Having Aperture In Conduit Proximal Of Inflated Means Patents (Class 604/102.01)
  • Patent number: 10575856
    Abstract: Micro-catheters and embolic agents offer better results in endovascular treatment of brain arteriovenous malformations. Using said micro-catheters and embolic agents generally requires the creating of a plug at the distal-most portion of said micro-catheters which regularly results in suboptimal results. The present invention teaches how to create and use a device which creates a plug downstream of the distal-most portion of said micro-catheters and thereby ameliorates the suboptimal outcomes associated with creating a plug at the distal-most portion of said micro-catheters.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: March 3, 2020
    Inventor: Daniel E. Walzman
  • Patent number: 10357601
    Abstract: A hemodialysis catheter is disclosed for deploying in an artery or vein, comprising various means for disrupting, mechanically and/or chemo-mechanically, a fibrous sheath forming naturally outside of the catheter; optionally the disrupted fibrin sheath and/or thrombus is captured.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: July 23, 2019
    Assignees: CHRYSALIS MEDICAL, INC., BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA
    Inventors: Maurino G. Flora, David L. Black, Celso J. Bagaoisan, Suresh Subraya Pai, Marius C. Florescu
  • Patent number: 10265111
    Abstract: An inflatable bone tamp is provided that includes a shaft with proximal and distal portions and a central longitudinal axis. A balloon is attached to the shaft such that a material can flow through the shaft and into the balloon to inflate the balloon. A flow controller controls the flow of the material through the shaft and into the balloon. Kits, systems and methods are disclosed.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: April 23, 2019
    Assignee: Medtronic Holding Company Sárl
    Inventors: Calin Druma, Shankar Kar
  • Patent number: 10092432
    Abstract: An stent delivery system may include a delivery device and a tubular body having a lumen sized to slidably fit about an outer diameter of the delivery device and a drainage stent having an anchoring mechanism, wherein the delivery device includes a constraining member configured to engage an external portion of the tubular body at the proximal end of the delivery device. A method of delivering a stent may include inserting a tubular body into the port of an endoscope, inserting a stent delivery device and a stent having an anchoring mechanism into the tubular body, wherein the delivery device includes a constraining member configured to engage and retain the tubular body at the proximal end of the delivery device, advancing the drainage stent distally through the tubular body, sliding the tubular body proximally, and engaging an external portion of the tubular body with the constraining member.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: October 9, 2018
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: James E. Windheuser, Scott A. Davis
  • Patent number: 10070991
    Abstract: A lacrimal duct tube includes: a pair of tubular members that each have at one end an opening communicating with a lumen and have in a wall a hole for guiding a lacrimal duct tube operative instrument to the lumen; and a connection member that connects the other ends of the tubular members. Surfaces of the tubular members include a hydrophilic-coated portion and a non-coated portion without the hydrophilic coating. It is preferred that the lumen in the vicinity of the opening includes an engagement portion for engagement with a tip of the lacrimal duct tube operative instrument, and the non-coated portion is formed without overlapping with the surface of the tubular member at the position of the engagement portion. The lacrimal duct tube can be used favorably for various lacrimal duct obstruction treatments. In the case of using a sheath such as in sheath guided endoscopic probing, the lacrimal duct tube can be easily inserted into the sheath and be firmly fixed to the sheath.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: September 11, 2018
    Assignee: KANEKA CORPORATION
    Inventors: Mariko Matsumoto, Hidekazu Miyauchi, Eiji Ogino, Chihiro Koga
  • Patent number: 10064755
    Abstract: A steerable laser probe may include a handle having a handle distal end and a handle proximal end, an actuation control of the handle, a housing tube having a housing tube distal end and a housing tube proximal end, a first housing tube portion having a first stiffness, a second housing tube portion having a second stiffness, an optic fiber disposed within an inner portion of the handle and the housing tube, and a cable disposed within the housing tube and the actuation control. A rotation of the actuation control may be configured to gradually curve the housing tube and the optic fiber. A rotation of the actuation control may be configured to gradually straighten the housing tube and the optic fiber.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: September 4, 2018
    Assignee: Katalyst Surgical, LLC
    Inventors: Gregg D Scheller, Matthew N Zeid, Justin M Raney
  • Patent number: 9884171
    Abstract: A pre-assembled kit for administering ischemic postconditioning comprising a catheter and a handle having a fluid circuit to control and modulate flow of inflation fluid to and from a balloon wherein the catheter is free from additional assembly and preparation procedures such that it is ready-to-use within a variety of vessel sizes.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: February 6, 2018
    Assignee: Abbott Cardiovascular System Inc.
    Inventors: Kevin Ehrenreich, Jesus Magana
  • Patent number: 9775969
    Abstract: The invention generally relates to method and apparatus for crossing an obstruction in a tubular member, and more particularly to a medical device method for crossing of a chronic occlusion in a subintimal or interstitial space of an artery.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: October 3, 2017
    Assignee: The Spectranetics Corporation
    Inventors: Jeffery B. Alvarez, David S. Nevrla
  • Patent number: 9717613
    Abstract: Medical systems and related methods are disclosed. In some embodiments, the medical systems include an inner tubular member defining an aperture and an outer tubular member at least partially surrounding the inner tubular member. The inner and outer tubular members can be arranged such that an implantable medical endoprosthesis can be disposed therebetween.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: August 1, 2017
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Michael D. Gerdts, John R. Moberg, James J. Ford, Theresa Ditter
  • Patent number: 9592369
    Abstract: A balloon catheter having multiple tubular members, an adaptor member connected thereto and a balloon for dilation of constricted blood vessel, wherein the peeling strength of the balloon surfaces when adheres to each other is 0.06 N or more and the modulus of the balloon in the axial direction is 100 N/mm2 or more, and wherein the coated resin composition contains a hydrophilic resin that is lubricating when wet. Furthermore, the outer surface of the balloon is made of a polyamide elastomer resin composition having a durometer hardness of 55 D or less. Thus, there can be provided a balloon catheter excelling in handling property, for which keeping the balloon highly penetrable through the stricture site as the accordion phenomenon of the balloon is prevented, and simultaneously preserving the other properties of the balloon (flexibility of balloon, wrapping dimension, and dilation/shrinkage response etc.).
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: March 14, 2017
    Assignee: KANEKA CORPORATION
    Inventor: Youichi Yamaguchi
  • Patent number: 9339634
    Abstract: A catheter configured for delivering an agent to a patient's vessel wall is described. The catheter includes an inflatable balloon substantially covered by a expandable cage such that when the inflatable balloon is inflated the expandable cage substantially surrounds an outer surface of the inflated balloon. The inflatable balloon is configured to be deployed within a lumen against a lumen wall and separated from the lumen wall by the expandable cage in an expanded state, and is adapted to provide an agent delivery to a treatment site, and the expandable cage is further collapsible and is removable from said lumen.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: May 17, 2016
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Daniel L. Cox
  • Patent number: 9295822
    Abstract: An introducer assembly (10) includes a balloon catheter (12) for deploying a medical device (19) in a body lumen or for dilating a body lumen at a range of diameters from a minimum deployment diameter to a maximum deployment diameter. The balloon catheter includes an outer balloon (42) and an inner balloon (40) located within the outer balloon (42). The outer balloon (42) has an unstretched diameter equivalent to the minimum deployment diameter and the inner balloon (40) has an unstretched diameter equivalent to the maximum deployment diameter. The outer balloon (42) is made of an elastic material able to stretch from the minimum deployment diameter to the maximum deployment diameter, while the inner balloon (40) is preferably of an non-compliant material.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: March 29, 2016
    Assignee: Cook Medical Technologies LLC
    Inventor: Steen Aggerholm
  • Patent number: 9216271
    Abstract: A catheter configured for delivering an agent to a patient's vessel wall is described. The catheter includes an inflatable balloon substantially covered by a expandable cage such that when the inflatable balloon is inflated the expandable cage substantially surrounds an outer surface of the inflated balloon. The inflatable balloon is configured to be deployed within a lumen against a lumen wall and separated from the lumen wall by the expandable cage in an expanded state, and is adapted to provide an agent delivery to a treatment site, and the expandable cage is further collapsible and is removable from said lumen.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: December 22, 2015
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Daniel L. Cox
  • Publication number: 20150099011
    Abstract: A method of treating early papillomavirus infection of an orifice of a human or animal body including any canal associated with an orifice, comprising applying a viral inactivation agent to the orifice and/or canal in an amount effective to inactivate a portion of the virus infecting the orifice or canal. Apparatus is also disclosed.
    Type: Application
    Filed: December 11, 2014
    Publication date: April 9, 2015
    Inventor: Jenny Colleen McCloskey
  • Patent number: 8920403
    Abstract: A catheter and method for draining a bladder and injecting a two part biologic adhesive is provided. The catheter has a tubular body extending between proximal and distal ends. A balloon is located adjacent the distal end with a first port extending between the proximal end and the balloon providing for inflation an deflation of the balloon. A second port extends substantially between the proximal end and the distal end for drainage. A pair of ports separate from one another and from the first and second ports extend between the proximal end and the balloon. The pair of ports are each arranged in fluid communication with separate openings located between the balloon and the proximal end to provide separate fluid flow paths for the separate components of the two part biologic adhesive between the proximal end and the openings.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: December 30, 2014
    Inventor: Anthony Doerr
  • Patent number: 8900185
    Abstract: A catheter system for localized delivery of a therapeutic or diagnostic agent within a vessel is provided. The system provides for adjustability of the length of the treatment area and for reducing of pressure within the treatment area. The catheter system includes an inner elongated element, an outer elongated element positioned coaxially with respect to the inner elongated element, a blood-release element at a distal end of the inner elongated element and a supply elongated element coaxial to the outer elongated element. A proximal occlusion element is positioned at the distal end of the outer elongated element, proximal to an outlet port. A distal occlusion element is positioned at a distal end of the inner elongated element. The distal end of the inner elongated element is distal to and movable with respect to the outer elongated element distal end.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: December 2, 2014
    Assignee: ThermopeutiX, Inc.
    Inventors: Ronald Jay Solar, Yoav Shaked, Glen Lieber
  • Patent number: 8845618
    Abstract: An anti-clog suction tip apparatus includes a suction tip having a suction opening and an interior defining a suction channel. An ejection wire channel extends to a wire exit opening into the suction channel that is located proximate the suction opening. An ejection wire including a ball tip at an end thereof occupies the ejection wire channel and is transitionable between a retracted configuration and an advanced configuration such that, in the retracted configuration, the ejection wire including the ball tip is retained within the ejection wire channel and does not obstruct suctioning of debris through the suction channel; and in the advanced configuration, the ball tip of the ejection wire does not extend more than three millimeters beyond the suction opening.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: September 30, 2014
    Assignee: H & M Innovations, LLC
    Inventors: Robert Sean Hensler, Thomas Eric Melin
  • Patent number: 8784602
    Abstract: Catheter balloon assemblies (10) for delivering a therapeutic agent to a body vessel are provided, as well as related methods of manufacturing and methods of treatment. The catheter balloon assemblies may include a concentrically disposed dual balloon assembly at the distal portion of the catheter having an inner balloon (44), a porous outer balloon (42) concentrically arrayed around the inner balloon and a catheter shaft (30) adapted to deliver a therapeutic agent to the body vessel through the apertures in the outer balloon. Radial outward expansion of the inner balloon may urge the outer balloon into contact with the wall of a body vessel, where the therapeutic agent may be delivered from the catheter shaft through apertures in the outer balloon directly to the wall of the body vessel.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: July 22, 2014
    Assignee: Cook Medical Technologies LLC
    Inventors: Darin G. Schaeffer, David Christian Lentz
  • Patent number: 8771225
    Abstract: A balloon catheter is configured so that a balloon can be easily inserted into the interior of a human body without using a separate wire.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: July 8, 2014
    Inventor: Yong Chul Ahn
  • Patent number: 8747350
    Abstract: A medical device for advancement over a guidewire includes a number of lumens therein including a working channel lumen, one or more control wire lumens, and a guidewire lumen. A flexible support within the device includes a number of interlocking elements that resist longitudinal compression, transfer rotational torque, and can bend side to side. The flexible support also includes a slot that is aligned with the guidewire lumen. An outer jacket includes a perforation, slot, slit, or thinned area that is aligned with the slot in the support member and the guidewire lumen in order to allow a device such as a guidewire to be removed from the guidewire lumen and through the support member.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: June 10, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Yem Chin, John Golden, Paul Scopton, Robert DeVries, John O McWeeney
  • Publication number: 20140142504
    Abstract: A tamponade catheter is disclosed for controlling bleeding from a penetrating or perforating wound in a patient comprising a catheter having an inner catheter lumen with a non-elastic inflatable balloon secured to the catheter in fluid communication with an inner catheter lumen of the catheter. A removable outer sheath overlays the inflatable balloon for inserting the inflatable balloon within the wound of the patient. A bendable flexible stiffening stylet is receivable within the inner catheter lumen of the catheter to aid in navigating the catheter into the wound of the patient. The removable outer sheath and the stylet are removable for inflating the inflatable balloon by an introduction of a fluid through the inner catheter lumen of the catheter for enabling the inflated non-elastic inflatable balloon to create pressure within the wound of the patient to control bleeding therefrom.
    Type: Application
    Filed: September 3, 2013
    Publication date: May 22, 2014
    Inventor: Maynard Ramsey, III
  • Publication number: 20140142548
    Abstract: Methods, devices, systems of resuscitating a patient including accessing an arterial vessel positioning a catheter into the arterial vessel advancing the catheter through the arterial vessel to position it below a vessel supplying blood to a heart and a brain expanding an expandable portion of the catheter to prevent blood from flowing past the expanded portion and infusing a substance retrograde into the artery within the arterial section between the heart and the expanded portion of the catheter.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 22, 2014
    Inventors: James MANNING, Michael D. LAUFER, Charles SPROULE
  • Patent number: 8721592
    Abstract: A system and method for localized delivery of a therapeutic or diagnostic agent within a vessel is provided. The system and method provide for adjustability of the length of the treatment area and for reducing of pressure within the treatment area. A catheter system includes an inner elongated element, an outer elongated element positioned coaxially with respect to the inner elongated element, and a blood-release element at a distal end of the inner elongated element. A proximal occlusion element is positioned at the distal end of the outer elongated element, proximal to an outlet port. A distal occlusion element is positioned at a distal end of the inner elongated element. The distal end of the inner elongated element is distal to and movable with respect to the outer elongated element distal end.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: May 13, 2014
    Assignee: ThermopeutiX, Inc.
    Inventors: Ronald J. Solar, Yoav Shaked, Glen Lieber
  • Patent number: 8702649
    Abstract: A method and device for the simultaneous or sequential introduction of multiple fluids into the bloodstream including a multiple lumen catheter with corresponding multiple hole sets. By introducing a second fluid such as saline, the concentration and bolus of a first fluid, such as a contrast agent, can be controlled and optimized.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: April 22, 2014
    Assignee: Bayer Medical Care Inc.
    Inventors: Robert S. Schwartz, Robert A. Van Tassel, Eugene A. Gelblum, Alan D. Hirschman, John F. Kalafut, David M. Reilly, Frederick W. Trombley, III, Arthur E. Uber, III
  • Patent number: 8636722
    Abstract: Various forms of anti-clog suction tips apparatus are disclosed. For example, an anti-clog suction tip apparatus includes a suction tip assembly having a suction tip with a suction opening at a first end thereof for removing debris through suction, a hose attachment portion for attaching the suction tip assembly to a suction source, and an ejection wire channel. The apparatus further includes an ejection wire assembly having an ejection wire extending within the channel and an ejection button integral with or connected to the ejection wire. Applying a force to the ejection button advances the ejection wire through the channel such that an end portion of the ejection wire enters the suction tip and dislodges debris clogging the suction tip. The ejection wire may include an enlarged end portion such as, for example a ball tip. One or more of the components of the apparatus may be single-use and disposable.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 28, 2014
    Assignee: H & M Innovations, LLC
    Inventors: Robert Sean Hensler, Thomas James Philpott, Daniel Lee Bizzell, Michael Starkey, Raeshon Lamont McNeil, Juan Carlos Perez, Thomas Eric Melin, Kenneth D. Ballard
  • Publication number: 20140012195
    Abstract: A catheter having an elongate shaft including a plurality of apertures disposed along at least a length of the shaft to facilitate bending. The catheter includes an inflatable balloon, wherein a subset of the plurality of apertures provides fluid communication from an inflation lumen to the inflatable balloon.
    Type: Application
    Filed: September 23, 2013
    Publication date: January 9, 2014
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Stephen Griffin, Huey Quoc Chan, Elaine Lim, Nhan Hue To
  • Patent number: 8585645
    Abstract: Methods are describe for treating intraluminal locations such as in a patient's lung. The device is a catheter which has an elongated shaft with an inner lumen, preferably defined by an inner tubular member, formed of heat resistant polymeric materials such as polyimide and high temperature vapor is directed through the inner lumen into the intraluminal location to treat tissue at and/or distal to the location. The outer surface of the catheter is also formed of heat resistant material. An enlarged or enlargeable member, such as a balloon, is provided on a distal portion of the catheter shaft to prevent proximal flow of the high temperature vapor upon discharge from the catheter.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: November 19, 2013
    Assignee: Uptake Medical Corp.
    Inventors: Robert Barry, Dean Corcoran, Brian Cran, Michael Hoey, Sheldon Lee, Peter Lyons
  • Patent number: 8574222
    Abstract: An anti-clog suction tip apparatus includes a suction tip having a suction opening and an interior defining a suction channel. An ejection wire channel extends to a wire exit opening into the suction channel that is located proximate the suction opening. An ejection wire including a ball tip at an end thereof occupies the ejection wire channel and is transitionable between a retracted configuration and an advanced configuration such that, in the retracted configuration, the ejection wire including the ball tip is retained within the ejection wire channel and does not obstruct suctioning of debris through the suction channel; and in the advanced configuration, the ball tip of the ejection wire does not extend more than three millimeters beyond the suction opening.
    Type: Grant
    Filed: November 17, 2012
    Date of Patent: November 5, 2013
    Assignee: H & M Innovations, LLC
    Inventors: Robert Sean Hensler, Thomas Eric Melin
  • Patent number: 8540668
    Abstract: A catheter having an elongate shaft including a plurality of apertures disposed along at least a length of the shaft to facilitate bending. The catheter includes an inflatable balloon, wherein a subset of the plurality of apertures provides fluid communication from an inflation lumen to the inflatable balloon.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: September 24, 2013
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Stephen Griffin, Huey Quoc Chan, Elaine Lim, Nhan Hue To
  • Patent number: 8535265
    Abstract: Endotracheal and tracheostomy tubes have an inflatable cuff for sealing the trachea so that a patient may be ventilated through a respiratory lumen of the tube. As a result of sealing the trachea outside of the tube, liquids accumulate above the cuff. If these liquids are allowed to move into the lungs, they may cause ventilator acquired pneumonia (VAP). The liquids may be removed by suction applied to a suction lumen terminating in a port above the cuff, but suctioning can cause damage to the trachea if the tube is sucked up against the tracheal wall. A tracheal catheter having a unique method of attaching the balloon cuff is provided. The cuff is to attached so that an upper part (collar) of the cuff is used to cover the distal end of a suction lumen port. This allows the port to be located closer to the cuff and so provides more thorough liquid removal and reduces the possibility that the tube may suck itself onto the tracheal wall.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: September 17, 2013
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Steven Ray Burnett, Stephen A. Baratian
  • Patent number: 8500714
    Abstract: Some embodiments of a system or method for treating heart tissue can include a catheter device that provides a user with the ability to perform a number of heart treatment tasks (before, during, and after a cardiac surgery or a percutaneous coronary intervention). In particular embodiments, the catheter device can be used to (i) precondition heart muscle tissue before the heart is isolated from the circulatory system, (ii) deliver cardioplegia into the coronary sinus during the cardiac surgery when the heart is isolated from the circulatory system, and (iii) control the blood flow through the heart after the heart is reconnected with the circulatory system. In some embodiments, the catheter device can perform some or all of: (i) intermittently occluding the coronary sinus, (ii) delivering a treatment fluid into the coronary sinus, and (iii) monitoring a flow rate of blood passing from the coronary sinus to the right atrium.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Miracor Medical Systems GmbH
    Inventor: Werner Mohl
  • Patent number: 8500686
    Abstract: Some embodiments of a system or method for treating heart tissue can include a catheter device that provides a user with the ability to perform a number of heart treatment tasks (before, during, and after a cardiac surgery or a percutaneous coronary intervention). In particular embodiments, the catheter device can be used to (i) precondition heart muscle tissue before the heart is isolated from the circulatory system, (ii) deliver cardioplegia into the coronary sinus during the cardiac surgery when the heart is isolated from the circulatory system, and (iii) control the blood flow through the heart after the heart is reconnected with the circulatory system. In some embodiments, the catheter device can perform some or all of: (i) intermittently occluding the coronary sinus, (ii) delivering a treatment fluid into the coronary sinus, and (iii) monitoring a flow rate of blood passing from the coronary sinus to the right atrium.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Miracor Medical Systems GmbH
    Inventor: Werner Mohl
  • Patent number: 8500685
    Abstract: Some embodiments of a system or method for treating heart tissue can include a catheter device that provides a user with the ability to perform a number of heart treatment tasks (before, during, and after a cardiac surgery or a percutaneous coronary intervention). In particular embodiments, the catheter device can be used to (i) precondition heart muscle tissue before the heart is isolated from the circulatory system, (ii) deliver cardioplegia into the coronary sinus during the cardiac surgery when the heart is isolated from the circulatory system, and (iii) control the blood flow through the heart after the heart is reconnected with the circulatory system. In some embodiments, the catheter device can perform some or all of: (i) intermittently occluding the coronary sinus, (ii) delivering a treatment fluid into the coronary sinus, and (iii) monitoring a flow rate of blood passing from the coronary sinus to the right atrium.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Miracor Medical Systems GmbH
    Inventor: Werner Mohl
  • Patent number: 8486012
    Abstract: Embodiments of a method and apparatus to prevent reperfusion injury. In one embodiment, blood flow proximal to a lesion is occluded. An infusion catheter is advanced to a region distal to the lesion and an anti-reperfusion injury drug is delivered. The lesion may then be treated with a dilating device to reintroduce blood flow to the region distal to the lesion.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: July 16, 2013
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Daniel L. Cox, Hongzhi Bai, Paul Consigny, Jessica G. Chiu
  • Patent number: 8475378
    Abstract: An apparatus for performing a transesophageal cardiovascular procedure includes an elongated tubular main access device having a first lumen with an open proximal end and a distal side opening, and a second lumen with a rigid outer wall and a collapsible inner wall. The second lumen is adapted to receive an elongated probe or surgical device. The apparatus further includes an inflatable sealing means on the outside of the main access device above and below the side opening, and a first fluid conduit extending along the main access device for inflating the sealing means so that when the main access device is inserted into a patient's esophagus and the sealing means are inflated. The portion of the esophagus opposite the side opening is isolated from the remainder of the esophagus above and below the side opening.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: July 2, 2013
    Assignee: Microaccess Inc.
    Inventor: Sameh Mesallum
  • Patent number: 8465453
    Abstract: Medical devices with surfaces on which viable biologic cells are magnetically attracted and retained are disclosed along with methods of magnetic coating. The medical devices can be located in a carrier liquid containing high concentrations of magnetic cells before or after implantation. The carrier liquid with magnetic cells may be contact with the medical device in vitro or in vivo. In either case, the carrier liquid may have a concentration of magnetic cells that is high enough to facilitate coating of the medical device within an acceptable period of time, e.g., several hours or less. Magnetization of medical devices before, during, and/or after implantation and apparatus for performing the same are disclosed. Degaussing of magnetic medical devices is also disclosed.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: June 18, 2013
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Gurpreet S. Sandhu, Robert D. Simari, Nicole P. Sandhu, Rajiv Gulati
  • Patent number: 8435225
    Abstract: Apparatus and methods are described for effective removal of emboli or harmful fluids during therapeutic and diagnostic vascular procedures, such as angiography, balloon angioplasty, stent deployment, laser angioplasty, atherectomy, and intravascular ultrasonography. A catheter with an occluder mounted at its distal end creates an occlusion proximal to the lesion and provides a pathway for introducing a treatment catheter. Prior to, during or subsequent to the procedure, suction is activated to establish retrograde flow to remove emboli from the site. Additionally, a thin catheter with a distal fluid ejection nozzle may be introduced distal to the treatment site to rinse emboli from the treatment site. The suction flow and/or ejected fluid flow may be varied in a pulsatile manner to simulate regular blood flow and/or perturb settled emboli into being captured that may otherwise not be collected. The method establishes a protective environment before any devices enter the treatment site.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: May 7, 2013
    Assignee: Fox Hollow Technologies, Inc.
    Inventors: Brian K. Courtney, John M. MacMahon, Thomas G. Goff
  • Patent number: 8430845
    Abstract: An embolic protection system and method of treating occluded vessels which reduces the risk of distal embolization during vascular interventions is provided. The embolic protection system includes a guide catheter, a multi-lumen tube having a sealing surface on the distal end and an interventional device. A method of treating a blood vessel includes providing a guide catheter and a multi-lumen elongate member having proximal and distal ends, evacuation and inflation lumens extending therebetween and a sealing surface on the distal end. The elongate member is advanced through the guide catheter into a blood vessel that supplies blood to the heart proximal a lesion. The sealing surface is expanded to engage the endoluminal surface of the blood vessel and stop antegrade flow. An interventional device is advanced through the evacuation lumen to treat the lesion.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: April 30, 2013
    Inventors: Dennis W. Wahr, Thomas V. Ressemann, Peter T. Keith, David J. Blaeser, Michael Berman
  • Patent number: 8403876
    Abstract: A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: March 26, 2013
    Assignees: Zoll Circulation, Inc., The Regents of the University of California
    Inventors: Wayne A. Noda, Mike L. Jones, Scott M. Evans, Blair D. Walker, William J. Worthen, Yves Pierre Gobin
  • Patent number: 8398613
    Abstract: A surgical drain and method for using the same. The surgical drain comprises a first end, which may be sized for placement within an organism. The first end features a plurality of segments, each labeled with an alphanumeric character. The first end may be cut at a line between two of the segments. The alphanumeric character at the terminal end of the first end after cutting is recorded prior to placing the drain within the organism. When removing the drain, the recorded alphanumeric character is compared with the character at a terminal end of the first end of the surgical drain. Thus, a treating professional can ensure that no portion of the surgical drain is left within the wound, preventing infection due to a foreign object left within the organism.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: March 19, 2013
    Inventor: Michael R. Hahn
  • Patent number: 8303538
    Abstract: The devices of the present disclosure are rheolytic thrombectomy catheters with a self-inflating distal balloon. A self-inflating balloon is located distal to an inflow gap or orifice and distal to a fluid jet emanator, which self-inflating balloon is inflated and expanded by the utilization of internal operating forces consisting of forwardly directed high velocity fluid jet streams and/or entrained thrombus particulate therein. The self-inflating balloon, when inflated, impinges on the wall of the blood vessel to isolate sections of the blood vessel distal and proximal to the inflated balloon in order to prevent flow of thrombus particulate, fluids and the like distal to the self-inflating balloon and to provide a stagnant nonflow region proximal to the self-inflating balloon. The devices of the present disclosure also provide for a uniform spacing of the catheter tube with respect to the thrombus and/or wall of the blood vessel.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: November 6, 2012
    Assignee: Medrad, Inc.
    Inventors: Michael J. Bonnette, Eric J. Thor, Debra M. Kozak
  • Patent number: 8267953
    Abstract: An angioplasty balloon catheter with an added channel for delivering medication or removing body fluids distal to the site of angioplasty is disclosed. The balloons are especially useful in the treatment of occlusions in saphenous vein grafts, the coronary and carotid arteries, arteries arising from the aorta and branches thereof and in veins flowing to the heart or their tributaries and sub tributaries thereof.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: September 18, 2012
    Assignee: The Regents of The University of Michigan
    Inventor: Hitinder Gurm
  • Patent number: 8267887
    Abstract: Some embodiments of a system or method for treating heart tissue can include a catheter device that provides a user with the ability to perform a number of heart treatment tasks (before, during, and after a cardiac surgery or a percutaneous coronary intervention). In particular embodiments, the catheter device can be used to (i) precondition heart muscle tissue before the heart is isolated from the circulatory system, (ii) deliver cardioplegia into the coronary sinus during the cardiac surgery when the heart is isolated from the circulatory system, and (iii) control the blood flow through the heart after the heart is reconnected with the circulatory system. In some embodiments, the catheter device can perform some or all of: (i) intermittently occluding the coronary sinus, (ii) delivering a treatment fluid into the coronary sinus, and (iii) monitoring a flow rate of blood passing from the coronary sinus to the right atrium.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: September 18, 2012
    Assignee: Miracor Medical Systems GmbH
    Inventor: Werner Mohl
  • Patent number: 8262612
    Abstract: Embodiments of a method and apparatus to prevent reperfusion injury. In one embodiment, blood flow proximal to a lesion is occluded. An infusion catheter is advanced to a region distal to the lesion and an anti-reperfusion injury drug is delivered. The lesion may then be treated with a dilating device to reintroduce blood flow to the region distal to the lesion.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: September 11, 2012
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Daniel L. Cox, Hongzhi Bai, Paul Consigny, Jessica G. Chiu
  • Patent number: 8206332
    Abstract: A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: June 26, 2012
    Assignees: Zoll Circulation Inc., The Regents of the University of California
    Inventors: Wayne A. Noda, Mike L. Jones, Scott M. Evans, Blair D. Walker, William J. Worthen, Yves Pierre Gobin
  • Patent number: 8109894
    Abstract: A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: February 7, 2012
    Assignees: Zoll Circulation, Inc., The Regents of the University of California
    Inventors: Wayne A. Noda, Mike L. Jones, Scott M. Evans, Blair D. Walker, William J. Worthen, Yves Pierre Gobin
  • Patent number: 8105263
    Abstract: A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: January 31, 2012
    Assignees: Zoll Circulation, Inc., The Regents of the University of California
    Inventors: Wayne A. Noda, Mike L. Jones, Scott M. Evans, Blair D. Walker, William J. Worthen, Yves Pierre Gobin
  • Patent number: 8105264
    Abstract: A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: January 31, 2012
    Assignees: Zoll Circulation, Inc., The Regents of the University of Califonia
    Inventors: Wayne A. Noda, Mike L. Jones, Scott M. Evans, Blair D. Walker, William J. Worchen, Yves Pierre Gobin
  • Patent number: 8105262
    Abstract: A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: January 31, 2012
    Assignees: Zoll Circulation, Inc., The Regents of the University of California
    Inventors: Wayne A. Noda, Mike L. Jones, Scott M. Evans, Blair D. Walker, William J. Worthen, Yves Pierre Gobin
  • Patent number: 8092372
    Abstract: An insertion assisting tool for an endoscope which is a tubular insertion assisting tool which is provided with an inflatable and deflatable balloon attached to a tip end outer peripheral part, and through which an insertion section for an endoscope is capable of being inserted, comprising: an air hole formed at an outer periphery and/or a tip end part of the insertion assisting tool.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: January 10, 2012
    Assignee: Fujifilm Corporation
    Inventor: Mitsunori Machida