Blood Output Per Beat Or Time Interval Patents (Class 600/526)
  • Publication number: 20130085357
    Abstract: A relation is formed between an n-tuple having n components and formed at a first point in time and at least one other n-tuple having n components formed at at least one corresponding later point in time, wherein n is a natural number equal to or greater than 1, and the components comprise at least one derived parameter and/or one read-in data value. If this relationship satisfies a predetermined calibration criterion, a calibration signal is triggered and is displayed, and/or automatically triggers a recalibration of the haemodynamic monitoring device. For example, the pulse contour cardiac output PCCO is derived from the arterial pressure curve as the constituent component of a 1-tuple. As long as this differs from the reference cardiac output CORef by less than a predefined threshold value, for example 101 or 15% of the reference cardiac output, parameter determination continues without initiating a new calibration.
    Type: Application
    Filed: September 27, 2012
    Publication date: April 4, 2013
    Inventors: Wolfgang Huber, Stephan Joeken, Martin Peterreins
  • Publication number: 20130077756
    Abstract: An imaging method and apparatus for displaying a target object, such as one or a plurality of blood vessels and/or an organ in an area of a patient under examination, is provided. The examination can be a medical intervention. At least one recorded fluoroscopic image of the area under examination is recorded by an X-ray system. At least one up-to-date reconstructed 3D radar image is generated from signals detected a radar receiver. The target object is identified in the fluoroscopic image and in the radar image. The radar image with the fluoroscopic image is recorded with the aid of the result of the identification. The radar image and the fluoroscopic image are combined. The combined image is reproduced on a display device.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 28, 2013
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: SIEMENS AKTIENGESELLSCHAFT
  • Patent number: 8340748
    Abstract: Disclosed are a fetus electrocardiogram signal measuring method and its device that are capable of measuring the electrocardiogram signals of a fetus even during fetus movements and even at a gestational age during which the measurement current is weak, without the need for reattaching the electrodes and providing any shield room, even if the mother is a hospitalized or ambulant pregnant woman. The fetus electrocardiogram signal measuring device includes (1) high input impedance electrodes, (2) region-variable ground electrodes, and (3) a differential amplifier circuit and an optimization computing section.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: December 25, 2012
    Assignee: Tohoku Techno Arch Co., Ltd.
    Inventors: Yoshitaka Kimura, Mitsuyuki Nakao, Takuya Ito, Kazunari Ohwada
  • Patent number: 8337444
    Abstract: A system and method of non-invasive or minimally invasive evaluating the cardiovascular system parameters to estimate the cardiac output and circulating blood volume of a patient undergoing hemodialysis. Intravascular indicators are stimulated, and emissions patterns detected for computation of cardiac output, cardiac index, blood volume and other indicators of cardiovascular health before and during hemodialysis.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: December 25, 2012
    Assignee: Alfred E. Mann Institute for Biomedical Engineering at the University of Southern California
    Inventors: Eduardo H. Rubinstein, Daniel P. Holschneider, Jean-Michel I. Maarek
  • Patent number: 8328728
    Abstract: Provided herein are implantable systems that include an implantable photoplethysmography (PPG) sensor, which can be used to obtain an arterial PPG waveform. In an embodiment, a metric of a terminal portion of an arterial PPG waveform is determined, and a metric of an initial portion of the arterial PPG waveform is determined, and a surrogate of mean arterial pressure is determined based on the metric of the terminal portion and the metric of the initial portion. In another embodiment, a surrogate of diastolic pressure is determined based on a metric of a terminal portion of an arterial PPG waveform. In a further embodiment, a surrogate of cardiac afterload is determined based on a metric of a terminal portion of an arterial PPG waveform.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: December 11, 2012
    Assignee: Pacesetter, Inc.
    Inventor: Stuart O. Schecter
  • Patent number: 8292822
    Abstract: A biopsy localization device made according to the invention includes a bioresorbable element, such as a cellulose. The bioresorbable element preferably carries a radiopaque marker. The bioresorbable element preferably swells to fill the biopsied open region. The bioresorbable element and radiopaque marker permit the biopsy site to be relocated by various techniques, including mammography and ultrasound. In addition, the bioresorbable element can be used as a therapeutic tool for treatment of the diseased lesion and for hemostasis.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: October 23, 2012
    Assignee: Devicor Medical Products, Inc.
    Inventors: Richard E. Fulton, William Richard Dubrul
  • Publication number: 20120259189
    Abstract: New algorithms to estimate cardiovascular indices by analysis of the arterial blood pressure (ABP) signal. The invention comprises recording and identification of cardiovascular descriptors (including ABP signal, diastolic pressure, systolic pressure, pulse pressure, and end systole), calculation of cardiovascular system parameters, and calculation of aortic blood flow, stroke volume, cardiac output, total peripheral resistance, and characteristic time constant.
    Type: Application
    Filed: March 21, 2012
    Publication date: October 11, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Richard Jonathan Cohen, Tatsuya Arai
  • Patent number: 8282569
    Abstract: A method is provided for determining ejection fraction. The method includes: measuring a physiologic signal indicative of blood pressure; analyzing the physiologic signal at more than one time instance so as to extract information present in its temporal variations; and determining ejection fraction based in part on the extracted information.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: October 9, 2012
    Assignee: Board of Trustees of Michigan State University
    Inventor: Ramakrishna Mukkamala
  • Patent number: 8280511
    Abstract: Techniques are provided for detecting heart failure or other medical conditions within a patient using an implantable medical device, such as pacemaker or implantable cardioverter/defibrillator, or external system. In one example, physiological signals, such as immittance-based signals, are sensed within the patient along a plurality of different vectors, and the amount of independent informational content among the physiological signals of the different vectors is determined. Heart failure is then detected by the implantable device based on a significant increase in the amount of independent informational content among the physiological signals. In response, therapy may be controlled, diagnostic information stored, and/or warning signals generated. In other examples, at least some of these functions are performed by an external system.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: October 2, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Wenxia Zhao, Dorin Panescu, Anders Bjorling
  • Publication number: 20120245476
    Abstract: An implantable medical device includes an integrated or connectable implantable three-dimensional acceleration sensor, and a ballistocardiogram (BCG) capturing unit that is connected or connectable to the acceleration sensor. The BCG evaluation unit processes an acceleration signal provided by the acceleration sensor and derives a BCG from the 3D accelerometer output signal. A BCG evaluation unit is connected to the BCG capturing unit, and is designed to evaluate a BCG provided by the BCG capturing unit and supply an output signal representing stroke volume.
    Type: Application
    Filed: September 8, 2011
    Publication date: September 27, 2012
    Inventors: Olaf Skerl, Michael Lippert, Jens Kirchner
  • Patent number: 8273029
    Abstract: Determining an index for assessing cardiac function. In an embodiment, a method includes receiving ventricular pressure data during an invasive cardiac procedure, wherein the received pressure data includes a diastatic ventricular pressure value, a minimum ventricular pressure value, and a predefined fiducial marker pressure value. An index value is calculated by comparing a first pressure difference to a second pressure difference. The first pressure difference represents the difference between the received diastatic ventricular pressure value and the received minimum ventricular pressure value. The second pressure difference represents the difference between the received fiducial marker pressure value and the received minimum ventricular pressure value. The index value is provided to a health care provider to assess early diastolic cardiac function.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: September 25, 2012
    Assignee: Washington University
    Inventors: Sandor J. Kovacs, Leonid Shmuylovich, Wei Zhang, Charles Chung
  • Patent number: 8264363
    Abstract: A method of detecting an occlusion for an infusion therapy in one embodiment includes: monitoring an output signal from a flowrate sensor for a pulsatile fluid flow having a frequency range, the pulsatile flow being through a fluid pathway to a patient; acquiring a data set that includes the output signal as a function of time; filtering the data set with a noise rejection filter to produce a filtered data set; performing spectra analysis on the filtered data set to determine a strength of the output signal in a frequency domain; calculating a signal strength for the frequency range using the strength of the output signal in the frequency domain; and comparing the signal strength of the range to at least one threshold level to determine if an occlusion is present during the infusion therapy.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: September 11, 2012
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Jorge A. DelCastilio, Atif Yardimci
  • Patent number: 8262581
    Abstract: A practical method for estimating cardiac output and pulmonary artery wedge pressure with good accuracy is provided. A method is provided for estimating the impedance arising from solid tissue by determining the impedance at the intersection between the line of identity and the extrapolated regression line, where the regression line is obtained by linearly regressing the maximum value to the minimum value of the impedance signal of each of multiple data sets, where each data set contains the maximum value and the minimum value of the impedance signal during one cardiac cycle, where impedance signal is obtained between a can electrode implanted in the left thoracic wall and an electrode inserted into the coronary vein, over a specific period of time following the infusion of hypertonic saline into the pulmonary circulation.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: September 11, 2012
    Assignees: National Cerebral and Cardiovascular Center, Olympus Corporation
    Inventors: Kazunori Uemura, Masashi Inagaki, Masaru Sugimachi, Kazuo Shimizu, Masatoshi Kobayashi
  • Patent number: 8257273
    Abstract: The invention relates to a device for determining cardiopulmonary volumes and flows of a living being. According to the invention, the evaluation unit (14) of a transpulmonary measurement arrangement, preferably having a central-vein catheter and an arterial catheter (11, 12), is set up, in terms of program technology, for the purpose of taking a possible short-circuit current from the right to the left half of the heart (RL shunt) and/or from the left to the right half of the heart (LR shunt) of the living being into consideration, without the use of a right-heart catheter being required in this connection, or any recourse to pulmonary artery measurement values having to take place at all. In this connection, a model is used as the basis, which contains the function y (system response) corresponding to a dilution curve as the convolution of a disruption function I with several terms that contain characteristic times as model parameters.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: September 4, 2012
    Assignee: Pulsion Medical Systems SE
    Inventors: Ulrich J. Pfeiffer, Reinhold Knoll, Frédéric Michard
  • Patent number: 8255046
    Abstract: Techniques for processing impedance data to provide an early warning for heart failure decompensation are described. An example device may be configured to measure intrathoracic impedance values, and increment an index when a determined impedance is less than a reference impedance. The incrementing may be based on the difference between the reference impedances and the determined impedance. In some examples, the amount of incrementing is reduced based on a variability of the impedances, or increased over time so long as the index remains above a threshold, e.g., zero. In some examples, the manner is which the reference impedances are determined changes over time to, for example, address rapid changes in impedance after device or system implantation. In some examples, the index is compared to a threshold to determine whether to provide an alert. In some examples, two thresholds are used to provide hysteresis.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: August 28, 2012
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Douglas A. Hettrick, Robert W. Stadler
  • Publication number: 20120215074
    Abstract: The present invention provides an endotracheal tube comprising one or more sensors. n some embodiments, one or more sensors are positioned in the interior of the cuff. Sensors ay be used to detect any physiological parameter.
    Type: Application
    Filed: March 22, 2010
    Publication date: August 23, 2012
    Inventor: William Krimsky
  • Patent number: 8211027
    Abstract: A method is described for determining at least one patient-related parameter for monitoring a patient. A general population-related non-linear pressure/CSA relationship of the arterial vascular bed is used and the arterial pressure of the patient is measured to obtain a prediction of the cross sectional area (CSA) of the thoracic part of the aorta. The cross sectional area is measured, wherein at least one parameter of the general population-related non-linear pressure/CSA relationship is corrected by means of the measured cross sectional area to determine a patient-related non-linear pressure/CSA relationship such that the cross sectional area obtained with this patient-related pressure/CSA relationship is equal to the measured cross sectional area.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: July 3, 2012
    Inventors: Jozef Reinier Cornelis Jansen, Johannes Jacobus Schreuder
  • Patent number: 8202224
    Abstract: Various techniques are provided for calibrating and estimating left atrial pressure (LAP) using an implantable medical device, based on impedance, admittance or conductance parameters measured within a patient. In one example, default conversion factors are exploited for converting the measured parameters to estimates of LAP. The default conversion factors are derived from populations of patients. In another example, a correlation between individual conversion factors is exploited to allow for more efficient calibration. In yet another example, differences in thoracic fluid states are exploited during calibration. In still yet another example, a multiple stage calibration procedure is described, wherein both invasive and noninvasive calibration techniques are exploited. In a still further example, a therapy control procedure is provided, which exploits day time and night time impedance/admittance measurements.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: June 19, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Dan E. Gutfinger, Neal L. Eigler, Dorin Panescu, James S. Whiting
  • Patent number: 8187199
    Abstract: A contractile reserve indicator, corresponding to a predicted value of a maximum change in myocardial contractility that can be achieved by a subject, can be determined using a detected indication of cardiac contractility across various different physical activity levels.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: May 29, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Kenneth C. Beck
  • Publication number: 20120130204
    Abstract: A device for continuous, uninterrupted patient monitoring includes a portable, self-contained Patient Worn Hub (PWH) device. The PWH is a compact, lightweight patient monitoring device designed to remain with the patient for the duration of care. Parameter measurement devices connect to the PWH. Third party parameter measurement devices connect to the PWH via the use of a connection assembly that translates the information provided by the third party device to the protocol embedded within the PWH. The PWH is able to communicate with a bedside monitor via wired cables or wirelessly. Measured values are shown on external displays and/or on an optional integrated PWH touchscreen display. The PWH includes internal memory for storage of patient data and trends. The PWH optionally includes a docking station for providing operating and battery charging power.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 24, 2012
    Inventors: Joseph Charles Basta, Richard Lee Gagliardo, Narayana Rathnakara, Nityanand Shetty, Robert Steurer, William Oren Wekell
  • Patent number: 8162843
    Abstract: A method for determining cardiac output in conjunction with flow through an extracorporeal circuit, wherein flow through an arterial line of the extracorporeal circuit is temporarily reversed and an indicator is passed through the cardiopulmonary circuit. A dilution curve is measured in the arterial line of the extracorporeal circuit during the reversed flow, and cardiac output is determined corresponding to the measured dilution curve.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: April 24, 2012
    Assignee: Transonic Systems, Inc.
    Inventor: Nikolai M. Krivitski
  • Patent number: 8131354
    Abstract: A method of estimating stroke volume of the heart is described. In this method, the volume of the heart is estimated from electrical impedance data of the chest, at two different phases of the cardiac cycle. The stroke volume is estimated from the difference between the volumes estimated at the two phases.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: March 6, 2012
    Assignee: Tel Aviv University Future Technology Development L.P.
    Inventor: Shimon Arad (Abboud)
  • Publication number: 20120035436
    Abstract: A medical device includes a preload determination unit for determining the preload of a ventricle for a cardiac cycle and providing a preload value representing the preload; a contractility determination unit for determining the contractility of the ventricle for the cardiac cycle and providing a contractility value representing the contractility; and an evaluation unit connected to the preload determination unit and the contractility determination unit, with the evaluation unit being configured to evaluate contractility values versus associated preload values.
    Type: Application
    Filed: July 19, 2011
    Publication date: February 9, 2012
    Inventors: Jens Kirchner, Michael Lippert
  • Publication number: 20120029374
    Abstract: A computer-implemented method for characterizing circulatory blood volume is disclosed. The method has the steps of acquiring a biological signal that emulates the arterial pulse wave from a sensor. Two derived parameters, circulatory stress, which reflects a harmonic of heart rate, and circulatory blood flow, which reflects the amplitude of the unprocessed biological signal, are extrapolated from the biological signal, and are each compared to a threshold value and assessed to determine an adequacy of circulatory blood volume. In embodiments, the assessment of circulatory blood volume is used to manage a patient's cardiovascular autoregulatory function or the adequacy of transfer of fluids to and from the circulatory system, with the ultimate goal of achieving a circulatory blood volume that adequately supplies the demands of the patient's tissues and organs.
    Type: Application
    Filed: July 8, 2011
    Publication date: February 2, 2012
    Applicant: Intelomed Inc.
    Inventor: Jan Berkow
  • Patent number: 8090442
    Abstract: A cardiac electro-stimulatory device and method for operating same in which stimulation pulses are distributed among a plurality of electrodes fixed at different sites of the myocardium in order to reduce myocardial hypertrophy brought about by repeated pacing at a single site and/or increase myocardial contractility. In order to spatially and temporally distribute the stimulation, the pulses are delivered through a switchable pulse output configuration during a single cardiac cycle, with each configuration comprising one or more electrodes fixed to different sites in the myocardium.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: January 3, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Rodney W. Salo, Julio C. Spinelli, Bruce H. KenKnight
  • Patent number: 8068909
    Abstract: Embodiments of the invention are related to implantable devices including movement sensors and related methods for measuring cardiac performance, amongst other things. In an embodiment, the invention includes an implantable electrical stimulation lead. The electrical stimulation lead can include a lead body having a proximal end and a distal end and a sheath defining a central lumen. The lead body can further include an electrical conductor disposed within the central lumen of the sheath. The stimulation lead can further include a stimulation electrode positioned at the distal end of the lead body, the stimulation electrode in electrical communication with the electrical conductor. The electrical stimulation lead can include an flexion sensor coupled to the lead body, the movement sensor configured to generate a signal in response to movement of the lead body. In an embodiment, the invention includes a method of monitoring the condition of a heart failure patient.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: November 29, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Bin Mi, Yongxing Zhang, Yunlong Zhang, James O. Gilkerson
  • Patent number: 8041801
    Abstract: State information of a user is detected via a biometric information sensor and is stored, in a nonvolatile memory, in association with a content identifier of content that is being reproduced for the user when the state information is detected. An information request, including the state information of another user at another terminal apparatus, is generated and transmitted. Provided information transmitted in response to the information request is received and provided to the user. When an information request is received by the user, information is extracted from the nonvolatile memory based on the state information of another user. Provided information that is based on the extracted information is transmitted to another user.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: October 18, 2011
    Assignee: Sony Corporation
    Inventors: Takatoshi Nakamura, Toru Sasaki, Yuichi Sakai, Yoichiro Sako, Toshiro Terauchi, Hirofumi Tamori, Makoto Inoue, Katsuya Shirai, Motoyuki Takai, Kenichi Makino, Akihiro Komori, Akane Sano, Susumu Takatsuka
  • Patent number: 8016766
    Abstract: The central venous sensor assembly comprises a catheter body with several proximal ports. The catheter portion placed in the vena cava superior is equipped with a proximal flux measurement unit, and the catheter portion placed in the vena cava inferior is equipped with a distal flux measurement unit. A first input channel supplies a measurement signal indicative of a flux vp to the evaluation unit from which the latter calculates a blood flow in the vena cava superior. Likewise, a second input channel supplies a measurement signal indicative of a flux vd to the evaluation unit from which the latter calculates a blood flow rate in the vena cava inferior. Due to continuity, the sum of the flow rates in the upper and lower central veins corresponds to the flow rate through the right heart and in the pulmonary artery and thus to cardiac output.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: September 13, 2011
    Assignee: Pulsion Medical Systems AG
    Inventors: Oliver Goedje, Stephan Joeken, Joerg Scheier, Marcus Veeck
  • Patent number: 7959576
    Abstract: An implantable medical apparatus for detecting diastolic heart failure, DHF, has a DHF determining device for determining at least one DHF parameter for detecting a DHF state of the heart of a patient. The DHF includes circuitry for determining, as the DHF parameter, the time duration of a predetermined phase of diastole. A pacemaker has such an apparatus and a control unit that optimizes pacing therapy and pacemaker settings depending on the determined time duration. A corresponding method of detecting diastolic heart failure, DHF, includes determining at least one DHF parameter for detecting a DHF state of the heart of a patient. As the DHF parameter, the time duration of a predetermined phase of diastole is determined.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: June 14, 2011
    Assignee: St. Jude Medical AB
    Inventors: Maria Torpo, Malin Öhlander, Anders Björling, Karin Ljungström
  • Publication number: 20110105931
    Abstract: A system uses integrated spatio-temporal analysis in X-ray angiography, for example, by using spatial information within each image frame and temporal information between image frames to provide robust and accurate estimation of stroke area and volume, two and three dimensional ejection fraction and to accommodate patient heart variation. A system determines patient heart related parameters for use in patient heart imaging examination. An image data processor processes data representing multiple cardiac images of a patient over multiple heart beat cycles of the patient to derive data representing a distribution curve of a heart section area over multiple heart beat cycle times and indicating heart section area change over a heart beat cycle. An area processor determines a heart section area in response to user command. Also a computation processor determines a heart function parameter in response to the determined heart section area and the indicated heart section area change.
    Type: Application
    Filed: October 8, 2008
    Publication date: May 5, 2011
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Wei Qu, Jinghua Chen, Yuanyuan Jia, Sukhveer Singh, Michael J. Keller
  • Patent number: 7935062
    Abstract: The present invention provides a system and method for estimating a blood flow waveform contour from a pressure signal. An arterial or ventricular pressure signal is acquired from a pressure sensor. Landmark points are identified on the pressure waveform that correspond to features of a flow waveform. In one embodiment, the landmark pressure waveform points correspond to the onset of flow, the peak flow, and the end of the systolic ejection phase. The landmark pressure waveform points define a contour that approximates the flow contour. Beat-by-beat flow contour estimation can be performed to allow computation of flow-related hemodynamic parameters such as stroke volume or cardiac output for use in patient monitoring and/or therapy management.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: May 3, 2011
    Assignee: Medtronic, Inc.
    Inventors: Mustafa Karamanoglu, Tommy D. Bennett
  • Publication number: 20110066042
    Abstract: An electronic monitoring device includes an electronic processor (520) having at least one signal input for body monitoring, and a memory (530) holding instructions for the electronic processor coupled to the electronic processor so that the electronic processor is operable to isolate a cardiac signal including cardiac pulses combined with other cardiac signal variations, and the electronic processor further operable to execute a filter (730) that separates a varying blood flow signal from the cardiac pulses and to output information (790) based on at least the varying blood flow signal. Other devices, sensor assemblies, electronic circuit units, and processes are also disclosed.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 17, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Keya R. Pandia, Sourabh Ravindran, Edwin Randolph Cole
  • Patent number: 7890160
    Abstract: Heart monitoring system includes implantable medical device and service center.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: February 15, 2011
    Assignee: Biotronik CRM Patent AG
    Inventor: Volker Lang
  • Publication number: 20110034813
    Abstract: The present invention provides methods and apparatus for determining a dynamical property of the systemic or pulmonary arterial tree using long time scale information, i.e., information obtained from measurements over time scales greater than a single cardiac cycle. In one aspect, the invention provides a method and apparatus for monitoring cardiac output (CO) from a single blood pressure signal measurement obtained at any site in the systemic or pulmonary arterial tree or from any related measurement including, for example, fingertip photoplethysmography. According to the method the time constant of the arterial tree, defined to be the product of the total peripheral resistance (TPR) and the nearly constant arterial compliance, is determined by analyzing the long time scale variations (greater than a single cardiac cycle) in any of these blood pressure signals.
    Type: Application
    Filed: October 13, 2010
    Publication date: February 10, 2011
    Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Richard J. Cohen, Ramakrishna Mukkamala, Derin A. Sherman
  • Patent number: 7885771
    Abstract: The invention relates to an apparatus for the acquisition and interpretation of expirograms comprising: a gas measuring probe that is designed to determine the gas concentration ƒmess of a gas in exhaled respiratory air; a reading device that is connected to the gas measuring probe via signal and is designed to read for a plurality of values x1, . . . , xN of an exhaled volume of the exhaled respiratory air the respective determined gas concentrations ƒmess(x1), . . . , ƒmess(xN) from the gas measuring probe; a storage device that is designed to store the values x1, . . . , xN assigned to the gas concentrations ƒmess(x1), . . . , ƒmess(xN); a function fitting unit that is connected to the storage device via signal and that is designed to determine a non-linear fit function ƒ(x)=g(x)·h(x)+OffsetGas ?for the stored gas concentrations ƒmess(x1), . . .
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: February 8, 2011
    Assignee: Universitaetslinkum Freiburg
    Inventors: Kai Roecker, Stephan Prettin
  • Publication number: 20110028855
    Abstract: An implantable medical device has an event detector that detects a predetermined cardiac event during a heart cycle of a subject. A reference time is assigned to this detected cardiac event. An onset detector detects the onset of ventricular filling of the heart during the heart cycle. The relative time of the detected filling onset is determined based on the assigned time reference. An increased risk of heart failure of the subject is automatically determined based on the determined relative time for the filling onset. Generally, a reduction in the relative time, as determined at different points in time, indicates an increased heart failure risk or the presence of a heart failure condition.
    Type: Application
    Filed: April 29, 2008
    Publication date: February 3, 2011
    Inventor: Andreas Blomqvist
  • Patent number: 7880624
    Abstract: A method and system for detecting an inclusion within an infusion system. The method includes monitoring an output signal of a flowrate sensor as fluid flows through an infusion system. The output signal is then converted with a noise reduction filter to obtain a filtered output signal. The filtered output signal is compared to a threshold value and an alarm is activated if the filtered output signal falls below a desired threshold, thereby indicating an occlusion within the infusion system.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: February 1, 2011
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Jorge A. DelCastilio, Atif Yardimci
  • Publication number: 20110021938
    Abstract: An apparatus for indicating cardiac output comprises means for monitoring a patient's transthoracic impedance and generating a corresponding impedance signal, and signal processing means for (a) deriving a signal S1 which is a measure of the average amplitude of the impedance signal, (b) filtering the impedance signal at a plurality of different wavelengths within a predetermined frequency band, (c) for each filter deriving a signal S2 which is a measure of the average amplitude of the respective filter output, (d) calculating the ratio of the maximum one of the signals S2 derived from step (c) to the signal S1 derived from step (a), and (e) using the ratio from step (d) in a decision tree to provide a signal indicating cardiac output or not.
    Type: Application
    Filed: March 4, 2009
    Publication date: January 27, 2011
    Inventors: John McCune Anderson, Cesar Oswaldo Navarro-Paredes, Rebecca Dimaio
  • Publication number: 20110009759
    Abstract: This method for analysing the sounds of body fluid flows comprises:—simultaneously acquiring (2) sounds from various locations of a body;—identifying (6) the points of maximum sound intensity (PMIs) of the acquired sounds for each acquisition instant;—determining (10) the source locations of the acquired sounds; and—determining (12, 14) the sound radiation patterns of the acquired sounds. The invention also relates to the corresponding device, system and program.
    Type: Application
    Filed: March 3, 2009
    Publication date: January 13, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Kumar T. Rajamani, Nagaraju Bussa, Jithendra Vepa, Abhishek Jain
  • Patent number: 7850617
    Abstract: From the global end-diastolic volume GEDV and the global ejection fraction GEF the patient monitor (4) determines a corrected global end-diastolic volume cGEDV according to cGEDV=GEDV/ƒ(GEF) which is used as a novel parameter for volume responsiveness of the patient (3). In the above formula, f(GEF) is a correction function depending on global ejection fraction GEF. Further, from the right ventricular end-diastolic volume RVEDV and the right ventricular ejection fraction RVEF the patient monitor (4) determines a corrected right ventricular end-diastolic volume cRVEDV according to cRVEDV=RVEDV1f(RVEF) which is used as another novel parameter for volume responsiveness of the patient (3). In the above formula, f(RVEF) is a correction function depending on right ventricular ejection fraction RVEF.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: December 14, 2010
    Assignee: Pulsion Medical Systems AG
    Inventors: Oliver Goedje, Manu Malbrain, Stephan Joeken, Matthias Bohn
  • Patent number: 7850616
    Abstract: An exemplary method includes detecting a change in state of a cardiac valve, detecting elongation of the left ventricle substantially along its major axis, determining a time difference between the change in state of the cardiac valve and the elongation of the left ventricle and, based at least in part on the time difference, deciding whether a diastolic abnormality exists. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: December 14, 2010
    Assignee: Pacesetter, Inc.
    Inventors: Jong Gill, Xiaoyi Min, Gene A. Bornzin, Falkenberg Eric
  • Publication number: 20100286537
    Abstract: The invention relates to a method and a system for determining the blood flow in an individual coronary artery of a patient, wherein the method comprises the steps of positioning a temperature sensor mounted at a distal portion of a guide wire at a distal position in the coronary artery, positioning an infusion catheter in the coronary artery such that the distal end of the infusion catheter is proximally of the temperature sensor, measuring the blood temperature with the temperature sensor, infusing cold indicator fluid with a known infusion rate and known or measurable temperature into the coronary artery by the infusion catheter, measuring the temperature of the mixture of blood and indicator fluid by the temperature sensor, and calculating the coronary blood flow by a formula based on the known and measured quantities. In an extended version, the method comprises steps for relating the calculated coronary flow value to related normal flow values, or related FFR values, or a related flow resistance.
    Type: Application
    Filed: July 20, 2010
    Publication date: November 11, 2010
    Inventor: Nico H.J. PIJLS
  • Publication number: 20100268101
    Abstract: A method of measuring a blood volume, includes: reading individual specific information of a patient; estimating oxygen metabolism relating to a cardiac output of the patient; and acquiring the cardiac output based on the estimated oxygen metabolism.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 21, 2010
    Applicant: NIHON KOHDEN CORPORATION
    Inventor: Yoshihiro Sugo
  • Patent number: 7815578
    Abstract: The present invention provides methods and apparatus for determining a dynamical property of the systemic or pulmonary arterial tree using long time scale information, i.e., information obtained from measurements over time scales greater than a single cardiac cycle. In one aspect, the invention provides a method and apparatus for monitoring cardiac output (CO) from a single blood pressure signal measurement obtained at any site in the systemic or pulmonary arterial tree or from any related measurement including, for example, fingertip photoplethysmography. According to the method the time constant of the arterial tree, defined to be the product of the total peripheral resistance (TPR) and the nearly constant arterial compliance, is determined by analyzing the long time scale variations (greater than a single cardiac cycle) in any of these blood pressure signals.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: October 19, 2010
    Assignees: Massachusetts Institute of Technology, Board of Trustees of Michigan State University
    Inventors: Richard J. Cohen, Ramakrishna Mukkamala, Derin A. Sherman
  • Publication number: 20100217134
    Abstract: The invention relates to a method 10 for determining a beat-to-beat stroke volume 9a and/or a cardiac output 9b based on a measurement 2 of suitable arterial pressure data. At the step 4 a waveform of the arterial pressure pulse is assessed based on data obtained during the measurement of step 2. At step 6 a compliance or impedance in dependence of at least one measurement of arterial pressure data is computed using a non-linear model 7. The non-linear model may comprise an arctangent model. The arctangent model may be differentiated numerically or analytically to obtain the compliance or the impedance of an aortic portion. The thus obtained compliance or impedance may then be substituted into a linear model 8. The linear model 8 may comprise a Windkessel model 8a, or a Waterhammer model 8b or any other suitable linear pulse contour model 8c. As a result, the beat-to-beat stroke volume 9a and/or cardiac output 9b are computed.
    Type: Application
    Filed: July 20, 2007
    Publication date: August 26, 2010
    Inventors: Jeroen Van Goudoever, Olaf Schraa, Karel H. Wesseling
  • Publication number: 20100210924
    Abstract: A device includes a pliable membrane, a sensor module and a communication module. The pliable membrane includes a semi-rigid structural member. The membrane is configured to conform to a tissue surface. The structural member is configured to retain the membrane in a particular shape corresponding to the tissue surface. The sensor module is coupled to the membrane. The sensor module is configured to generate an electrical signal corresponding to a physiological parameter associated with the tissue surface. The communication module is coupled to the membrane. The communication module is configured to receive the electrical signal and wirelessly communicate data corresponding to the electrical signal with a remote device.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 19, 2010
    Applicant: Nonin Medical, Inc.
    Inventors: Jayant Parthasarathy, Matthew Prior
  • Patent number: 7775988
    Abstract: The invention relates to a method and a system for determining the blood flow in an individual coronary artery of a patient, wherein the method comprises the steps of positioning a temperature sensor mounted at a distal portion of a guide wire at a distal position in the coronary artery, positioning an infusion catheter in the coronary artery such that the distal end of the infusion catheter is proximally of the temperature sensor, measuring the blood temperature with the temperature sensor, infusing cold indicator fluid with a known infusion rate and known or measurable temperature into the coronary artery by the infusion catheter, measuring the temperature of the mixture of blood and indicator fluid by the temperature sensor, and calculating the coronary blood flow by a formula based on the known and measured quantities. In an extended version, the method comprises steps for relating the calculated coronary flow value to related normal flow values, or related FFR values, or a related flow resistance.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: August 17, 2010
    Assignee: Radi Medical Systems AB
    Inventor: Nico H.J. Pijls
  • Publication number: 20100185084
    Abstract: A system uses non-invasive laser, ultrasound or electro-magnetic monitoring, to derive CO/SV, CO/SV deviation, and related cardiac function parameters. The non-invasive system determines cardiac stroke volume and includes an input processor for receiving determined values provided using a measurement processor. The determined values comprise, a blood vessel internal diameter and rate of flow of blood through the blood vessel in a heart cycle. A computation processor calculates a vessel stroke volume comprising volume of blood transferred through the blood vessel in a heart cycle using the measured blood vessel internal diameter and the rate of flow of blood. The computation processor determines cardiac stroke volume by determining a factor for use in adjusting the vessel stroke volume to provide a cardiac stroke volume and adjusting the vessel stroke volume using the determined factor to provide the cardiac stroke volume.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 22, 2010
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventor: Hongxuan Zhang
  • Patent number: 7761141
    Abstract: A method of and a device for non-invasively measuring the hemodynamic state of a subject or a human patient involve steps and units of non-invasively or minimally invasively measuring cardiac cycle period, mean arterial pressure, stroke volume, diastolic interval and ejection interval and converting the measured mean arterial pressure, stroke volume, diastolic interval and ejection interval into the cardiac parameters such as Preload, Afterload and Contractility, which are the common cardiac parameters used by an anesthesiologist. In the current invention, the use of electrical-mechanical interval has been eliminated for various advantageous reasons. The converted hemodynamic state of a patient is displayed on a screen as a three-dimensional vector with each of its three coordinates respectively representing Preload, Afterload and Contractility. Therefore, a medical practitioner looks at the screen and—quickly obtains the important and necessary information.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: July 20, 2010
    Inventor: Robert Hirsh
  • Patent number: 7753854
    Abstract: A technique is disclosed for determining blood flow in a living body by changing the thermal energy level in the venous blood flow path and determining temperatures in both the venous and arterial blood flow paths. Blood flow is calculated as a function of the change in energy level and the temperature differences in the venous and arterial blood flow paths.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: July 13, 2010
    Assignee: Thermal Technologies, Inc
    Inventor: Harry Frederick Bowman