Heart Patents (Class 607/119)
  • Patent number: 8583259
    Abstract: An electrode lead of a pacemaker includes a metal conductive core, a carbon nanotube film, and an insulator. The metal conductive core defines an extending direction. The carbon nanotube film at least partially surrounds the metal conductive core and is electrically insulated from the metal conductive core. The insulator is located between the metal conductive core and the carbon nanotube film. The carbon nanotube film includes a plurality of carbon nanotubes substantially extending along the extending direction of the metal conductive core. A bared part is defined at one end of the electrode lead. A pacemaker using the above mentioned electrode lead is also disclosed.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: November 12, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Liang Liu, Li Fan, Wen-Mei Zhao, Chen Feng, Yu-Quan Wang, Li Qian
  • Patent number: 8577454
    Abstract: A subcutaneous implantable cardioverter-defibrillator is disclosed which has an electrically active canister which houses a source of electrical energy, a capacitor, and operational circuitry that senses the presence of potentially fatal heart rhythms. At least one subcutaneous electrode that serves as the opposite electrode from the canister is attached to the canister via a lead system. Cardioversion-defibrillation energy is delivered when the operational circuitry senses a potentially fatal heart rhythm. There are no transvenous, intracardiac, or epicardial electrodes. A method of subcutaneously implanting the cardioverter-defibrillator is also disclosed as well as a kit for conducting the method.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: November 5, 2013
    Assignee: Cameron Health, Inc.
    Inventors: Gust H. Bardy, Riccardo Cappato
  • Patent number: 8573062
    Abstract: The disclosure relates in some aspects to an implantable pressure sensor and a method of measuring pressure. In some embodiments pressure may be measured through the use of an implantable lead incorporating one or more pressure sensors. In some aspects a pressure sensor is implemented in a micro-electromechanical system (“MEMS”) that employs direct mechanical sensing. A biocompatible material is attached to one or more portions of the MEMS sensor to facilitate implant in a body of a patient. The MEMS sensor may thus be incorporated into an implantable lead for measuring blood pressure in, for example, one or more chambers of the patient's heart.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: November 5, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Yong D. Zhao, Apratim Dixit
  • Publication number: 20130282093
    Abstract: A medical device lead includes a flexible body having a proximal region with a proximal end, and a distal region with a distal end. A connector is coupled to the proximal end of the flexible body of the lead to electrically and mechanically connect the lead to an implantable pulse generator. The medical device lead also includes an electrode in the distal region of the flexible body, and a cable conductor having a proximal end electrically coupled to the connector and a distal end electrically coupled to the electrode. The cable conductor consists of a single helically coiled filar including a plurality of co-radial turns and having an outer diameter of less than about 0.020 inch (0.508 mm).
    Type: Application
    Filed: April 19, 2013
    Publication date: October 24, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Joseph Walker, G. Shantanu Reddy, Devon N. Arnholt, Benjamin J. Haasl
  • Patent number: 8565897
    Abstract: A leadless autonomous intracardiac implantable medical device having a releasable fastener system. This autonomous intracorporeal active medical device has two distinct elements connectable together and reversibly separable from one another, with a sealed capsule body (100) housing electronic circuitry (110), and a base (200) comprising a plate (202) having an outer face and an anchoring system on said outer face to anchor the base to a wall of an organ of a patient, and an inner face forming a support for the capsule body and having a fastening system to couple releasably the capsule body to the base. The capsule body comprises on its face turned towards the base at least one projection support (108) on an electrode surface for coming into contact with the wall of the organ of the patient when the capsule body is mounted on the base.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: October 22, 2013
    Assignee: Sorin CRM S.A.S.
    Inventors: Willy Regnier, Martin Deterre, Patrice Poussin
  • Patent number: 8565870
    Abstract: A system implantable components (32, 36, 38, 40) for providing therapy to or monitoring the physiologic state of living tissue. The components exchange signals over implanted bus (34). The bus includes a trunk (84) and at least one branch (14) The at least one branch is connected to and able to move relative to the trunk. Signals are inductively exchanged between the branch and the one or more trunks.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: October 22, 2013
    Assignee: Stryker Corporation
    Inventors: Donald W. Malackowski, John J. Janik
  • Patent number: 8565865
    Abstract: Methods for determination of timing for electrical shocks to the heart to determine shock strength necessary to defibrillate a fibrillating heart. The timing corresponds the window of most vulnerability in the heart, which occurs during the T-wave of a heartbeat. Using a derivatized T-wave representation, the timing of most vulnerability is determined by a center of the area method, peak amplitude method, width method, or other similar methods. Devices are similarly disclosed embodying the methods of the present disclosure.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: October 22, 2013
    Assignees: Medtronic, Inc., Imperception, Inc.
    Inventors: Paul A. Belk, Jian Cao, Jeffrey M. Gillberg, Charles D. Swerdlow
  • Publication number: 20130274822
    Abstract: Methods, implantable medical devices and systems configured to perform analysis of captured signals from implanted electrodes to identify cardiac arrhythmias. In an illustrative embodiment, signals captured from two or more sensing vectors are analyzed, where the signals are captured with a patient in at least first and second body positions. Analysis is performed to identify primary or default sensing vectors and/or templates for event detection.
    Type: Application
    Filed: June 17, 2013
    Publication date: October 17, 2013
    Inventors: Rick Sanghera, Venugopal Allavatam
  • Publication number: 20130267797
    Abstract: The invention concerns the therapy with a cardiac resynchronization device (CRT) and/or therapy with an automated internal cardiac defibrillator (ICD) for treating patients with any cancer or patients with cachexia due to acute or chronic illness other than cardiac illness, including malignant tumor disease, COPD, chronic renal failure, liver cirrhosis, chronic infections, and/or AIDS. Areas of application are the life sciences, in particular medicine and medical technology.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 10, 2013
    Inventor: Stefan ANKER
  • Patent number: 8548601
    Abstract: A lead connection system includes a connector housing. A plurality of lead retainers disposed in the connector housing are configured and arranged to removably attach to a proximal end of one of a received plurality of leads. The plurality of lead retainers include at least one of a slidable drawer and at least one pivotable hinged panel. A plurality of connector contacts are configured and arranged for making electrical contact with one or more of the terminals of one or more of the plurality of received leads. A single connector cable has a distal end that is electrically coupled to the plurality of connector contacts and a proximal end that is configured and arranged for insertion into a trial stimulator. A cable connector is electrically coupled, via the connector contacts, to at least one terminal of each of the received plurality of leads.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: October 1, 2013
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kenny Kinyen Chinn, John Michael Barker
  • Patent number: 8545414
    Abstract: Methods and devices for modulating heart valve function are provided. In the subject methods, a heart valve is first in structurally modified. Blood flow through the structurally modified heart valve is then monitored, and the heart is paced in response to the monitored blood flow. Also provided are devices, systems and kits that find use in practicing the subject methods. The subject methods find use in a variety of applications.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: October 1, 2013
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter J. Fitzgerald, Ali Hassan, Brian K. Courtney, Nicolas A. F. Chronos, Richard G. Cartledge, Leonard Y. Lee
  • Publication number: 20130238071
    Abstract: A complex connector and component within an implantable medical device in which the complex connector is positioned within the spacing footprint of the component to optimize packaging within the device.
    Type: Application
    Filed: February 26, 2013
    Publication date: September 12, 2013
    Applicant: Medtronic, Inc.
    Inventors: Angela Rodgers, Andrew J. Ries, Kurt J. Casby, John D. Norton, Mark D. Breyen, Dan D. Erklouts, Brian J. Ross, Timothy T. Bomstad, Wayne L. Appleseth, Michael E. Clarke, Jeffrey L. Kehn, Scott J. Robinson
  • Patent number: 8532733
    Abstract: The medical lead delivery device more easily and quickly delivers a lead to or through the coronary vein of a patient's heart. The medical lead delivery device includes an elongated body, a controller, a first and second spring, and a sleeve. The elongated body includes a proximal end and a distal end. The controller is disposed at the proximal end and provides enhanced control of the distal tip of the elongated body.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: September 10, 2013
    Assignee: Medtronic, Inc.
    Inventors: Ryan Thomas Bauer, Pedro A. Meregotte, John L. Sommer, John B. Horrigan, Patrick P. Senarith, H. Allan Steingisser
  • Patent number: 8532789
    Abstract: A medical device that includes a lead having a lead body extending from a proximal end to a distal end, and a housing having a connector block for receiving the proximal end of the lead body. A fixation mechanism is positioned proximal to an electrode coil located at the distal end of the lead body, and includes a locking sleeve and a mating portion positioned along the lead body proximal to the electrode. The fixation mechanism is capable of being advance from a first state corresponding to a first inner diameter of the locking sleeve and a second state corresponding to a second inner diameter of the locking sleeve greater than the first inner diameter to fixed position the electrode at a target site.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: September 10, 2013
    Assignee: Medtronic, Inc.
    Inventor: Karel Smits
  • Patent number: 8527069
    Abstract: An embodiment includes a sensor coupled to a sternal closure wire. The sternal closure wire holds two sternum portions of a patient adjacent to one another and the first sensor senses a biological signal of the patient. An embodiment includes a current source coupled to a sternal closure wire. The sternal closure wire holds two sternum portions of a patient adjacent to one another, and the current source delivers an electrical current to the patient via the sternal closure wire. Other embodiments are described herein.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: September 3, 2013
    Assignee: Texas Heart Institute
    Inventors: Mehdi Razavi, Alan Brewer
  • Patent number: 8527068
    Abstract: The invention relates to leadless cardiac pacemakers (LBS), and elements and methods by which they affix to the heart. The invention relates particularly to a secondary fixation of leadless pacemakers which also include a primary fixation. Secondary fixation elements for LBS's may passively engage structures within the heart. Some passive secondary fixation elements entangle or engage within intraventricular structure such as trabeculae carneae. Other passive secondary fixation elements may engage or snag heart structures at sites upstream from the chamber where the LBS is primarily affixed. Still other embodiments of passive secondary fixation elements may include expandable structures.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: September 3, 2013
    Assignee: Nanostim, Inc.
    Inventor: Alan Ostroff
  • Patent number: 8521288
    Abstract: A system for providing temporary therapy, such as cardiac resynchronization therapy, to a patient suffering a decompensation event. The system can include a device having an external module for generating electrical stimuli, a first lead coupled to the module and implanted into an atrial region of a patient's heart, and a second lead coupled to the module and implanted into a ventricular region of the patient's heart. The device can also include a storage module coupled to the external module to store data associated with physiological data measured by the device. The external module is configured to temporarily generate electrical stimuli that are delivered by at least one of the first and second leads to provide therapy cardiac resynchronization therapy to the heart. A network can be coupled to the device to allow data stored in the device to be downloaded through the network to a central repository.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: August 27, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Pastore, Qingsheng Zhu
  • Patent number: 8521306
    Abstract: A pacing lead for a left cavity of the heart, implanted in the coronary system. One lead includes a telescopic microcable including multiple distinct bare areas that form a network of stimulation electrodes. The microcable includes a diameter providing for insertion of the microcable within smaller portions of the coronary vein system. The diameter may be selected from between 0.5 and 2 French. The microcable includes multiple strands twisted together. At least some strands incorporate either a core of radiopaque material wrapped by a sheath of mechanically durable material, or vice-versa. The bare areas that form the network of stimulation electrodes are provided on outward-facing portions of at least some of the strands.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 27, 2013
    Assignee: Sorin CRM S.A.S.
    Inventor: Jean-Francois Ollivier
  • Publication number: 20130218250
    Abstract: A medical device containing a device for connecting the medical device to a substrate, for furnishing electrical impulses from the medical device to the substrate, for ceasing the furnishing of electrical impulses to the substrate, for receiving pulsed radio frequency fields, for transmitting and receiving optical signals, and for protecting the substrate and the medical device from currents induced by the pulsed radio frequency fields. The medical device contains a control circuit comprised of a parallel resonant frequency circuit.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 22, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: Patrick Connelly, Michael L. Weiner, Thomas H. Foster
  • Publication number: 20130218251
    Abstract: An implantable stimulation system comprises an implantable stimulator and a control device. The control device is configured to transmit acoustic waves to the implantable stimulator, and the implantable stimulator is configured to transform the acoustic waves into electrical current, and generate stimulation energy based on the electrical current. For example, the electrical current can be transformed into electrical energy that can be used to generate the stimulation energy. Or the electrical current can contain signals used to directly or indirectly control the generation of the stimulation energy.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 22, 2013
    Applicant: REMON MEDICAL TECHNOLOGIES, LTD.
    Inventor: Remon Medical Technologies, Ltd.
  • Patent number: 8509914
    Abstract: A lead assembly comprises an outer body tubing, first and second conductors, and first and second tubing insert members. The outer body tubing comprises at least two longitudinal outer body tubing portions, each such portion comprising a through-hole and each portion comprising a keyed surface having a predetermined shape. Each of the tubing insert members receives a conductor and comprises a surface that substantially matches the predetermined shape of the keyed surface. When both of the conductors are inserted into corresponding longitudinal through-holes such that each of said first and second surfaces of the first and second hollow body members is substantially aligned with the keyed surface of a corresponding outer body tubing portion, electrodes formed on ends of the first and second conductors are encouraged to be substantially co-linear.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: August 13, 2013
    Assignee: Cyberonics, Inc.
    Inventors: Shawn D. Kollatschny, Joseph J. Sciacca
  • Patent number: 8504170
    Abstract: A medical lead is configured to be implanted into a patients body and comprises a lead body, and an electrode coupled to the lead body. The electrode comprises a first section configured to contact the patient's body, and a second section electrically coupled to the first section and configured to be capacitively coupled to the patient's body.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: August 6, 2013
    Assignee: Medtronic, Inc.
    Inventors: Carl D. Wahlstrand, Thomas B. Hoegh, James M. Olsen, Stephen L. Bolea, Gregory A. Hrdlicka
  • Patent number: 8494635
    Abstract: One aspect relates to a method for producing an electrical bushing for an implantable device, a corresponding electrical bushing, and a corresponding implantable device. The method according to one embodiment is characterized in that a green blank is produced and sintered from an electrically insulating base body green blank made of a ceramic slurry or powder and at least one electrically conductive bushing body green blank made of a cermet material. The at least one bushing body green blank is inserted into a bushing opening of the base body green blank to form a composite green blank, a shape of the at least one bushing body green blank and a shape of the at least one bushing opening are complementary to each other at least in sections thereof and prevent slippage of the bushing body green blank through the bushing opening. The composite green blank is sintered while applying a force that keeps the bodies together.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: July 23, 2013
    Assignee: W. C. Heraeus GmbH
    Inventors: Jens Troetzschel, Goran Pavlovic, Harald Manhardt, Norbert Wollenberg, Nicole Guebler
  • Patent number: 8494654
    Abstract: A paddle lead assembly for providing electrical stimulation of patient tissue includes a paddle body having a proximal end, a distal end, and a longitudinal axis. A plurality of spaced-apart electrodes are disposed on the paddle body. The plurality of spaced-apart electrodes include a first electrode and a second electrode. At least one adjustable region is configured and arranged to adjust a center-to-center distance between the first electrode and the second electrode. At least one lead body is coupled to the paddle body. A plurality of terminals are disposed on the at least one lead body. A plurality of conductive wires couple each of the electrodes to at least one of the plurality of terminals.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 23, 2013
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Anne Margaret Pianca, Priya Sundaramurthy
  • Publication number: 20130184801
    Abstract: Disclosed herein are a variety of implantable medical leads for coupling to an implantable pulse generator and targeted stimulation of the lateral and posterior basal left ventricular region of a patient heart. As one example, the lead may include a tubular body including proximal section, an intermediate section and a distal section. The intermediate section biases into a generally S-shaped or sinusoidal-shaped configuration when the intermediate section is in a free or non-restricted state. The proximal section proximally extends from the intermediate section to a proximal end configured to electrically couple to the implantable pulse generator. The distal section biases into a generally straight linear shaped configuration when the distal section is in a free or non-restricted state.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 18, 2013
    Applicant: PACESETTER, INC.
    Inventors: Mark Carlson, Gene A. Bornzin
  • Publication number: 20130184800
    Abstract: An integrated bipolar implantable medical electrical lead, which may be employed by a cardiac defibrillator, has a single low voltage electrode and a single high voltage electrode and employs a relatively robust and fail-safe configuration of three conductors. Each of the three conductors extends within an individual lumen of a tri-lumen insulative body of the lead. First and second conductors of the three connect, in parallel, the low voltage electrode to a first contact of a connector terminal assembly of the lead, and a third conductor of the three connects the high voltage electrode to a second and a third contact of the connector terminal assembly. A configuration of the third conductor differs from that of the first and second conductors in order to make the third conductor more susceptible to fracture, relative to the first and second conductors, after many years of chronic implant under extreme loading conditions.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 18, 2013
    Applicant: Medtronic, Inc.
    Inventor: Kenneth Anderson
  • Patent number: 8486062
    Abstract: A curved ablation catheter imparts ablative energy to target tissue, for example, along a trabecular slope, e.g., in the right atrium along the isthmus between the ostium of the inferior vena cava and the tricuspid valve. The catheter is formed with a preset curvature that, when deployed, both translates linearly and increases in radius to aid in the formation of spot or continuous linear lesions. A method of treating atrial flutter employs the curved ablation catheter.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: July 16, 2013
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Kedar Ravindra Belhe, Saurav Paul, Hong Cao, John Avi Roop
  • Patent number: 8489204
    Abstract: A method and apparatus is described for detecting and localizing areas of myocardial infarction or ischemia. By pacing sites in proximity to the infarcted or ischemic region with appropriately timed pacing pulses, the region is pre-excited in a manner that lessens the mechanical stress to which it is subjected, thus reducing the metabolic demand of the region and the stimulus for remodeling.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: July 16, 2013
    Assignee: Caridac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Allan C. Shuros, Jiang Ding, Yinghong Yu, Michael J. Stucky, Christopher Hartemink
  • Patent number: 8483822
    Abstract: Aspects of the invention are directed to advanced monitoring and control of medium voltage therapy (MVT) in implantable and external devices. Apparatus and methods are disclosed that facilitate dynamic adjustment of MVT parameter values in response to new and changing circumstances such as the patient's condition before, during, and after administration of MVT. Administration of MVT is automatically and dynamically adjusted to achieve specific treatment or life-support objectives, such as prolongation of the body's ability to endure and respond to MVT, specifically addressing the type of arrhythmia or other pathologic state of the patient with targeted treatment, a tiered-intensity MVT treatment strategy, and supporting patients in non life-critical conditions where the heart may nevertheless benefit from a certain level of assistance.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: July 9, 2013
    Assignee: Galvani, Ltd.
    Inventors: Byron L. Gilman, Mark W. Kroll, James E. Brewer
  • Patent number: 8483824
    Abstract: A method of treating patients in need of heart beat regulation or for preventing the development of cardiac arrhythmias, wherein the patients are not suffering from cardiac illness, by regulating heart beat using a cardiac pacemaker and reducing patient risk of developing a ventricular arrhythmia, wherein the risk is associated with an underlying patient illness, and wherein the patient does not suffer from cardiac illness, by regulating the patient's heart beat using a cardiac pacemaker.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: July 9, 2013
    Inventor: Stefan Anker
  • Patent number: 8478401
    Abstract: A resuscitation system for use by a rescuer for resuscitating a patient having a ventricular arrhythmia, comprising circuitry and processing configured for detection of chest compression/phase timing information indicative of the start of the decompression phase, circuitry and processing configured for delivery of electromagnetic therapy for the termination of ventricular arrhythmias, wherein the circuitry and processing for the delivery of electromagnetic therapy utilizes the chest compression phase timing information to initiate delivery of the electromagnetic therapy within 300 milliseconds of the start of the decompression phase.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: July 2, 2013
    Assignee: ZOLL Medical Corporation
    Inventor: Gary A. Freeman
  • Publication number: 20130165801
    Abstract: A passive pressure sensor is used with an implantable lead to measure pressure within a patient's heart. In some embodiments, the passive pressure sensor is incorporated into an implantable lead. In other embodiments, the passive pressure sensor is incorporated into a device that is slid onto an implantable lead.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: PACESETTER, INC.
    Inventor: Xiaoyi Min
  • Publication number: 20130158643
    Abstract: A pacemaker includes an electrode line having a lead and an electrode. The electrode includes a carbon nanotube composite structure having a matrix and a carbon nanotube structure located in the matrix. The matrix comprises a first surface and a second surface substantially perpendicular to the first surface. The carbon nanotube structure includes a first end electrically connect to the lead. The carbon nanotube structure is substantially parallel to the second surface of the matrix. A distance between the carbon nanotube structure and the second surface of the matrix is less than 10 micrometers.
    Type: Application
    Filed: May 22, 2012
    Publication date: June 20, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., Tsinghua University
    Inventors: Yu-Quan Wang, Li Fan, Wen-Mei Zhao, Li Qian, Chen Feng, Liang Liu
  • Publication number: 20130158644
    Abstract: A pacemaker is provided. The pacemaker includes an electrode line having a lead and an electrode. The electrode includes a carbon nanotube composite structure having a matrix and at least one carbon nanotube structure located in the matrix. A first end of each carbon nanotube structure protrudes out of a first surface of the matrix for stimulating the human tissue, and a second end of each carbon nanotube structure protrudes out of a second surface of the matrix to electrically connect to the lead.
    Type: Application
    Filed: May 22, 2012
    Publication date: June 20, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., Tsinghua University
    Inventors: Li Qian, Yu-Quan Wang, Liang Liu, Li Fan, Wen-Mei Zhao, Chen Feng
  • Publication number: 20130150695
    Abstract: A medical implant comprising a transducer element which induces mechanical vibrations of the implant when electrically and/or magnetically controlled.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 13, 2013
    Applicant: BIOTRONIK SE & CO. KG
    Inventor: Biotronik SE & Co. KG
  • Patent number: 8463377
    Abstract: Various embodiments of an implantable system for delivering therapy comprise at least one of a heat sink or source to either reduce or increase temperature of excitable tissue, a pulse generator and at least one stimulation electrode to deliver electrical stimulation to excitable tissue, a memory and a controller. The memory has instructions for performing at least one stimulation routine and at least one thermal routine, and further has integration instructions for integrating the thermal routine(s) with the stimulation routine(s). The controller is configured to operate on the instructions to perform the stimulation routine(s) using the pulse generator and the at least one stimulation electrode, to perform the thermal routine(s) using the heat sink or the heat source, and to operate on the integration instructions to integrate thermal routine(s) with the stimulation routine(s).
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: June 11, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Jason J. Hamann, Stephen Ruble, Craig Stolen
  • Patent number: 8457734
    Abstract: Various aspects provide an implantable device. In various embodiments, the device comprises at least one port, where each port is adapted to connect a lead with an electrode to the device. The device further includes a stimulation platform, including a sensing circuit connected to the at least one port to sense an intrinsic cardiac signal and a stimulation circuit connected to the at least one port via a stimulation channel to deliver a stimulation signal through the stimulation channel to the electrode. The stimulation circuit is adapted to deliver stimulation signals through the stimulation channel for both neural stimulation therapy and CRM therapy. The sensing and stimulation circuits are adapted to perform CRM functions. The device further includes a controller connected to the sensing circuit and the stimulation circuit to control the neural stimulation therapy and the CRM therapy. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: June 4, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, Anthony V. Caparso, Kristofer J. James, Stephen Ruble, Weiying Zhao
  • Patent number: 8457739
    Abstract: A method and apparatus for controlling an atrial overdrive pacing therapy include detecting an atrial arrhythmia episode and determining if the atrial arrhythmia episode is an early recurring episode. Delivery of the atrial overdrive pacing therapy is enabled in response to the early recurring episode and commences upon detection of an atrial arrhythmia episode or a long pause.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: June 4, 2013
    Assignee: Medtronic, Inc.
    Inventors: Lilian Kornet, Roger Kessels
  • Patent number: 8452419
    Abstract: Medical devices and therapeutic methods for use in the field of cardiology, cardiac rhythm management and interventional cardiology, and more specifically to catheter-based systems for implantation of pacing leads and electrodes, or intramural myocardial reinforcement devices, within the myocardial wall of the heart, such as the ventricles, to provide improved cardiac function.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: May 28, 2013
    Assignee: Cormend Technologies, LLC
    Inventors: William P. Santamore, Jeanne M. Lesniak
  • Patent number: 8452400
    Abstract: Cardiac protection pacing is applied to prevent or reduce cardiac injury and/or occurrences of arrhythmia associated with an ischemic event including the occlusion of a blood vessel during a revascularization procedure. Pacing pulses are generated from a pacemaker and delivered through one or more pacing electrodes incorporated onto a percutaneous transluminal vascular intervention (PTVI) device used in the revascularization procedure. The pacemaker generates the pacing pulses according to a predetermined cardiac protection pacing sequence before, during, and/or after the ischemic event.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: May 28, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Tamara Colette Baynham, Jihong Qu, Joseph M. Pastore, Andrew P. Kramer, Frits W. Prinzen, Ward Y. R. Vanagt, Richard N. Cornelussen
  • Patent number: 8442656
    Abstract: A cardiac lead adapted for fixation at least partially within a cardiac vessel. The lead includes, in one embodiment, an elongate lead body defining a proximal region and a distal region including a distal end region having at least one electrode and a distal tip. The distal end region is configured such that the electrode and the distal tip can be implanted in the cardiac vessel. Stiffening structures in the distal region of the lead are adapted to stiffen selected portions of the lead for fixation of the electrode within the cardiac vessel. In some embodiments, the stiffening structures include an implantable member adapted to be implanted in a lumen of the lead. In other embodiments, the stiffening structures include a sheath adapted to be deployed over the lead body. In still other embodiments, the stiffening structures are integral to the lead and/or the lead body.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: May 14, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Bruce A. Tockman, Brian D. Soltis, Eric T. Johnson, Kent C. B. Stalker, Peter J. D'aquanni, Paul E. Zarembo
  • Publication number: 20130116765
    Abstract: A system for use with an implantable lead wire includes an implantable electronic apparatus configured to generate an electrical signal. An implantable lead adaptor is operatively disposed between the proximal end of the implantable lead wire and the implantable electronic apparatus. A band stop filter is housed within the implantable lead adaptor and electrically coupled in series with the implantable lead wire and the implantable electronic apparatus.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 9, 2013
    Applicant: Oscor Inc.
    Inventor: Oscor Inc.
  • Publication number: 20130116766
    Abstract: A lead assembly includes a ring component having mechanical coupling features, and at least one polymer component mechanically coupled with the mechanical coupling features of the ring component. Elongate tubing is disposed over the polymer component and is secured with the polymer component.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 9, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventor: Cardiac Pacemakers, Inc.
  • Publication number: 20130116764
    Abstract: A medical device lead includes a proximal connector configured to couple the lead to a pulse generator and an insulative lead body extending distally from the proximal connector. The lead also includes an inner conductor and one or more cable conductors coupled to the proximal connector at a proximal end and extending through the lead body. The lead further includes one or more defibrillation coil electrodes coupled to a distal end of the one or more cable conductors. The one or more defibrillation coil electrodes are disposed around and electrically isolated from the inner conductor. The one or more defibrillation coil electrodes have a first winding direction and the inner conductor has a second winding direction opposite the first winding direction.
    Type: Application
    Filed: September 15, 2012
    Publication date: May 9, 2013
    Inventors: Joseph Walker, David R. Wulfman, Devon N. Arnholt
  • Patent number: 8437850
    Abstract: A method and apparatus for controlling an atrial overdrive pacing therapy include detecting an atrial arrhythmia episode and determining if the atrial arrhythmia episode is an early recurring episode. Delivery of the atrial overdrive pacing therapy is enabled in response to the early recurring episode and commences upon detection of an atrial arrhythmia episode or a long pause.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: May 7, 2013
    Assignee: Medtronic, Inc.
    Inventors: Lilian Kornet, Roger Kessels
  • Publication number: 20130110215
    Abstract: An electrode lead of a pacemaker includes at least one lead wire. The at least one lead wire includes at least one conductive core, a first insulating layer coated on an outer surface of the at least one conductive core, at least one carbon nanotube yarn spirally wound on an outer surface of the first insulating layer, and a second insulating layer coated on the surface of the at least one carbon nanotube yarn. One end of the at least one conductive core protrudes from the first insulating layer to form a naked portion. The at least one carbon nanotube yarn includes a number of carbon nanotubes joined end to end by van der Waals attractive forces. A pacemaker includes a pulse generator and the electrode lead electrically connected with the pulse generator.
    Type: Application
    Filed: June 20, 2012
    Publication date: May 2, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LI FAN, LIANG LIU, CHEN FENG, LI QIAN, YU-QUAN WANG, WEN-MEI ZHAO
  • Publication number: 20130110213
    Abstract: A pacemaker is provided. The pacemaker includes a pulse generator and an electrode line connecting with the pulse generator. The electrode line includes a conductor, an insulation layer and a shielding layer. The insulation layer is located on an outer surface of the conductor. The shielding layer is located on an outer surface of the first insulation layer. The shielding layer is a carbon nanotube structure having a plurality of radioactive particles therein.
    Type: Application
    Filed: June 20, 2012
    Publication date: May 2, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHEN FENG, LI QIAN, LI FAN, WEN-MEI ZHAO, LIANG LIU, YU-QUAN WANG
  • Publication number: 20130109986
    Abstract: An electrode lead of a pacemaker includes a lead wire. The lead wire includes at least one sub-lead wire and an electrode head. The sub-lead wire includes a core wire structure, a first insulating layer and a carbon nanotube composite structure. The first insulating layer coats on an outer surface of the core wire structure. The carbon nanotube composite structure is wound around an outer surface of the core wire structure. The electrode head is disposed on an end of the lead wire and electrically connected with the core wire structure of the sub-lead wire. The pacemaker includes a pulse generator and the electrode lead electrically connected to the pulse generator.
    Type: Application
    Filed: June 20, 2012
    Publication date: May 2, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., Tsinghua University
    Inventors: LIANG LIU, CHEN FENG, LI QIAN, YU-QUAN WANG, LI FAN, WEN-MEI ZHAO
  • Publication number: 20130110217
    Abstract: An electrode lead of a pacemaker includes a metal conductive core, a carbon nanotube film, and an insulator. The metal conductive core defines an extending direction. The carbon nanotube film at lest partially surrounds the metal conductive core and is electrically insulated from the metal conductive core. The insulator is located between the metal conductive core and the carbon nanotube film. The carbon nanotube film includes a plurality of carbon nanotubes substantially extending along the extending direction of the metal conductive core. A bared part is defined at one end of the electrode lead. A pacemaker using the above mentioned electrode lead is also disclosed.
    Type: Application
    Filed: June 20, 2012
    Publication date: May 2, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LIANG LIU, LI FAN, WEN-MEI ZHAO, CHEN FENG, YU-QUAN WANG, LI QIAN
  • Publication number: 20130110214
    Abstract: An electrode lead of a pacemaker includes at least one lead wire including at least one composite conductive core. The at least one composite conductive core includes at least one conductive core and at least one carbon nanotube yarn spirally wound on an outer surface of the at least one conductive core. The at least one carbon nanotube yarn includes a number of carbon nanotubes joined end to end by van der Waals attractive forces. The pacemaker includes a pulse generator and the electrode lead electrically connected to the pulse generator.
    Type: Application
    Filed: June 20, 2012
    Publication date: May 2, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LI FAN, CHEN FENG, WEN-MEI ZHAO, LIANG LIU, YU-QUAN WANG, LI QIAN