Tachycardia Or Fibrillation Detected Patents (Class 600/518)
  • Patent number: 10850113
    Abstract: A medical device, such as an extra-cardiovascular implantable cardioverter defibrillator (ICD), senses R-waves from a first cardiac electrical signal by a first sensing channel and stores a time segment of a second cardiac electrical signal acquired by a second sensing channel in response to each sensed R-wave. The ICD determines morphology match scores from the stored time segments of the second cardiac electrical signal and, based on the morphology match scores, withholds detection of a tachyarrhythmia episode. In some examples, the ICD detects T-wave oversensing based on the morphology match scores and withholds detection of a tachyarrhythmia episode in response to detecting the T-wave oversensing.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: December 1, 2020
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Saul E. Greenhut, Xusheng Zhang
  • Patent number: 10842998
    Abstract: Devices and methods for single therapy pulse (STP) therapy for tacharrythmia are disclosed. The STP therapy can be delivered from a far-field position to allow a “global” capture approach to pacing. Due to the global capture in STP, a series of pulses, which is indicative of conventional anti-tachycardia pacing (ATP) delivered by transvenous systems, becomes unnecessary. One to four pulses at most are needed for STP, and after delivery of the one to four pulses, therapy delivery can be interrupted to determine whether the previously delivered therapy has been successful.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: November 24, 2020
    Assignee: CAMERON HEALTH, INC.
    Inventors: James M. Keefe, Rick Sanghera
  • Patent number: 10827983
    Abstract: A method of determining a likelihood of an occurrence of a cardiac arrhythmia in a patient includes receiving three-dimensional imaging data of said patient's heart, constructing a whole-heart model for simulating at least one of electrophysiological activity or electromechanical activity of the patient's heart using the three-dimensional imaging data, simulating a response of the patient's heart to each of a plurality of stimulations to a corresponding plurality of different locations within the patient's heart using the whole-heart model, classifying each simulation outcome for each stimulation as one of a normal heart rhythm or a cardiac arrhythmia, calculating a likelihood index based on results of the classifying, and determining the likelihood of the occurrence of the cardiac arrhythmia in the patient based on the likelihood index. Software and data processing systems that implement the above methods are also provided.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: November 10, 2020
    Assignee: The Johns Hopkins University
    Inventors: Fijoy Vadakkumpadan, Hermenegild Arevalo, Natalia Trayanova, Katherine Wu
  • Patent number: 10777318
    Abstract: An apparatus includes a network interface and a processor. The network interface is configured to communicate over a communication network. The processor is configured to receive (i) data, including a medical parameter acquired as a function of time, and (ii) a selection of one or more time intervals of interest within the time period. The processor is further configured to compress a first portion of the data, which is within the selected time intervals, at a first resolution, and compress a second portion of the data, which is outside the selected time intervals, at a second resolution, which is coarser than the first resolution. The processor is additionally configured to transmit the compressed first and second portions of the data, via the network interface, over the communication network.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: September 15, 2020
    Assignee: Biosense Webster (Israel) Ltd.
    Inventor: Assaf Govari
  • Patent number: 10729346
    Abstract: A computer implemented method and system for confirming a device documented arrhythmia in cardiac activity are provided. The method is under control of one or more processors configured with executable instructions. The method obtains a cardiac activity (CA) data set that includes CA signals for a series of cardiac events and includes device documented (DD) markers within the series of cardiac events. The device documented markers are indicative of atrial fibrillation (AF) detected by the ICM utilizing an on-board R-R interval irregularity (ORI) process to analyze the CA signals. The method applies a feature enhancement function to the CA signals to form modified CA signals with enhanced sinus features and analyzes the enhanced sinus features in the modified CA signals. The method utilized a confirmatory feature detection process to identify false AF detection by the ORI process. The method records a result of the analysis identifying false AF detection by the ORI process.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: August 4, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Fujian Qu, Jong Gill, Neha Malhotra, Stuart Rosenberg, Gene A. Bornzin, Fady Dawoud
  • Patent number: 10716516
    Abstract: A monitor recorder-implemented method for electrocardiography data compression and an electrocardiography monitor recorder with integral data compression are provided. A series of data items are obtained, each of the data items associated with a magnitude of an ECG signal sensed by a monitor recorder. A range is set for an initial one of the data items in the series. Each of the data items remaining in the series is processed, including: obtaining an estimation of probabilities of the data items appearing next to that data item in the series; dividing the further range into sub-ranges, each sub-range representing a fraction of the further range proportional to the probabilities of the next data items; selecting the sub-range corresponding to the data item next to that data item in the series; and representing the next data item by the selected sub-range in a non-volatile memory.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: July 21, 2020
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Jason Felix, Ezra M. Dreisbach
  • Patent number: 10709390
    Abstract: A system that detects heartbeats includes a sensor or a transducer and algorithms based on deep learning. The algorithms employ techniques of artificial intelligence that enable the system to extract heartbeat features under low signal-to-noise-ratio (SNR) conditions when a user is exercising. The algorithms can be applied to various technologies for heart rate monitoring such as ultrasound Doppler, photoplethysmogram (PPG), electrocardiogram (EKG), acoustic, pressure/force sensing and laser/RF Doppler, among other types of sensing methods.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: July 14, 2020
    Assignee: LOGOS CARE, INC.
    Inventors: Kaizhi Qian, Yang Zhang, Thomas Y. Lo
  • Patent number: 10617347
    Abstract: Embodiments of the present disclosure relate generally to the use of spectral sensors during a cardiac arrest event. More specifically, the present disclosure relates to the use of spectral sensors for measuring changes in pH and muscle oxygen saturation to estimate subject down time and evaluating the effectiveness of the clinical treatment administered during a cardiac arrest event. Given the narrow window of time in which emergency treatment must be administered, as well as the lack of information concerning the subject's condition, there is a need for a fast and accurate method of estimating the onset of the cardiac arrest emergency and evaluating the effectiveness of the emergency treatment being administered.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: April 14, 2020
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, Ulrich Herken, Christopher L. Kaufman, Annemarie Elizabeth Silver
  • Patent number: 10617320
    Abstract: An apparatus includes a sensing circuit configured to generate a sensed physiological signal representative of cardiac activity of a subject, an arrhythmia detection circuit, a control circuit, and a memory. The arrhythmia detection circuit detects an episode of atrial fibrillation (AF) in the sensed cardiac signal using a first AF detection criterion, and detects the episode of AF using a second AF detection criterion. The first AF detection criterion has greater sensitivity to AF detection than the second AF detection criterion, and the second AF detection criterion has greater specificity to AF detection than the first AF detection criterion. The control circuit initiates storing of sampled values of a segment of the cardiac signal that includes the episode of AF when the episode of AF is detected by both the first AF detection criterion and the second AF detection criterion.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: April 14, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, David L. Perschbacher, Keith L. Herrmann
  • Patent number: 10602942
    Abstract: We disclose herein a method of detecting abnormalities in electrocardiogram (ECG) signals, the method comprising receiving a set of ECG signals from an ECG device; amplifying only the peaks of at least some of the set of ECG signals to produce ECG beat markings from which a heart rate is derivable to detect an irregular rhythm between at least two ECG beats; extracting a single ECG beat from the set of ECG signals from the ECG device by using said ECG beat markings; feeding the extracted single ECG beat into a first neural network; producing, at the first neural network, a compact representation of the extracted single ECG signal so as to generate a feature extraction output; and using, at a second neural network, the feature extraction output from the first neural network to generate a score associated with the abnormalities in the ECG signals.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: March 31, 2020
    Assignee: CAMBRIDGE HEARTWEAR LIMITED
    Inventors: Rameen Shakur, Levin Chun Kiat Tan, Roberto Cipolla
  • Patent number: 10561331
    Abstract: A method of detecting atrial fibrillation includes detecting a pulse signal to obtain a time pulse waveform and converting it to an energy spectrum waveform via Fast Fourier Transform. The energy spectrum waveform includes a first frequency region, a second frequency region, and a third frequency region. The number of spikes in each frequency region was calculated and the heart indexes of the first, second, and third frequency regions were obtained, which were the first heart index, the second heart index, and the third heart index. And by the sum of the three heart index values and the first heart index to determine the possibility of atrial fibrillation. An apparatus for detecting atrial fibrillation is also provided, whereby the user can determine the possibility and predicting atrial fibrillation by simple measurement of blood pressure at home.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: February 18, 2020
    Inventor: Kuo-Yuan Chang
  • Patent number: 10555680
    Abstract: A method and system for mapping an anatomical structure includes sensing activation signals of intrinsic physiological activity with a plurality of mapping electrodes disposed in or near the anatomical structure, each of the plurality of mapping electrodes having an electrode location. A vector field map which represents a direction of propagation of the activation signals at each electrode location is generated to identify a signature pattern and a location in the vector field map according to at least one vector field template. A target location of the identified signature pattern is identified according to a corresponding electrode location.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: February 11, 2020
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Shibaji Shome, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Barun Maskara, Sunipa Saha
  • Patent number: 10537288
    Abstract: A computer-implemented method including, transmitting a high-spectrum energy wave towards a subject from a first sensor and transmitting a low-spectrum energy wave towards the subject from a second sensor. In response, modulation with a carrier sequence code results in a modulated evoked biological signal. The carrier sequence code has an autocorrelation function. The method includes demodulating the modulated evoked biological signal by calculating a convolution of the modulated evoked biological signal with the carrier sequence code resulting in an evoked biological signal spectrum. The evoked biological signal spectrum has a peak to sideband ratio as a function of the carrier sequence code. The method includes calculating deviations between each element of the sampled evoked biological signal and the peak to sideband ratio and filtering noise artifacts from the sampled evoked biological signal based on the deviations.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: January 21, 2020
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kin C. Fung, Timothy J. Dick, Charles William Hall, Jr.
  • Patent number: 10368769
    Abstract: A system for detecting an atrial tachyarrhythmia episode includes a medical device having sensing circuitry configured to receive a cardiac electrical signal from electrodes coupled to the medical device and a processor configured to detect an atrial tachyarrhythmia episode in response to a time duration of the cardiac electrical signal classified as an atrial tachyarrhythmia being greater than or equal to a first detection threshold. The processor is configured to determine if detection threshold adjustment criteria are met based on at least the detected first atrial tachyarrhythmia episode and adjust the first detection threshold to a second detection threshold different than the first detection threshold in response to the detection threshold adjustment criteria being met.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: August 6, 2019
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Mark L. Brown, Elise J. Higgins, Paul J. Degroot
  • Patent number: 10362948
    Abstract: Methods and devices for combining multiple signals from multiple sensing vectors for use in wearable or implantable cardiac devices. Signals from multiple vectors may be combined using weighting factors and/or by conversion to different coordinate systems than the original inputs, which may or may not be normalized to patient anatomy. Signals from multiple sensing vectors may be combined prior to or after several analytical steps or processes including before or after filtering, and before or after cardiac cycle detection. Cardiac cycle detection information may be combined across multiple sensing vectors before or after analysis of individual vectors for noise or overdetection. Cardiac cycle detection information may also be combined across multiple sensing vectors to identify noise and/or overdetection.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: July 30, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Amy Jean Brisben, Venugopal Allavatam, Deepa Mahajan, Krzysztof Z. Siejko, Kevin G. Wika, Keith L. Herrmann, Stephen J. Hahn
  • Patent number: 10342448
    Abstract: A system including a sensor interface coupled to a processor. The sensor interface is configured to receive and process an analog electrocardiogram signal of a subject and provide a digitized electrocardiogram signal sampled over a first time period and a second time period that is subsequent to the first time period. The processor is configured to receive the digitized electrocardiogram signal, to analyze a frequency domain transform of the digitized electrocardiogram signal sampled over the first and second time periods and determine first and second metrics indicative of metabolic state of a myocardium of the subject during the first and second time periods, respectively, to compare the first and second metrics to determine whether the metabolic state of the myocardium of the subject is improving, and to indicate administration of an intervention to the subject in response to a determination that the metabolic state is not improving.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: July 9, 2019
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, Ulrich Herken
  • Patent number: 10335604
    Abstract: A defibrillator and method for using a defibrillator which adopts an ECG analysis algorithm that can detect a cardiac arrhythmia in the presence of noise artifact induced by cardio pulmonary resuscitation (CPR) compressions. The apparatus and method offers guidance throughout a cardiac rescue protocol involving both defibrillation shocks and CPR that improves the effectiveness of the rescue, resulting in more CPR “hands-on” time, better treatment of refibrillation, and reduced transition times between CPR and electrotherapy.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: July 2, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Stacy Earl Gehman, James Knox Russell, Christopher William Fleming, Dawn Blilie Jorgenson, David Roy Axness
  • Patent number: 10321836
    Abstract: The present disclosure encompasses an “artifact score” derived from the signal characteristics of an acquired 12-lead ECG, (2) a “patient context score” derived from key elements of the patient's history, presentation, and prehospital emergency care, and (3) techniques for integrating these scores into an emergency medical care system.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: June 18, 2019
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Robert G. Walker, Daniel W. Piraino
  • Patent number: 10307071
    Abstract: A method for assessing the electrical function of a heart, a method for determining a subject's need for the implantation of an implantable cardioverter defibrillator or the need for administration of an anti-arrhythmic agent, and apparatus for assessing the function of the heart and a computer program product. The methods and products involve analysis of ECG.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: June 4, 2019
    Assignee: University of Leicester
    Inventors: William B. Nicolson, Andre G. Ng
  • Patent number: 10265026
    Abstract: There is described a technique using apparatus for recording and analyzing a surface electrocardiogram (ECG) for distinguishing a physiological signal from noise. The technique involves aligning and averaging multiple surface electrogram records taken for repeated pacing sequence with the same interval between pacing stimuli.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: April 23, 2019
    Assignee: Fen EP, Ltd.
    Inventor: Richard Saumarez
  • Patent number: 10213125
    Abstract: A method and medical device for detecting a cardiac event that includes sensing a cardiac signal, determining RR-intervals in response to the sensed cardiac signal, detecting a cardiac event in response to the RR-intervals, iteratively sensing a predetermined number of P-waves in response to detecting the cardiac event, and confirming the cardiac event in response to the iteratively sensed P-waves.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: February 26, 2019
    Assignee: Medtronic, Inc.
    Inventors: Jian Cao, Paul J DeGroot
  • Patent number: 10201305
    Abstract: An apparatus for storing data records associated with a medical monitoring event in a data structure. An implanted device obtains data and stores the data in the data record in a first data structure that is age-based. Before an oldest data record is lost, the oldest data record may be stored in a second data structure that is priority index-based. The priority index may be determined by a severity level and may be further determined by associated factors. The implanted device may organize, off-load, report, and/or display a plurality of data records based on an associated priority index. Additionally, the implanted device may select a subset or composite of physiologic channels from the available physiologic channels based on a selection criterion.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: February 12, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Touby A. Drew, Jonathon E. Giftakis, Nina M. Graves, Jonathan C. Werder, David L. Carlson
  • Patent number: 10163527
    Abstract: Techniques for generating a user interface for monitoring biometric data. Embodiments generate a first portion of the user interface by plotting values of a first biometric parameter on a first graph structure with respect to a first interval of time and generate a second portion of the user interface by plotting values of a second biometric parameter on a second graph structure with respect to a second interval of time that overlaps with only a portion of the first interval of time. Upon receiving a user selection specifying a first position within the first graph structure, embodiments determine a third interval of time that is centered at a moment in time corresponding to the specified first position and update the second graph structure by plotting a third plurality of values of the second biometric parameter on the second graph structure, with respect to the third interval of time.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: December 25, 2018
    Assignee: Preventice Technologies, Inc.
    Inventors: George F. Eckman, Mark L. Holm, Richard M. Smith
  • Patent number: 10117595
    Abstract: A method and an apparatus for detecting cardiac arrhythmia and a recording medium using the method are provided. In the method, physiological signals of a human comprising a sequence of heart pulses are acquired, and an average of heartbeat intervals between pairs of consecutive heart pulses in the sequence of heart pulses is calculated. Each pair of consecutive heartbeat intervals is examined to identify premature ventricular contraction (PVC) candidates or atrial premature contraction (APC) candidates based on whether a difference between the pair of consecutive heartbeat intervals is larger than a product of a factor and the average of heartbeat intervals and whether an average of the pair of consecutive heartbeat intervals is within a predetermined range.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: November 6, 2018
    Assignee: HTC Corporation
    Inventors: Chih-Hung Chang, Emily Joanne Chang, Tung-Peng Wu
  • Patent number: 10111613
    Abstract: Methods for storing data records associated with a medical monitoring event in a data structure. An implanted device obtains data and stores the data in the data record in a first data structure that is age-based. Before an oldest data record is lost, the oldest data record may be stored in a second data structure that is priority index-based. The priority index may be determined by a severity level and may be further determined by associated factors. The implanted device may organize, off-load, report, and/or display a plurality of data records based on an associated priority index. Additionally, the implanted device may select a subset or composite of physiologic channels from the available physiologic channels based on a selection criterion.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: October 30, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Touby A. Drew, Jonathon E. Giftakis, Nina M. Graves, Jonathan C. Werder, David L. Carlson
  • Patent number: 9962102
    Abstract: A method and implantable medical device for determining a flutter event in response to a cardiac signal that includes sensing the cardiac signal, determining a sensing window in response to the sensed cardiac signal, the sensing window having a first portion and a second portion. A first derivative signal and a second derivative signal are determined in response to the sensed cardiac signal within the first portion and the second portion of the sensing window, and a sum of amplitudes of the second derivative signal within one or both of the first portion and the second portion of the sensing window is determined, and the flutter event is determined in response to the determined sum of amplitudes.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: May 8, 2018
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Daniel L Hansen, Grant A Neitzell
  • Patent number: 9918651
    Abstract: Periodic electrical signal data, such as electrocardiogram signal data, is collected, analyzed, and transformed into compacted, multi-dimensional matrix that makes it easier for healthcare professionals to analyze the health condition of a patient. The electrical signal data, characterized by periodic deflection elements that collectively form a periodic signal complex, is analyzed to determine peaks of deflection elements, where peaks can vary greatly, but in ways not readily visible on standard electrocardiograms. The techniques create and display the multi-dimensional matrix from aligning identified peaks, so that the matrix can be readily overlayed with an automatically-identified signal pattern indicative of one or more of an arrhythmia, a precursor to an arrhythmia, a cardiac event, and/or a precursor to a cardiac even.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: March 20, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Jimo Borjigin, Duan Li
  • Patent number: 9889313
    Abstract: A medical device such as an external defibrillator delivers electrical therapy using a special pulse sequence. The special pulse sequence includes a defibrillation shock that is automatically followed by a quick succession of automatic post-shock anti-tachycardia (APSAT) pacing pulses. Because of the pacing pulses, the defibrillation shock can be of lesser energy than an equivalent defibrillation shock of a larger energy. Accordingly, the external defibrillator can be made physically smaller and weigh less, without sacrificing the therapeutic effect of a larger external defibrillator that would deliver a defibrillation shock of higher energy. As such, the defibrillator is easier to configure for transporting, handling, and even wearing.
    Type: Grant
    Filed: February 11, 2017
    Date of Patent: February 13, 2018
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph L. Sullivan, David Thomas Brown, David Peter Finch
  • Patent number: 9883813
    Abstract: A method can determine one or more origins of focal activation. The method can include computing phase for the electrical signals at a plurality of nodes distributed across a geometric surface based on the electrical data across time. The method can determine whether or not a given candidate node of the plurality of nodes is a focal point based on the analyzing the computed phase and magnitude of the given candidate node. A graphical map can be generated to visualize focal points detected on the geometric surface.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: February 6, 2018
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Qingguo Zeng, Rémi DuBois, Ping Jia, Ryan Bokan, Venkatesh Vasudevan, Charulatha Ramanathan, Maria Strom, Brian P. George
  • Patent number: 9872638
    Abstract: An apparatus for determining information indicative of cardiac malfunctions includes a processing device (602) configured to detect whether the time-trend of a signal indicative of cardiovascular motion manifests an indicative phenomenon where the amplitude of a first heartbeat is greater than the amplitude of a second heartbeat and the temporary heartbeat rate is greater prior to the first heartbeat than prior to the second heartbeat. The processing device is further configured to produce an indicator of cardiac malfunction, e.g. an indicator of atrial fibrillation, in response to a situation in which the indicative phenomenon is detected to be present.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: January 23, 2018
    Assignee: PRECORDIOR OY
    Inventors: Tero Koivisto, Tuomas Valtonen, Mikko Pankaala, Kati Sairanen
  • Patent number: 9872652
    Abstract: A method and corresponding apparatus employ a time-varying spectral analysis approach for reconstructing an electrocardiogram (ECG) signal that includes motion artifacts. The motion artifacts are produced by motion of an ECG sensor relative to a sensing location. The time-varying spectral analysis based approach enables the ECG signal to be reconstructed with accuracy by suppressing the motion artifacts. Example applications for the method and corresponding apparatus include ECG-based heart rate monitoring in wearable devices for fitness tracking and health monitoring even during intense physical activities.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: January 23, 2018
    Assignee: University of Connecticut
    Inventors: Seyed M. A. Salehizadeh, Ki H. Chon, Yeonsik Noh
  • Patent number: 9802056
    Abstract: Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In some illustrative examples, detected events are analyzed to identify changes in detected event amplitudes. When detected event amplitudes are dissimilar from one another, a first set of detection parameters may be invoked, and, when detected event amplitudes are similar to one another, a second set of detection parameters may be invoked. Additional methods determine whether the calculated heart rate is “high” or “low,” and then may select a third set of detection parameters for use when the calculated heart rate is high.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: October 31, 2017
    Assignee: Cameron Health, Inc.
    Inventors: Venugopal Allavatam, Surekha Palreddy, Rick Sanghera, Jay A. Warren
  • Patent number: 9743855
    Abstract: A system including a sensor interface coupled to a processor. The sensor interface is configured to receive and process an analog electrocardiogram signal of a subject and provide a digitized electrocardiogram signal sampled over a first time period and a second time period that is subsequent to the first time period. The processor is configured to receive the digitized electrocardiogram signal, to analyze a frequency domain transform of the digitized electrocardiogram signal sampled over the first and second time periods and determine first and second metrics indicative of metabolic state of a myocardium of the subject during the first and second time periods, respectively, to compare the first and second metrics to determine whether the metabolic state of the myocardium of the subject is improving, and to indicate administration of an intervention to the subject in response to a determination that the metabolic state is not improving.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: August 29, 2017
    Assignee: ZOLL Medical Corporation
    Inventors: Gary A. Freeman, Ulrich Herken
  • Patent number: 9737227
    Abstract: A system and method for mapping an anatomical structure includes sensing activation signals of physiological activity with a plurality of mapping electrodes disposed in or near the anatomical structure. Patterns among the sensed activation signals are identified based on a similarity measure generated between each unique pair of identified patterns which are classified into groups based on a correlation between the corresponding pairs of similarity measures. A characteristic representation is determined for each group of similarity measures and displayed as a summary plot of the characteristic representations.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: August 22, 2017
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Shibaji Shome, Allan C. Shuros, Shantha Arcot-Krishnamurthy, Barun Maskara, Sunipa Saha
  • Patent number: 9737267
    Abstract: A method can include storing a plurality of data sets including values computed for each of a plurality of points for a given spatial region of tissue, the values in each of the data sets characterizing electrical information for each respective point of the plurality of points for a different time interval. The method can also include combining the values computed for each of a plurality of points in a first interval, corresponding to a first map, with the values for computed for each of the respective plurality of points in another interval and to normalize the combined values relative to a common scale. The method can also include generating a composite map for the given spatial region based on the combined values that are normalized.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: August 22, 2017
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Maria Strom, Qingguo Zeng, Remi Dubois, Ping Jia, Ryan Bokan, Venkatesh Vasudevan, Charulatha Ramanathan, Brian P. George
  • Patent number: 9724046
    Abstract: An apparatus (1) and method for detecting pulse-related parameters, such as pulse arrhythmia is presented. The apparatus (1) detects a series of pulses from a user, e.g. through a cuff-related measurement. Time differences, amplitude and pattern differences between multitudes of N pulses are determined. The apparatus investigates the degree of similarity of multiple pulse periods and/or pulse amplitudes and/or pulse pattern and subsequently generates a statistical set of similarity values based on a plurality of compared results. Basing on this, the apparatus generates a decision value based on the statistical sets of similarity values, and uses the decision value to determine whether or not the user discloses a normal pulse rhythm, atrial fibrillation, premature atrial or ventricular contractions, tachycardia, bradycardia and/or unspecified pulse arrhythmia. Further an artefact index is generated, informing the user whether a measurement was taken under sufficient artefact-free measurement conditions.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: August 8, 2017
    Assignee: ROSSMAX INTERNATIONAL LTD.
    Inventor: Klaus Forstner
  • Patent number: 9717430
    Abstract: An electrocardiogram (ECG) signal processing system is provided. The ECG signal processing system comprises an analog-to-digital converter (ADC) configured to convert an input analog ECG signal into a digital ECG signal, and a digital signal processing engine (DSPE) coupled to the ADC to receive the digital ECG signal. The DSPE is configured to decompose and reconstruct the digital ECG signal. A dynamic system clock source is coupled to the ADC and the DSPE for dynamic signal sampling, the dynamic system clock source clocking the ADC and the DSPE at a first frequency f1 to detect one or more first parameters of the input analog ECG signal and at a second frequency f2 to detect one or more second parameters of the input analog ECG signal.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: August 1, 2017
    Assignee: Agency of Science, Technology and Research
    Inventors: Xin Liu, Jun Zhou
  • Patent number: 9693704
    Abstract: A system for assessing a cardiac condition of a subject includes a sensor configured to record a plurality N of electrocardiographic signals from the subject to generate an ECG (electrocardiogram). The system further includes a processor configured to compute an RMS (root-mean-square) magnitude function from the recorded signals, and to measure from the RMS magnitude function an RMS variable that contains information about the cardiac condition of the subject. The ECG may be a standard 12-lead clinical ECG. The measured RMS variables may include RMS T-wave width, RMS RT recovery time, and RMS QT interval.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: July 4, 2017
    Inventors: Robert L. Lux, Jay W. Mason
  • Patent number: 9693700
    Abstract: A method of automatically determining which type of treatment is most appropriate for a cardiac arrest victim, the method comprising transforming one or more time domain electrocardiogram (ECG) signals into a frequency domain representation comprising a plurality of discrete frequency bands, combining the discrete frequency bands into a plurality of analysis bands, wherein there are fewer analysis bands than discrete frequency bands, determining the content of the analysis bands, and determining the type of treatment based on the content of the analysis bands.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: July 4, 2017
    Assignee: ZOLL Medical Corpoaration
    Inventors: Qing Tan, Gary A. Freeman, Frederick J. Geheb, James E. Brewer
  • Patent number: 9687164
    Abstract: Embodiments of the invention disclose a method and a system for signal analyzing and a processing module of the system. The signal analyzing system includes a plurality of first electrodes, a plurality of second electrodes, and a processing module. The first electrodes transmit a plurality of first input signals. The second electrodes transmit a plurality of second input signals. The processing module generates a body electrical signal according to at least one of the plurality of first input signals and at least one of the plurality of second input signals, generates a first filtered signal corresponding to the plurality of first input signals, generates a second filtered signal corresponding to the plurality of second input signals, and generates a lead signal according to the body electrical signal, the first filtered signal and the second filtered signal.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: June 27, 2017
    Assignee: MEDIATEK INC.
    Inventor: Po-Wen Ku
  • Patent number: 9681819
    Abstract: Method of determining atrial fibrillation including determining if a patient's pulse beats form an irregular pattern and only if so, indicating the presence of an irregular pulse to the patient and obtaining an electrocardiogram for determining atrial fibrillation. Initially, a pulse is detected at regular time intervals of a first appendage of the patient when motionless using a pulse detector secured to the first appendage and pulse rhythms from a succession of time intervals are detected each corresponding to a respective interval of time between successive pulse beats of a sequence of the pulse beats. Then, an electrically conductive unit is attached to a second appendage of the patient, or a wearable electrocardiogram is attached to the patient, and electrocardiograms signals are detected simultaneously with pulse rhythms while the first appendage is motionless and analyzed to determine whether, in combination, they are indicative of atrial fibrillation.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: June 20, 2017
    Inventor: Joseph Wiesel
  • Patent number: 9668664
    Abstract: A method can determine one or more origins of focal activation. The method can include computing phase for the electrical signals at a plurality of nodes distributed across a geometric surface based on the electrical data across time. The method can determine whether or not a given candidate node of the plurality of nodes is a focal point based on the analyzing the computed phase and magnitude of the given candidate node. A graphical map can be generated to visualize focal points detected on the geometric surface.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: June 6, 2017
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Qingguo Zeng, Remi Dubois, Ping Jia, Ryan Bokan, Venkatesh Vasudevan, Charulatha Ramanathan, Maria Strom, Brian P. George
  • Patent number: 9649040
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example system for mapping the electrical activity of the heart includes a catheter shaft. The catheter shaft includes a plurality of electrodes including a first electrode and a second electrode. The system also includes a processor. The processor is capable of collecting a first signal corresponding to the first electrode and a second signal corresponding to the second electrode. Collecting the first and second signals occurs over a time period. The processor is also capable of generating a first time-frequency distribution corresponding to the first signal, identifying a first dominant frequency value occurring at a first dominant frequency and a first time point, generating a second time-frequency distribution corresponding to the second signal, identifying a second dominant frequency value occurring at a second dominant frequency and a second time point and determining an attraction point.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: May 16, 2017
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jacob I. Laughner, Carlos Alberto Ricci, Vladimir V. Kovtun, Shibaji Shome, Pramodsingh H. Thakur, Allan C. Shuros, Kevin J. Stalsberg
  • Patent number: 9636033
    Abstract: Systems and methods are provided for predicting the onset of postoperative atrial fibrillation (AF) from electrocardiogram (ECG) data representing a patient. A signal processing component determines parameters representing the activity of the heart of the patient from the ECG data. A feature extraction component calculates a plurality of features useful in predicting postoperative AF from the determined parameters. A classification component determines an AF index for the patient from the calculated plurality of features. The AF index represents the likelihood that the patient will experience AF.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: May 2, 2017
    Assignee: The Cleveland Clinic Foundation
    Inventors: C. Allen Bashour, Bala Gopakumaran Nair, Mirela Visinescu, Meng Xu, Liang Li, Mohamed H. Bakri
  • Patent number: 9597524
    Abstract: An automated external defibrillator (AED) (10) having a treatment decision processor (28) is described which follows a “shock first” or a “CPR first” rescue protocol after identification of a treatable arrhythmia, depending upon an estimate of the probability of successful resuscitation made from an analysis of a patient parameter measured at the beginning of the rescue. The invention may also follow different CPR protocols depending on the estimate. The invention also may use the trend of the measured patient parameter to adjust the CPR protocol either during a CPR pause or after the initial CPR pause. The AED (10) thus enables an improved rescue protocol.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: March 21, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Dawn Jorgenson, Christian Cary, Jamie Froman, Kenneth Rucker
  • Patent number: 9555252
    Abstract: In various method embodiments, a neural activity signal is sensed, a feature from the sensed neural activity signal is extracted, and a neural marker for the extracted feature is created. The neural marker includes information regarding the extracted feature. Various device embodiments comprise a port to receive a neural activity signal, and a feature extractor adapted to receive and process the neural activity signal to produce a neural marker that includes information for the neural activity signal. Various device embodiments comprise a display, a memory adapted to store a neural marker associated with a sensed neural activity signal, and a controller adapted to communicate with the memory and the display to provide a representation of the neural marker on the display.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: January 31, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Patent number: 9468391
    Abstract: A method for graphical representation of a train of ECG complexes having an R wave and a T-P interval and having variable isoelectric baselines. The method involves aligning the complexes in terms of signal amplitude by obtaining a baseline, thereby to provide a graphical representation of said train of ECG complexes; and aligning said complexes temporally using corresponding predetermined points.
    Type: Grant
    Filed: December 28, 2014
    Date of Patent: October 18, 2016
    Assignee: Bio Signal Analysis Ltd.
    Inventors: Benjamin Shani, Shai Revzen, Aaron Frimerman
  • Patent number: 9433364
    Abstract: A method can determine one or more origins of focal activation. The method can include computing phase for the electrical signals at a plurality of nodes distributed across a geometric surface based on the electrical data across time. The method can determine whether or not a given candidate node of the plurality of nodes is a focal point based on the analyzing the computed phase and magnitude of the given candidate node. A graphical map can be generated to visualize focal points detected on the geometric surface.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: September 6, 2016
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Qingguo Zeng, Remi Dubois, Ping Jia, Ryan Bokan, Venkatesh Vasudevan, Charulatha Ramanathan, Maria Strom, Brian P. George
  • Patent number: 9420958
    Abstract: A method and a system for determining changes in a body state of an individual including receiving a signal from a monitoring system, where the signal indicates a measurement of cardiac activity of the individual over a period of time and determining at least one signal feature, where the signal feature is a reoccurring event of the signal over the period of time. The method also includes determining a first interval between two successive signal features and determining a second interval between two successive first intervals. A derivative is calculated based on the second interval. Changes in the body state are identified based on the derivative.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 23, 2016
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kin C. Fung, Timothy J. Dick, Charles William Hall, Jr.
  • Patent number: 9352165
    Abstract: A method and medical device for detecting a cardiac event that includes sensing cardiac signals from a plurality of electrodes, the plurality of electrodes forming a first sensing vector sensing a first interval and a second sensing vector simultaneously sensing a second, determining, for each of the first interval and the second interval, whether each beat of the plurality of beats is one of a match beat and a non-match beat, determining whether each beat of the plurality of beats is one of a high confidence beat and a low confidence beat, determining, for each of the first interval and the second interval, the number of beats determined to be both a non-match beat and a high confidence beat is greater than a non-match threshold, and determining whether to deliver therapy for the cardiac event in response to identifying of each of the first interval and the second interval as being one of shockable and not shockable.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: May 31, 2016
    Assignee: Medtronic, Inc.
    Inventor: Xusheng Zhang