Therapeutic Material Introduced Or Removed In Response To A Sensed Body Condition Patents (Class 604/503)
  • Patent number: 10702697
    Abstract: A deep brain stimulation device includes a probe having a transparent distal portion, crossed by a channel open at a proximal end of the probe, and also includes electrodes affixed to the distal portion of the probe and electrode terminals affixed to a proximal portion of the probe. Further, the device includes an electrical housing including a channel open at its two ends and housing electrical terminals in contact with the terminals of the probe, and an electrical extension lead affixed to the housing and connected to the terminals of the housing. The channel of the housing is open at the other one of its ends and the device further includes a waveguide at least partly housed in the central channel of the probe, all the way to the distal portion of the probe, and a transmitter housing capable of being connected to the waveguide for the injection of a predetermined wavelength.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: July 7, 2020
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Claude Chabrol, Alim-Louis Benabid
  • Patent number: 10667747
    Abstract: An example of a system for providing a patient with pain management includes a pain monitoring circuit. The pain monitoring circuit may include parameter analyzer circuitry and pain score generator circuitry. The parameter analyzer circuitry may be configured to receive and analyze one or more timing parameters and one or more baroreflex parameters allowing for determination of baroreflex sensitivity (BRS) of the patient. The one or more timing parameters are indicative of time intervals during which values of the one or more baroreflex parameters are used to determine the BRS. The pain score generator circuitry may be configured to compute a pain score using an outcome of the analysis. The pain score is a function of the BRS during the time intervals and indicative of a degree of pain of the patient.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: June 2, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Elizabeth Mary Annoni, Pramodsingh Hirasingh Thakur, Bryan Allen Clark, Kyle Harish Srivastava, Jianwen Gu, James John Kleinedler, David J. Ternes, David L. Perschbacher
  • Patent number: 10610141
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 7, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Böhm, Daiting Rong, Peter C. Simpson
  • Patent number: 10512722
    Abstract: A system and method for patient-adaptive hemodynamic management is described. One embodiment includes a system for hemodynamic management including transfusion, volume resuscitation with intravenous fluids, and medications, utilizing monitored hemodynamic parameters including the described dynamic predictors of fluid responsiveness, and including an intelligent algorithm capable of adaptation of the function of the device to specific patients.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: December 24, 2019
    Assignee: The Regents of the University of California
    Inventors: Joseph B. Rinehart, Maxime Cannesson
  • Patent number: 10512723
    Abstract: An example system includes a flexible substrate configured to be mounted to a skin surface. The system includes a sensor probe that has a first end attached to the flexible substrate and a second end configured to extend beneath the skin surface to contact interstitial fluid. A sensor is configured to measure a physiological property and is disposed at the second end of the sensor probe. A transmitter is attached to the flexible substrate and is configured to provide information related to sensor measurements to a controller. The controller is configured to a drug delivery rate based on the information.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: December 24, 2019
    Assignee: Verily Life Sciences LLC
    Inventors: William James Biederman, Brian Otis, Jaclyn Leverett Wasson, Zenghe Liu
  • Patent number: 10515340
    Abstract: In various example embodiments, a system and method for determining an ideal customized beverage for a particular user and generating user-specific instructions to create the beverage. In example embodiments, a beverage request may be received by the system from a network. The system may further receive and store information about a dispenser responsible for creating the beverage and information about the user. The received information may be used by the system to determine a user-specific ideal beverage formulation. The system may further use the determined formulation to generate user-specific composition instructions and export the instructions over a network to the dispensing device.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: December 24, 2019
    Assignee: MyAveta LLC
    Inventors: Vetrivel Dhagumudi, Suhas Apte
  • Patent number: 10350373
    Abstract: A device for the deposition of adipose tissue, comprising: a) a syringe for grafting the tissue, b) a system for controlling the advance of the plunger of the syringe, which receives information about the movement of the syringe in the direction of withdrawal from an external system for detecting the movement of the syringe, and c) an external system for detecting the movement of the syringe. The control system determines the advance of the plunger of the syringe on the basis of the movement of the syringe in the direction of withdrawal and on the basis of the quantity of adipose tissue per unit of length of deposition. The advantages deriving from the use of this device in lipomodelling (or fat grafting) are in an automatic control of deposition of the adipose tissue and a correct uniformity of the graft.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: July 16, 2019
    Inventors: Paolo Patete, Guido Baroni
  • Patent number: 10335082
    Abstract: A medication delivery system for delivering medicament to a body of a user. The medication delivery system may include a housing having a plurality of medicament reservoirs therein, a first sensor configured to continuously monitor a parameter of the body, and a pump mechanism configured to pump medicament from each of the plurality of medicament reservoirs to a delivery mechanism having a portion disposed within the body of the user.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: July 2, 2019
    Assignee: Picolife Technologies, LLC
    Inventor: Farid Amirouche
  • Patent number: 10265482
    Abstract: A needle-point pen apparatus and methods for administering a medication. The needle-point pen apparatus can include a barrel, a needle movably disposed within an inner channel of the barrel, the needle having a tip and an elongate shaft. A driving unit is coupled to the needle and provides a driving actuation to the needle. The driving actuation causes the needle to reciprocate within the barrel between one or more extended and retracted positions. The needle being designed to at least partially insert the medication into living tissue. A medication reservoir supplies the medication to the needle for at least partial insertion into the tissue. A computing device controls the needle actuation and the supply of the medication to the needle for controlling administration of the medication at multiple different computer-controlled depths and/or locations of the tissue.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: April 23, 2019
    Assignee: SOUL SKINS LLC
    Inventor: David Allan Jones
  • Patent number: 10213550
    Abstract: Methods and systems are presented for monitoring a clinical procedure using regional blood oxygen saturation (rSO2) of a subject. The rSO2 of a subject is monitored, and clinical information is received, indicating that the subject is undergoing a clinical procedure (e.g., an infusion pump procedure for sodium nitroprusside administration). A change in the rSO2 of the subject is detected, which may be indicative of a circulatory system impairment (e.g., elevated venous oxygen saturation) caused by the clinical procedure. Status information, which may be indicative of an increased risk of a physiological event (e.g., cyanide toxicity) is determined for the subject based on the clinical information and the detected change in the rSO2 of the subject. Corrective actions may be triggered based on the status information in order to reduce the increased risk. The corrective actions may be implemented as smart prompt or closed loop systems.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: February 26, 2019
    Assignee: Covidien LP
    Inventor: Peter Doyle
  • Patent number: 10207089
    Abstract: A device that can be placed within or near the cranial vault that fluctuates in size in response to changes in CSF pressure is disclosed. The device diminishes in size when CSF pressures rise and increases in size as CSF pressures diminish. The device has the effect of reducing the flow of CSF occurring in the foramen magnum and provides an alternative to craniovertebral decompression in Chiari I patients. The device may have applications in other neurologic illnesses associated with abnormal CSF flow, such as Idiopathic Syringomyelia, Normal Pressure Hydrocephalus, and CSF dural leaks.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: February 19, 2019
    Inventor: Victor M. Haughton
  • Patent number: 10183130
    Abstract: A medical fluid infusion system includes a pump system configured to deliver a fluid drug to a patient. The system includes a pump, such as a piston pump, for driving fluid to a patient. One or more pressure sensors are configured to measure and detect changes in fluid pressure in a fluid flow line of the infusion system. The changes in fluid pressure, when detected, can be an indication of proper or improper functioning of a valve system of the pump system of the fluid infusion system.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: January 22, 2019
    Assignee: CareFusion 303, Inc.
    Inventors: Daniel Kimm, Lee Good, Alexander Ellington
  • Patent number: 10176301
    Abstract: Provided herein are computer-based systems, software, and methods of using the same including a daily patient questionnaire, the questionnaire comprising: a question for determining whether the patient avoided solid food; a question for determining whether the patient had difficulty swallowing solid food; a question for determining what action the patient took to correct or relieve difficulty swallowing food; a question for determining the amount of pain the patient experienced while swallowing food; and a software module configured to apply an algorithm to answers to one or more of said questions to determine a score, wherein said score illustrates one or more selected from the group consisting of: (1) severity, intensity, or frequency of patient dysphagia; (2) suitability of a patient for a particular diagnostic tool, diagnostic method, or therapy for dysphagia; and (3) efficacy of a particular therapy for dysphagia.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: January 8, 2019
    Assignee: MERITAGE PHARMA, INC.
    Inventors: Malcolm Hill, Robert Farber, Bonnie Hepburn, Linda Gieschen
  • Patent number: 10143789
    Abstract: Disclosed is a device for providing resuscitation or suspended state through redistribution of cardiac output to increase supply to the brain and heart for a patient. The device includes an electrically controllable redistribution component attachable to the patient to provide redistribution of the cardiac output to increase supply to the brain and heart. The redistribution component, following a predefined reaction pattern based on an electrical signal, and computer means configured to: receive a patient data which identifies physiological and/or anatomical characteristics of the patent; and provide the electrical signal for the redistribution component based on the patient data or a standard response. The device may provide mechanisms to protect the aorta and the remaining anatomy of the patient from inadvertent damage caused by the disclosed device in any usage scenario of either correct intended usage or unintended usage. Also disclosed is a method for providing resuscitation or suspended state.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: December 4, 2018
    Assignee: Neurescue ApS
    Inventor: Habib Frost
  • Patent number: 10130817
    Abstract: A method may include delivering autonomic neural stimulation (ANS) therapy, including delivering stimulation pulses to evoke physiological responses. The method may further include recording physiological parameter values, including recording first population data, the first population data including evoked response (ER) values corresponding to the evoked physiological responses, and recording second population data, the second population data including reference values that include no effect (NE) values corresponding to times without an evoked physiological response. The method may further include quantifying a relationship between the first population data and the second population data, and analyzing the quantified relationship for a signature to indicate if the stimulation pulses are evoking desired physiological responses.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: November 20, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Craig Stolen, Rahul Agarwal, Nicholas Wold, Stephen B. Ruble
  • Patent number: 10046114
    Abstract: An example system includes a flexible substrate configured to be mounted to a skin surface. The system includes a sensor probe that has a first end attached to the flexible substrate and a second end configured to extend beneath the skin surface to contact interstitial fluid. A sensor is configured to measure a physiological property and is disposed at the second end of the sensor probe. A transmitter is attached to the flexible substrate and is configured to provide information related to sensor measurements to a controller. The controller is configured to a drug delivery rate based on the information.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: August 14, 2018
    Assignee: Verily Life Sciences LLC
    Inventors: William James Biederman, Brian Otis, Jaclyn Leverett Wasson, Zenghe Liu
  • Patent number: 10016606
    Abstract: The disclosure describes a method and system or controlling symptoms of patients suffering from Parkinson's Disease. In some examples, one or more biomarkers indicative of a patient's present symptoms are determined. The biomarkers may be used to control therapy delivered to the patient in a closed-loop manner. In addition, biomarkers may be used as an indication of therapy effectiveness.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: July 10, 2018
    Assignee: Medtronic, Inc.
    Inventors: Pedram Afshar, Timothy J. Denison, David E. Linde, Scott R. Stanslaski
  • Patent number: 9895490
    Abstract: A device for delivering fluid to a user includes a housing, a drive motor assembly in the housing, a force sensor, and an electronics module. The drive motor assembly regulates delivery of fluid by actuating a piston of a fluid reservoir, and the force sensor generates output levels in response to force imparted thereto during, for example, fluid delivery operations. The electronics module processes the output levels of the force sensor to assess the operating health of the force sensor, to check for occlusions in the fluid delivery path, and to monitor the seating status of the fluid reservoir.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: February 20, 2018
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Hsiao-Yu S. Kow, Afshin Bazargan, Ian B. Hanson, Pablo Vazquez, Juan M. Alderete, Jr., Salman Monirabbasi
  • Patent number: 9848760
    Abstract: Systems and methods described herein include those for the continual modification of intestinal microbes. Described herein are systems including sampling devices, analysis devices, computational devices and user interface devices as well as methods for the use of such devices in combination.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: December 26, 2017
    Assignee: Gearbox, LLC
    Inventors: Mahalaxmi Gita Bangera, Edward S. Boyden, Roderick A. Hyde, Jordin T. Kare, Eric C. Leuthardt, Dennis J. Rivet, Lowell L. Wood, Jr.
  • Patent number: 9801997
    Abstract: Some embodiments of an infusion pump system can include a controller in which one or more features sets to be provided by the controller are enabled or disabled based upon the particular pump device that is connected to the controller. For example, in some embodiments, one or more advanced features of the controller are available to the user only when a first type of pump device (e.g., having predefined settings stored therein) is connected to the controller, and those advanced features of the controller are disabled when a second type of pump device is connected to the controller.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: October 31, 2017
    Assignee: Bigfoot Biomedical, Inc.
    Inventors: Mark C. Estes, Wenkang Qi, Phillip Hopper
  • Patent number: 9731072
    Abstract: Some embodiments of a portable infusion pump system can be configured to can be configured to adjust the sensitivity of particular detectors or alert systems based (at least in part) on information received from a monitoring device. For example, a glucose monitoring device can communication with an infusion pump assembly used to supply insulin or another medication to a user. In such circumstances, the data received from the monitoring device can be used to adjust the sensitivity of an occlusion detection system.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: August 15, 2017
    Assignee: Bigfoot Biomedical, Inc.
    Inventor: Mark C. Estes
  • Patent number: 9622689
    Abstract: Generally, methods of analyte monitoring management, and articles of manufacturing related thereto, are provided. The methods include receiving analyte measurement data and analyzing the analyte measurement data for health related parameters. Recommendations are determined for creating or modifying a treatment program based on the analysis, and provided within a user-interface that enables a user to create or modify the treatment program. Further, generally, methods of for managing analyte measurement data, and articles of manufacturing related thereto, are provided. The methods include receiving analyte measurement data that represent data collected over a time period, and analyzing the analyte measurement data for analyte episodes within that time period. Threshold based episodes and/or rate-of-change based episodes may be determined.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 18, 2017
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Nathan C. Crouther, Timothy C. Dunn
  • Patent number: 9492606
    Abstract: A system for delivery of a volume of infusible fluid. The system includes a controller configured to calculate a trajectory for delivering infusible fluid, the trajectory comprising at least one volume of fluid, and determine a schedule for delivering the at least one volume of fluid according to the trajectory, wherein the schedule comprising an interval and a volume of infusible fluid for delivery. The system also includes a volume sensor assembly for determining the at least one volume of fluid delivered, wherein the controller recalculates the trajectory based on the volume of fluid delivered.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: November 15, 2016
    Assignee: DEKA Products Limited Partnership
    Inventors: Dean Kamen, John M. Kerwin, Gerald M. Guay, Larry B. Gray, Richard J. Lanigan, Stephen L. Fichera, Colin H. Murphy, Thomas F. Soldau, David Blumberg
  • Patent number: 9480825
    Abstract: A system for anchoring a distal end of a catheter at a treatment site includes an elongated catheter shaft that is formed with a lumen and two cone shaped balloon membranes. For the system, the proximal and distal ends of the balloon membranes are affixed to an outer surface of the shaft to establish balloons having inflation chambers between the membranes and the shaft. A first membrane portion of a first balloon membrane extends from the distal end of the membrane end to a balloon membrane midsection and a second membrane portion extends from the midsection to the proximal membrane end. To establish the proper shape for the inflated balloon, the second membrane portion is configured to establish a cone angle, ?, (relative to a proximally directed portion of the longitudinal axis) that is less than or equal to ninety degrees (??90 degrees).
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: November 1, 2016
    Assignee: THE GUY P. CURTIS AND FRANCES L. CURTIS TRUST
    Inventor: Guy P. Curtis
  • Patent number: 9452252
    Abstract: The invention relates to a method and a device for monitoring a vascular access during an extracorporeal blood treatment. The method and the device according to the invention are based on the monitoring of the difference between the venous pressure measured by a venous pressure sensor and the arterial pressure measured by an arterial pressure sensor (in the extracorporeal blood circuit. According to the method and the device according to the invention, a test function describing disturbances in the extracorporeal blood circuit is determined. Said test function is used to determine a noise-free differential pressure from the measured venous and arterial pressure, said differential pressure being evaluated in an arithmetic and evaluation unit to identify a defective vascular access.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: September 27, 2016
    Inventor: Pascal Kopperschmidt
  • Patent number: 9402806
    Abstract: Embodiments of the invention provide swallowable devices, preparations and methods for delivering drugs and other therapeutic agents within the GI tract. Many embodiments provide a swallowable device for delivering the agents. Particular embodiments provide a swallowable device such as a capsule for delivering drugs into the intestinal wall or other GI lumen. Embodiments also provide various drug preparations that are configured to be contained within the capsule, advanced from the capsule into the intestinal wall and degrade to release the drug into the bloodstream to produce a therapeutic effect. The preparation can be operably coupled to delivery means having a first configuration where the preparation is contained in the capsule and a second configuration where the preparation is advanced out of the capsule into the intestinal wall. Embodiments of the invention are particularly useful for the delivery of drugs which are poorly absorbed, tolerated and/or degraded within the GI tract.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 2, 2016
    Assignee: Rani Therapeutics, LLC
    Inventor: Mir Imran
  • Patent number: 9364171
    Abstract: Systems and methods for autonomous intravenous needle insertion are disclosed herein. In an embodiment, a system for autonomous intravenous insertion include a robot arm, one or more sensors pivotally attached to the robot arm for gathering information about potential insertion sites in a subject arm, a medical device pivotally attached to the robot arm, and a controller in communication with the sensors and the robot arm, wherein the controller receives the information from the sensors about potential insertion sites, and the controller selects a target insertion site and directs the robot arm to insert the medical device into the target insertion site.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: June 14, 2016
    Assignee: Veebot Systems, Inc.
    Inventors: Richard J. Harris, Joseph B. Mygatt, Stuart I. Harris
  • Patent number: 9326686
    Abstract: A system including a sensor and a device coupled to the sensor. The sensor is configured to detect in Animalia tissue (i) a first electromagnetic radiation extinction dominated by absorption of a first wavelength and (ii) a second electromagnetic radiation extinction dominated by scattering of a second wavelength. The device is configured to aid in diagnosing at least one of infiltration and extravasation in the Animalia tissue based on the first and second electromagnetic radiation extinctions detected by the sensor.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: May 3, 2016
    Assignee: ivWatch, LLC
    Inventors: Gary P. Warren, Matthew S. Alley, Scott J. Anchell, Javier A. Garriz, William J. Naramore, Garret T. Bonnema
  • Patent number: 9289550
    Abstract: An apparatus for the detection of extravasation of an injection fluid infused into a tissue during an imaging procedure is disclosed. The apparatus includes at least a first source of energy to supply an X-ray or gamma ray imaging energy to tissue in the vicinity of a site and at least a first sensor to measure an energy signal resulting from the energy supplied to the tissue by the first imaging energy source, and circuitry configured to compare the energy signal detected by the first sensor to a baseline measurement and provide an alert that extravasation is occurring.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: March 22, 2016
    Assignee: Bayer HealthCare LLC
    Inventors: James E. Dvorsky, Chad E. Bouton, Alan D. Hirschman
  • Patent number: 9089305
    Abstract: Diabetes management apparatus comprising a sensor providing measurements of glucose level in a human or animal; an insulin pump for delivering a dose of insulin to said human or animal; and a processor. The processor is adapted to perform the following steps: receive said measurements of glucose level from said sensor; calculate a insulin dose to be delivered by said insulin pump based on said received measurement; assess the validity of the status of the apparatus; and send a command to said insulin pump to deliver said calculated insulin dose, dependent on said assessing step confirming that the status is valid.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: July 28, 2015
    Assignee: CAMBRIDGE ENTERPRISE LIMITED
    Inventor: Roman Hovorka
  • Patent number: 9066712
    Abstract: A system for treating tissue in a patient includes a body having a cooling fluid supply path and a tissue piercing probe in fluid communication with the cooling fluid supply path. The probe extends distally from the body and is insertable into the tissue through the patient's skin. A cooling fluid source is fluidly coupled with the probe such that when cooling is initiated, cooling fluid flows in the probe thereby cooling the probe and any adjacent tissue. A heater element is in thermal engagement with the cooling fluid source and a power source provides power to the heater element thereby heating the cooling fluid. The power source has sufficient power to heat the cooling fluid to at least a desired temperature but has insufficient power to heat the cooling fluid above a critical temperature which results in rupture of the cooling fluid source.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: June 30, 2015
    Assignee: MyoScience, Inc.
    Inventors: Michael Fourkas, Ronald Williams, Punit Govenji, Byron Reynolds
  • Patent number: 9061101
    Abstract: A method for providing decision-assist to medical staff resuscitating a burn patient includes receiving patient information, calculating an infusion rate, outputting the infusion rate, obtaining a urinary output, calculating a new infusion rate using infusion rate model based constants, and outputting the new infusion rate. In some embodiments, the method includes notifying medical staff when problems arise, displaying information regarding the resuscitation, and setting limits regarding the infusion rates.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: June 23, 2015
    Assignees: The Unites States of America as represented by The Secretary of the Army, Board of Regents of the University of Texas System
    Inventors: Jose Salinas, George C. Kramer, Leopoldo C. Cancio, Kevin Chung, Elizabeth Mann, Steven E. Wolf, Drew A. Guy
  • Publication number: 20150148773
    Abstract: Embodiments disclosed herein are directed to fluid spraying apparatuses, and related systems and methods. The disclosed fluid spraying apparatuses may be used, for example, to spray a medically suitable fluid on a target region of a living subject such as for treating or removing tissue. In an embodiment, a fluid spraying apparatus includes a target designation unit having a target sensor configured to sense a target region of a living subject, a spray mechanism, and a controller. The spray mechanism includes at least one reservoir configured to hold fluid, and a spraying device operably coupled to the at least one reservoir, the spraying device configured to spray the fluid in the at least one reservoir onto the target region. The controller includes control electrical circuitry operably coupled to the spray mechanism and the target designation unit, and configured to control the spray mechanism responsive to the target sensor sensing the target region.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 28, 2015
    Inventors: Mahalaxmi Gita Bangera, Roderick A. Hyde, Jordin T. Kare, Eric C. Leuthardt, Lowell L. Wood, Jr.
  • Publication number: 20150147390
    Abstract: Embodiments of the invention provide swallowable devices, preparations and methods for delivering drugs and other therapeutic agents within the GI tract. Many embodiments provide a swallowable device for delivering the agents. Particular embodiments provide a swallowable device such as a capsule for delivering drugs into the intestinal wall or other GI lumen. Embodiments also provide various drug preparations that are configured to be contained within the capsule, advanced from the capsule into the intestinal wall and degrade to release the drug into the bloodstream to produce a therapeutic effect. The preparation can be operably coupled to delivery means having a first configuration where the preparation is contained in the capsule and a second configuration where the preparation is advanced out of the capsule into the intestinal wall. Embodiments of the invention are particularly useful for the delivery of drugs which are poorly absorbed, tolerated and/or degraded within the GI tract.
    Type: Application
    Filed: January 27, 2015
    Publication date: May 28, 2015
    Inventor: Mir Imran
  • Publication number: 20150141953
    Abstract: An apparatus comprises one or more physiological sensing circuits that generate a sensed physiological signal and at least one of the physiological sensing circuits is implantable, a measurement circuit configured to recurrently measure one or more physiological parameters that indicate a status of heart failure of the subject, a comparison circuit configured to compare the one or more physiological parameter measurements to one or more physiological parameter target values, a therapy circuit configured to control delivery of one or more drugs to treat heart failure, and a control circuit in electrical communication with the comparison circuit and the therapy circuit and configured to recurrently adjust delivery of drug therapy according to the comparison of the measured physiological parameters to the physiological parameter targets.
    Type: Application
    Filed: January 26, 2015
    Publication date: May 21, 2015
    Inventors: Ramesh Wariar, Baru Maskara, Qi An, Pramodsingh Hirasingh Thakur, Julie A. Thompson
  • Patent number: 9033951
    Abstract: A device for delivering fluid to a user includes a housing, a drive motor assembly in the housing, a force sensor, and an electronics module. The drive motor assembly regulates delivery of fluid by actuating a piston of a fluid reservoir, and the force sensor generates output levels in response to force imparted thereto during, for example, fluid delivery operations. The electronics module processes the output levels of the force sensor to assess the operating health of the force sensor, to check for occlusions in the fluid delivery path, and to monitor the seating status of the fluid reservoir.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: May 19, 2015
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Hsiao-Yu S. Kow, Afshin Bazargan, Ian B. Hanson, Pablo Vazquez, Juan M. Alderete, Jr., Salman Monirabbasi
  • Publication number: 20150133888
    Abstract: Devices, systems, and techniques for programming drug delivery are described. Such techniques may account for diffusion and mixing of drug within the fluid or allow for more flexible programming options. In one example, a method may include determining one or more fluid delivery parameters (e.g., volume, flow rate, or period of time) for a fluid that is a mixture of two other fluids. The determination may be based on one or more fluid delivery parameters of the two other fluids and/or a concentration profile representing the mixing between the two other fluids. In other examples, drug delivery programming may be facilitated by the selection of various patterns and steps of drug delivery. The system may track volume of delivered fluid to maintain desired dosing of the patient.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 14, 2015
    Inventors: Irfan Z. Ali, Prasanna Anbazhagan, William J. Mitchell, Earle T. Roberts, Touby A. Drew
  • Patent number: 9022973
    Abstract: In one embodiment, an IDDC system utilizes an intelligent therapeutic agent delivery system comprised of one, but more likely an array of “cells” containing therapeutic agent(s) and/or diagnostic agents(s); an integrated bio-sensing system designed to sample and analyze biological materials using multiple sensors that include both hardware and software components. The software component involves biomedical signal processing to analyze complex liquid mixtures and a microcontrollers) acts as interface to the biosensors, to the therapeutic delivery elements, and to a communications system(s) for the purpose of controlling the amount of therapeutic agent to deliver and also to provide information in a useful form to interested parties on the progress of therapy and compliance thereto.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: May 5, 2015
    Assignee: New World Pharmaceuticals, LLC
    Inventors: Frederick A. Sexton, Ian Ivar Suni, Cetin Cetinkaya, Stephanie Schuckers, Eduard Sazonov
  • Publication number: 20150119651
    Abstract: Wireless systems and methods include a plurality of peripheral electronic devices each having a wireless communication system. A processor is configured to establish an association confidence level indicative of a likelihood that a peripheral electronic device is associated to a monitored subject for each peripheral electronic device based on association criteria. Indicators are configured to communicate the association the association confidence level.
    Type: Application
    Filed: October 29, 2013
    Publication date: April 30, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Matthew George Grubis
  • Patent number: 9017307
    Abstract: A device for delivering fluid to a user includes a housing, a drive motor assembly in the housing, a force sensor, and an electronics module. The drive motor assembly regulates delivery of fluid by actuating a piston of a fluid reservoir, and the force sensor generates output levels in response to force imparted thereto during, for example, fluid delivery operations. The electronics module processes the output levels of the force sensor to assess the operating health of the force sensor, to check for occlusions in the fluid delivery path, and to monitor the seating status of the fluid reservoir.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: April 28, 2015
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Hsiao-Yu S. Kow, Afshin Bazargan, Ian B. Hanson, Pablo Vazquez, Juan M. Alderete, Jr., Salman Monirabbasi
  • Publication number: 20150102925
    Abstract: A method detects a biological condition and detects a change in the biological condition of a mammal. The device determines if the change in the biological condition exceeds a predetermined threshold and sends a signal based at least in part on the determination.
    Type: Application
    Filed: June 11, 2014
    Publication date: April 16, 2015
    Inventors: Ivo Foldyna, Kenneth J. Stethem
  • Patent number: 9005182
    Abstract: The present invention provides improved methods for ID delivery of drugs and other substances to humans or animals. The methods employ small gauge needles, especially microneedles, placed in the intradermal space to deliver the substance to the intradermal space as a bolus or by infusion. It has been discovered that the placement of the needle outlet within the skin and the exposed height of the needle outlet are critical for efficacious delivery of active substances via small gauge needles to prevent leakage of the substance out of the skin and to improve absorption within the intradermal space. The pharmacokinetics of hormone drugs delivered according to the methods of the invention have been found to be very similar to the pharmacokinetics of conventional SC delivery, indicating that ID administration according to the methods of the invention is likely to produce a similar clinical result (i.e., similar efficacy) with the advantage of reduction or elimination of pain for the patient.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: April 14, 2015
    Assignee: Becton, Dickinson and Company
    Inventors: Ronald J. Pettis, James A. Down, Noel G. Harvey
  • Publication number: 20150100037
    Abstract: A system for providing animal maintenance includes a housing operable to accommodate an animal, an actuating arm coupled to the housing and to an attachment device, the attachment device is operable to perform one or more animal maintenance tasks, and the actuating arm is operable to apply the attachment device to the animal, a position sensor operable to determine the position of the animal relative to the position sensor, a restraint is operable to restrict the movement of the animal within the housing, and a processor communicatively coupled to the position sensor, the actuating arm, and the attachment device, the processor is operable to receive measurements from the position sensor and, in response to the received measurements, direct the actuating arm to apply the attachment device to the animal.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 9, 2015
    Inventor: David R. Allsup
  • Patent number: 8998885
    Abstract: A system for performing an intraparenchymal drug infusion including a pump device, a delivery tube, a sensor, and a processor. The tube is fluidly coupled to the pump device, establishing an infusate pathway from the pump to an infusate exit port of the delivery tube. The sensor is positioned to sense a parameter indicative of pressure in the infusate pathway. Finally, the processor is programmed to generate information indicative of infusate delivery effectiveness of a drug infusion procedure based upon information from the sensor. In some embodiments, the processor generates a net infusion pressure profile, such as a pressure-time curve, and prompts display of the pressure profile to a neurosurgeon for subsequent evaluation of infusate delivery effectiveness.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: April 7, 2015
    Assignee: Medtronic, Inc.
    Inventors: Brian D. Nelson, Ann M. Gronda, Matthew H. Adams
  • Patent number: 8998877
    Abstract: The present invention provides improved methods for ID delivery of drugs and other substances to humans or animals. The methods employ small gauge needles, especially microneedles, placed in the intradermal space to deliver the substance to the intradermal space as a bolus or by infusion. It has been discovered that the placement of the needle outlet within the skin and the exposed height of the needle outlet are critical for efficacious delivery of active substances via small gauge needles to prevent leakage of the substance out of the skin and to improve absorption within the intradermal space. The pharmacokinetics of hormone drugs delivered according to the methods of the invention have been found to be very similar to the pharmacokinetics of conventional SC delivery, indicating that ID administration according to the methods of the invention is likely to produce a similar clinical result (i.e., similar efficacy) with the advantage of reduction or elimination of pain for the patient.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: April 7, 2015
    Assignee: Becton, Dickinson and Company
    Inventors: Ronald J. Pettis, James A. Down, Noel G. Harvey
  • Patent number: 8986280
    Abstract: The present invention provides improved methods for ID delivery of drugs and other substances to humans or animals. The methods employ small gauge needles, especially microneedles, placed in the intradermal space to deliver the substance to the intradermal space as a bolus or by infusion. It has been discovered that the placement of the needle outlet within the skin and the exposed height of the needle outlet are critical for efficacious delivery of active substances via small gauge needles to prevent leakage of the substance out of the skin and to improve absorption within the intradermal space. The pharmacokinetics of hormone drugs delivered according to the methods of the invention have been found to be very similar to the pharmacokinetics of conventional SC delivery, indicating that ID administration according to the methods of the invention is likely to produce a similar clinical result (i.e., similar efficacy) with the advantage of reduction or elimination of pain for the patient.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: March 24, 2015
    Assignee: Becton, Dickinson and Company
    Inventors: Ronald J. Pettis, James A. Down, Noel G. Harvey
  • Patent number: 8981948
    Abstract: A connector clip for medical sensors, including a first main body having two main tip contacts in electrical contact with electrical wires connectable to an instrument and a second main body mounted on the first main body and movable with respect to the first main body between an open position and a closed position. Two auxiliary tip contacts and an electric/electronic circuit provided with two connecting leads each electrically connected to one of the two auxiliary tip contacts are positioned in first or second main body. When a disposable sensor tab is correctly located and clamped each of two contacts is in contact with one of the main tip contacts and one of the auxiliary tip contacts and the electric circuit is connected in parallel with an electrical circuit defined by the sensor.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: March 17, 2015
    Assignee: Gambro Lundia AB
    Inventors: Bo Olde, Eddie Nilsson, Derek White, Thierry Court, Eric Roussi
  • Patent number: 8983167
    Abstract: A variation of a method for estimating a quantity of a blood component in a fluid canister includes: within an image of a canister, identifying a reference marker on the canister; selecting an area of the image based on the reference marker; correlating a portion of the selected area with a fluid level within the canister; estimating a volume of fluid within the canister based on the fluid level; extracting a feature from the selected area; correlating the extracted featured with a concentration of a blood component within the canister; and estimating a quantity of the blood component within the canister based on the estimated volume and the concentration of the blood component within the canister.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: March 17, 2015
    Assignee: Gauss Surgical
    Inventors: Siddarth Satish, Ali Zandifar, Kevin J Miller
  • Publication number: 20150073288
    Abstract: Control of conduction through a heart is described. A lead with a proximal end and a distal end is provided. The distal end of the lead is inserted into a target area. An agent is delivered through the lead to the target area. Delivery of the agent is monitored via a closed loop feedback system.
    Type: Application
    Filed: November 12, 2014
    Publication date: March 12, 2015
    Inventors: Michael R. Ujhelyi, Daniel C. Sigg
  • Publication number: 20150059756
    Abstract: Systems, methods, and computer-readable media for providing a decision support solution to medical professionals to optimize medical care through data monitoring and feedback treatment are provided herein. In another embodiment, a computer-implemented method for modeling patient outcomes resulting from treatment in a specific medical area includes receiving patient-specific data associated with a patient, determining a plurality of possible patient states under which the patient can be categorized, a current patient state under which the patient can be categorized and determining probabilities of the patient transitioning from any of the possible patient states to every other possible patient state.
    Type: Application
    Filed: November 6, 2014
    Publication date: March 5, 2015
    Inventors: Dimitar V. Baronov, Evan J. Butler, Jesse M. Lock