequency noise, are also discussed.
    Type: Grant
    Filed: November 6, 2016
    Date of Patent: August 10, 2021
    Inventors: Jun-Chau Chien, Stanley Yuanshih Chen
  • Patent number: 11064918
    Abstract: The invention provides a body-worn patch sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The patch sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: July 20, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna
  • Patent number: 11051751
    Abstract: A system for monitoring medical conditions including pressure ulcers, pressure-induced ischemia and related medical conditions comprises at least one sensor adapted to detect one or more patient characteristic including at least position, orientation, temperature, acceleration, moisture, resistance, stress, heart rate, respiration rate, and blood oxygenation, a host for processing the data received from the sensors together with historical patient data to develop an assessment of patient condition and suggested course of treatment, including either suspending or adjusting turn schedule based on various types of patient movement. The sensor can include bi-axial or tri-axial accelerometers, as well as resistive, inductive, capacitive, magnetic and other sensing devices, depending on whether the sensor is located on the patient or the support surface, and for what purpose.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: July 6, 2021
    Assignee: LEAF HEALTHCARE, INC.
    Inventors: Barrett J Larson, Daniel Z. Shen, Mark V. Weckwerth, Charles Matthew Peterson Hammond
  • Patent number: 11039796
    Abstract: Embodiments are directed to methods and systems for adaptive heart rate monitoring. In one scenario, a method for adaptive heart rate monitoring includes receiving, from a pulse-oximeter, a sensor signal, where the sensor signal is photoplethysmogram waveform. The method next includes generating a frequency-domain photoplethysmogram waveform by applying a transform algorithm to the sensor signal, and dividing the resulting frequency-domain photoplethysmogram waveform into discrete frequency regions. The method further includes identifying a fundamental heart rate harmonic within one of the discrete frequency regions by analyzing each discrete frequency region according to a specified analytic algorithm, and triggering a user interface to display a biometric measurement corresponding to the identification of the fundamental heart rate harmonic.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: June 22, 2021
    Assignee: Owlet Baby Care, Inc.
    Inventor: Sean Kerman
  • Patent number: 11026637
    Abstract: A graphical representation may be displayed including at least a plurality of transducer graphical elements, each transducer graphical element of the plurality of transducer graphical elements representative of a respective transducer of a plurality of transducers of a transducer-based device. A set of user input may be received including an instruction set to reposition a first transducer graphical element in a state in which the first transducer graphical element is located at a first location in the graphical representation and a second transducer graphical element is located at a second location in the graphical representation, the second location closer to a predetermined location in the graphical representation than the first location. In response to conclusion of receipt of the set of user input, the first transducer graphical element may be repositioned from the first location in the graphical representation to the predetermined location in the graphical representation.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: June 8, 2021
    Assignee: KARDIUM INC.
    Inventors: Saar Moisa, Michael Hermann Weber
  • Patent number: 11026638
    Abstract: A graphical representation may be displayed including at least a plurality of transducer graphical elements, each transducer graphical element of the plurality of transducer graphical elements representative of a respective transducer of a plurality of transducers of a transducer-based device. A set of user input may be received including an instruction set to reposition a first transducer graphical element in a state in which the first transducer graphical element is located at a first location in the graphical representation and a second transducer graphical element is located at a second location in the graphical representation, the second location closer to a predetermined location in the graphical representation than the first location. In response to conclusion of receipt of the set of user input, the first transducer graphical element may be repositioned from the first location in the graphical representation to the predetermined location in the graphical representation.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: June 8, 2021
    Assignee: KARDIUM INC.
    Inventors: Saar Moisa, Michael Hermann Weber