Catheter Or Endocardial (inside Heart) Type Patents (Class 607/122)
  • Patent number: 11364364
    Abstract: A valve bypass tool, and a biostimulator transport system having such a valve bypass tool, is described. The valve bypass tool includes an annular seal to seal against a protective sheath of the biostimulator transport system. The valve bypass tool is slidably mounted on the protective sheath and includes a bypass sheath to insert into an access introducer. The valve bypass tool can lock onto the access introducer by mating a locking tab of the valve bypass tool with a locking groove of the access introducer. The locking tab can have a decent that securely fastens the components to resist decoupling when the biostimulator transport system is advanced through the access introducer into a patient anatomy. Other embodiments are also described and claimed.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: June 21, 2022
    Assignee: PACESETTER, INC.
    Inventors: David Rickheim, Scott M. Smith
  • Patent number: 11357989
    Abstract: A pacemaker lead for cerclage pacing includes a lead fixing part including a fixing tip whose diameter becomes gradually smaller toward an end of a distal part thereof, a plurality of bipolar electrodes that come into close contact with heart muscle, in an outer circumference of the lead fixing part, and a guide wire insertion through hole through which a guide wire can be inserted thereinto, a lead body part configured to be extended to the lead fixing part, having a stylet insertion through hole formed therein, and a body fixing part formed in a bent shape so as to be fixed to an inner wall of the coronary sinus, and a stylet inserted into the stylet insertion through hole, enabling the pacemaker lead for cerclage pacing to be easily moved within the body of the patient.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: June 14, 2022
    Inventors: June-Hong Kim, Gi-Byoung Nam, Kyone Peter Park
  • Patent number: 11337594
    Abstract: A method of cannulating a coronary sinus within a heart chamber includes deploying, from a catheter, an imaging hood to a deployed configuration by extending the imaging hood from a distal end of the catheter and radially expanding the imaging hood to define a constant deployed volume within an open area of the imaging hood. The method further includes positioning a contact edge of the imaging hood and the open area of the imaging hood in the deployed configuration over or upon an ostium of the coronary sinus, displacing an opaque fluid with a transparent fluid from the open area defined by the imaging hood and tissue surrounding the ostium, visualizing the ostium through the transparent fluid by viewing the ostium via an imaging element attached to an inner surface of the imaging hood, and introducing a guidewire through the imaging hood and into the ostium while under visual guidance.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: May 24, 2022
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Vahid Saadat, Christopher A. Rothe, Ruey-Feng Peh, Edmund A. Tam
  • Patent number: 11338145
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods for pacing a HIS bundle of a patient. The apparatuses, systems, and methods may include applying stimulation energy through one or more of a plurality of electrodes to direct a stimulation locus and pace a HIS bundle of a patient.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: May 24, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh H. Thakur, Allan C. Shuros, Brian Soltis, Juan G. Hincapie, Qi An, Yinghong Yu, Keith R. Maile
  • Patent number: 11331476
    Abstract: In some embodiments, a method includes delivering to a native valve annulus (e.g., a native mitral valve annulus) of a heart a prosthetic heart valve (200) having a body (242) expandable from a collapsed, delivery configuration to an expanded, deployed configuration. The method can further include, after the delivering, causing the prosthetic heart valve to move from the delivery configuration to the deployed configuration. With the prosthetic heart valve in its deployed configuration, an anchoring tether (191) extending from the prosthetic heart valve can be secured to a wall (Vw) of the heart (H). An electrode (189) coupled to at least one of the prosthetic heart valve or the anchoring tether can then be used to at least one of pace the heart or sense a signal associated with the heart.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: May 17, 2022
    Assignee: Tendyne Holdings, Inc.
    Inventors: John M. Capek, Michael J. Urick
  • Patent number: 11298532
    Abstract: An implantable direct-current electrode assembly (20, 120) has two implantable electrodes (30; 40) and a control circuit (50), to which the first and the second electrodes (30; 40) are electrically connected. The control circuit (50) is designed to establish a potential difference between the two electrodes (30; 40), so that a direct current (55) can flow between the two electrodes (30; 40). One of the electrodes (30) is a coil electrode with a maximum length that is pre-determined by the distance between the tricuspid valve and the end of the right ventricle lying opposite the tricuspid valve and the pulmonary valve. The counter-electrode (40) can be a coil electrode for the coronary sinus, or a plate electrode that can be attached to the exterior of the left ventricle.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: April 12, 2022
    Inventor: Johannes Muller
  • Patent number: 11278713
    Abstract: Disclosed are a neural electrode and a method of manufacturing the electrode, more particularly, a neural electrode includes a porous nanostructure; and an iridium oxide layer formed on the porous nanostructure and a method of manufacturing the neural electrode, improving an electrode efficiency by increasing a charge injection limit capacity and the like.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: March 22, 2022
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Yong Hee Kim, Sang Don Jung
  • Patent number: 11278313
    Abstract: An apparatus and methods for transeptal punctures provide audible feedback to an operator or clinician with information to identify an intended needle or instrument pathway. Despite improved safety and simplification of the TSP itself, the apparatus enables the operator to optimize a crossing angle for various procedures, including PV isolation, valve repair, and appendage closure.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: March 22, 2022
    Assignee: AERWAVE MEDICAL, INC.
    Inventor: Reinhard J. Warnking
  • Patent number: 11253710
    Abstract: This document discusses, among other things, systems and methods to fabricate and operate an implantable medical device. The implantable medical device can include a housing portion defining an interior chamber. The implantable medical device can include a circuit in the interior chamber. The implantable medical device can include a first electronic component that is not in the interior chamber. The implantable medical device can include a substrate coupled to the housing, the substrate including a first via extending through the substrate, the first via electrically coupling the first electronic component to the circuit.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: February 22, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ron A. Balczewski, James E. Blood, William J. Linder, Jacob M. Ludwig, Keith R. Maile
  • Patent number: 11247042
    Abstract: An implantable electrical contact arrangement is described which has at least one electrode body arrangement composed otherwise entirely of biocompatible, electrically insulating material, with at least one freely accessible electrode surface enclosed directly or indirectly by the biocompatible electrically insulating material. The invention is characterized in that the electrode body arrangement has a stack-shaped layer composite which provides at least one gold layer connected to an iridium layer via a diffusion barrier layer. The stack-shaped layer composite by being completely encapsulated by an SiC layer, with the exception of at least one surface region of the iridium layer facing to be directed away from the layer composite. The SiC layer has an SiC layer surface which is facing to be directed away from the stack-shaped layer composite and which is adjoined directly or indirectly by the biocompatible, electrically insulating material.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: February 15, 2022
    Assignee: NEUROLOOP GMBH
    Inventors: Tim Boretius, Fabian Kimmig, Christina Sebastian Hassler, Dennis Plachta
  • Patent number: 11224725
    Abstract: A trans-atrial septal catheter system for delivery of a steerable sheath into the left atrium contains three components. The first component is a three-segmented needle-guide wire composed of a distal needle designed to flex sharply in relation to the conjoined looped guide wire segment after fossa ovalis puncture and needle advancement. The distal guide wire loops are advanced into the left atrium maintaining the angled needle in a central location relevant to the loops for preserving an atraumatic position while stabilizing the loops in the left atrium. The elongated proximal extra stiff guide wire segment is conjoined to the looped segment which crosses the fossa ovalis and extends proximally to become externalized to the femoral vein. This segment is extra stiff and significantly elongated to permit catheter and device exchanges. The guide wire serves as a support rail over which the dilator and sheath can be advanced into the left atrium.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: January 18, 2022
    Assignee: Baylis Medical Company Inc.
    Inventors: Wesley Robert Pedersen, Paul Sorajja
  • Patent number: 11219773
    Abstract: The present disclosure relates to an electrical connector cap, in particular for an implantable lead, the electrical connector cap comprising an elongated body having at least one lumen and at least one through hole extending from an outer surface of the elongated body into the lumen, and at least one electrically conductive member arranged on an outer circumference of the elongated body over said at least one through hole of the elongated body. Furthermore, said at least one electrically conductive member comprises at least one through hole (extending from an outer surface of the electrically conductive member into the lumen through said at least one through hole of the elongated body. The disclosure further relates to implantable lead assemblies comprising said electrical connector cap, and to an implantable lead member usable with said electrical connector cap.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: January 11, 2022
    Assignee: Sorin CRM SAS
    Inventor: Jean-Francois Ollivier
  • Patent number: 11179198
    Abstract: An ablation catheter adapted for use with a guide wire has a 3-D shaped portion that carries ring electrodes for ablating a vessel or tubular region, including the renal artery. The 3-D shaped portion, for example, a helical portion, enables the ring electrodes to contact an inner surface of the vessel at a plurality of locations at different depths along the vessel to form a conduction block without forming a closed conduction loop which would otherwise increase the risk of stenosis of the vessel. In one embodiment, the catheter has a lumen with entry and exit ports to allow the guide wire to pass through the lumen but bypass the 3-D shaped portion. In another embodiment, the catheter has outer bands providing side tunnels through which the guide wire can pass through.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: November 23, 2021
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Kristine B. Fuimaono, Debby Esther Grunewald
  • Patent number: 11154247
    Abstract: Some embodiments of pacing systems employ wireless electrode assemblies to provide pacing therapy. The wireless electrode assemblies may wirelessly receive energy via an inductive coupling so as to provide electrical stimulation to the surrounding heart tissue. In certain embodiments, the wireless electrode assembly may include one or more biased tines that shift from a first position to a second position to secure the wireless electrode assembly into the inner wall of the heart chamber.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: October 26, 2021
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: William J. Drasler, Michael J. Pikus, Roger Hastings, Scott R. Smith, Daniel M. Lafontaine, Douglas R. Saholt, Graig L. Kveen, Martin R. Willard
  • Patent number: 11122992
    Abstract: A method, including receiving from a sensor affixed to a probe, signals output by the sensor in response to a calibrated magnetic field, and estimating, using calibration data, location coordinates of the sensor. Using the calibration data and the estimated location, an estimated vector including orientation coordinates is computed, and updated orientation coordinates that best fit the received signals to the estimated vector are computed for the estimated location. Based on the updated orientation, updated location coordinates that best fit the received signals to the estimated vector are computed. The steps of computing the vector, computing the orientation, and computing the location and monitoring changes in the updated location are repeated until the changes are linear. Upon the changes being linear, a final location of the sensor is computed using a linear projection from the updated location, and a position of the probe is presented based on the final location.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: September 21, 2021
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Assaf Govari, Vadim Gliner
  • Patent number: 11116942
    Abstract: A medical probe, including a flexible insertion tube having a proximal segment and a deflectable distal segment, and containing first and second lumens running longitudinally through the insertion tube, wherein the first and second lumens are twisted around each other in the proximal segment, and run parallel to each other in the deflectable distal segment. The medical probe also includes first and second wires running respectively through the first and second lumens and having respective first and second distal ends, which are anchored within the deflectable distal segment of the insertion tube.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: September 14, 2021
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Christopher Thomas Beeckler, Maribeth Esguerra Wilczynski, Joseph Thomas Keyes
  • Patent number: 11116449
    Abstract: Methods of manufacturing and assembling a catheter shaft may include depositing electrical traces on an interior surface of the shaft of the catheter, rather than using separate wires, forming a bore in a sensor, and electrically coupling the sensor to the trace through a bore in the sensor.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: September 14, 2021
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Terry L. Sterrett, Allyn Jensrud
  • Patent number: 11110284
    Abstract: A medical device lead connection assembly includes an end connector element including a plurality of fixed connection element tabs extending from the end connector element to a tab distal end. A lead body includes a plurality of lead filars extending through the lead body and coupled to a corresponding fixed connection tab. A tubular guide hub extends from a hub proximal end to a hub distal end. The tubular guide hub includes a plurality of guide elements circumferentially disposed about an outer surface of the guide hub. The hub distal end is disposed within the lead body and the hub proximal end received within connection element tabs, and selected guide elements contact selected lead filars.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: September 7, 2021
    Assignee: Medtronic, Inc.
    Inventors: Darren Janzig, Robert J. Davies, Seth M. Humphrys, Richard T. Stone
  • Patent number: 11097096
    Abstract: A medical apparatus for a patient comprises an external system and an implantable system. The external system is configured to transmit one or more transmission signals, each transmission signal comprising at least power or data. The implantable system is configured to receive the one or more transmission signals from the external system, and to deliver stimulation energy to the patient. Methods of delivering stimulation energy are also provided.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: August 24, 2021
    Assignee: Nalu Medical, Inc.
    Inventors: Christopher Linden, Andre Castillo, Logan Palmer, Ji-Jon Sit, Daniel M. Pivonka, Lakshmi Narayan Mishra, James C. Makous, Lee Fason Hartley, James C. Lee, J. Christopher Flaherty
  • Patent number: 11083888
    Abstract: An electrode lead for the coronary sinus, having a lead body, which has a distal portion for insertion into the coronary sinus, and at least one electrode for contacting bodily tissue, wherein the at least one electrode is arranged on the distal portion of the lead body. The electrode lead, in order to fix the electrode lead in a blood vessel, has a fixing device, which is connected to a distal end of the lead body, wherein the fixing device is designed to be shortened incrementally or lengthened incrementally.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: August 10, 2021
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Dajana Kaiser, Detmar Jadwizak, Carsten Fruendt, Gordon Hillebrand
  • Patent number: 11077296
    Abstract: In one aspect the invention provides an implant conductor lead assembly which includes an electrode lead, and at least one field target conductor. The field target conductor(s) is located adjacent to the electrode lead to mutually couple the field target conductor to the electrode lead. The electrode lead acts to concentrate electromagnetic fields in the vicinity of the implant conductor assembly towards the field target conductor or conductors.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: August 3, 2021
    Assignee: WAIKATOLINK LIMITED
    Inventors: Steven Owen McCabe, Jonathan Brereton Scott
  • Patent number: 11071583
    Abstract: Apparatus, systems, and methods are provided for the generation and control of energy delivery in a dosage to elicit a therapeutic response in diseased tissue. A balloon catheter can have electrodes attached to a power generator and controller such that the balloon and electrodes contact tissue during energy treatment. Energy selectively may be applied to tissue based on measured impedance to achieve gentle heating. Calibration of the apparatus and identification of attached accessories by computing the circuit impedance prior to energy dosage facilitate regulation of power delivery about a set point. Energy delivery can be controlled to achieve substantially uniform bulk tissue temperature distribution. Energy delivery may beneficially affect nerve activity.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: July 27, 2021
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Bret Herscher, David Krawzsenek, Aaron LeBarge, Joseluis Espinosa, Michael Perry
  • Patent number: 11065052
    Abstract: A family of catheter electrode assemblies includes a flexible circuit having a plurality of electrical traces and a substrate; a ring electrode surrounding the flexible circuit and electrically coupled with at least one of the plurality of electrical traces; and an outer covering extending over at least a portion of the electrode. A non-contact electrode mapping catheter includes an outer tubing having a longitudinal axis, a deployment member, and a plurality of splines, at least one of the plurality of splines comprising a flexible circuit including a plurality of electrical traces and a substrate, a ring electrode surrounding the flexible circuit and electrically coupled with at least one of the plurality of electrical traces; and an outer covering extending over at least a portion of the ring electrode. A method of constructing the family of catheter electrode assemblies is also provided.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: July 20, 2021
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Dale E. Just, Troy T. Tegg, Theodore A. Johnson, Sacha C. Hall
  • Patent number: 11033733
    Abstract: In one embodiment, a method for fabricating a neurostimulation stimulation lead comprises: providing a plurality of ring components and hypotubes in a mold; placing an annular frame with multiple lumens over distal ends of the plurality of hypotubes to position a portion of each hypotube within a respective lumen of the annular frame; molding the plurality of ring components and the hypotubes to form a stimulation tip component for the stimulation lead, wherein the molding fills interstitial spaces between the plurality of ring components and hypotubes with insulative material; and forming segmented electrodes from the ring components after performing the molding.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: June 15, 2021
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: Ryan Sefkow, Christopher A. Crawford, Jeffrey Mitchell, Kevin Wilson, Raymond P. Bray, John R. Gonzalez
  • Patent number: 11026718
    Abstract: A delivery device for installing a medical device in a patient comprising a body portion having a proximal end and a distal end, the distal end having a chisel shaped tip, a receptacle disposed in the distal end of the body portion for receiving a medical device for implanting in the patient, a handle disposed at the proximal end of the body portion for facilitating advancement of the proximal end of the body portion into the patient.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: June 8, 2021
    Assignee: ATACOR MEDICAL, INC.
    Inventors: Rick Sanghera, Alan Marcovecchio, Sean McGeehan
  • Patent number: 10952665
    Abstract: A device includes a handle, an expandable structure including a plurality of splines extending from a proximal hub to a distal hub, a first electrode on a first spline of the plurality of splines, an outer tube extending from the handle to the proximal hub, and a shaft extending through the outer tube from the handle to the distal hub. The expandable structure has a collapsed state and a self-expanded state. The handle is configured to retract the shaft. Retracting the shaft may expand the expandable structure outward of the self-expanded state.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: March 23, 2021
    Assignee: Cardionomic, Inc.
    Inventors: Steven D. Goedeke, Steven L. Waldhauser, Mark A. Christopherson, Mark R. Christianson
  • Patent number: 10939956
    Abstract: Ablation systems and methods of the present disclosure are directed toward delivering pulsed radiofrequency (RF) energy to target tissue. The pulsations of the RF energy, combined with cooling at a surface of the target tissue, can advantageously promote local heat transfer in the target tissue to form lesions having dimensions larger than those that can be safely formed in tissue using non-pulsed RF energy under similar conditions.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: March 9, 2021
    Assignee: Affera, Inc.
    Inventors: Doron Harlev, Andrew Miles Wallace, Luke Tsai
  • Patent number: 10905873
    Abstract: Methods of treating acute heart failure in a patient in need thereof. Methods include inserting a therapy delivery device into a pulmonary artery of the patient and applying a therapy signal to autonomic cardiopulmonary fibers surrounding the pulmonary artery. The therapy signal affects heart contractility more than heart rate. Specifically, the application of the therapy signal increases heart contractility and treats the acute heart failure in the patient. The therapy signal can include electrical or chemical modulation.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: February 2, 2021
    Assignee: The Cleveland Clinic Foundation
    Inventors: Sandra Machado, Marc Penn, Ali R. Rezai
  • Patent number: 10898139
    Abstract: A spine of an electrode assembly is constructed by simultaneously deploying a plurality of individual bobbins of lead wire radially around the longitudinal axis of a polymeric tube. A free end of lead wire from each bobbin is electrically connected to a respective electrode and the electrodes are sequentially installed from a distal first location on the polymeric tube to a proximal location. Each lead wire may be helically wound around the polymeric tube between the electrode to which the lead wire is electrically connected and a proximally adjacent electrode, such that each lead wire between adjacent pairs of electrodes has an alternating direction of winding.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: January 26, 2021
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Alexandru Guta, Marius Petrulis, Ronald Lin, Jon Davis, David Johnson, Patrick O'Fallon
  • Patent number: 10881868
    Abstract: A torque limiting mechanism between a medical device and an implantation accessory is disclosed. In a particular embodiment, a delivery system for a leadless active implantable medical device includes a delivery catheter and a torque shaft disposed within the delivery catheter. The delivery system also includes a docking cap having a distal end for engaging an attachment mechanism of the leadless active implantable medical device. The delivery system also includes a torque limiting component coupled to a distal end of the torque shaft and a proximal end of the docking cap.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: January 5, 2021
    Assignee: Sorin CRM SAS
    Inventor: Jean-Fran├žois Ollivier
  • Patent number: 10881851
    Abstract: Guidewires and methods for transmitting electrical stimuli to a heart and for guiding and supporting the delivery of elongate treatment devices within the heart are disclosed. A guidewire can comprise an elongate body, including first and second elongate conductors, and at least first and second electrodes. A distal end portion of the elongate body can include a preformed bias shape, such as a pigtail-shaped region, on which the first and second electrodes can be located. The preformed bias shape can optionally be non-coplanar relative to an intermediate portion of the elongate body. The first and second elongate conductors can be formed of a single structure or two or more electrically connected structures. The conductors can extend from proximal end portions to distal end portions that electrically connect to the first and second electrodes.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: January 5, 2021
    Assignees: Cardiac Interventions and Aviation LLC, Teleflex Life Sciences Limited
    Inventors: David Daniels, Chad Kugler, John Bridgeman, Derek Stratton, Dean Peterson, Joshua Brenizer
  • Patent number: 10874456
    Abstract: A distal-end assembly of a medical device, the distal-end assembly includes a flexible substrate and electrical conductors. The flexible substrate is configured to be coupled to a distal end of an insertion tube. The electrical conductors are disposed on the flexible substrate and are shaped to form: (i) one or more electrodes, configured to exchange electrical signals with a proximal end of the medical device, and (ii) one or more printed filters, which are disposed adjacently to at least one of the electrodes and are configured to filter signals in a predefined frequency range from the electrical signals exchanged between the at least one of the electrodes and the proximal end.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: December 29, 2020
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Assaf Govari, Christopher Thomas Beeckler
  • Patent number: 10786599
    Abstract: Provided are an implanted medical device (1) and preparation method thereof, and an implanted medical device preform for preparing the implanted medical device (1). The implanted medical device (1) comprises a metal basal body (21) and a polymer film layer (22) covering the surface of the metal basal body (21) and preventing endothelium growth and covering, wherein at least a part of the surface of the metal basal body (21) is provided with a surface-modified layer (211) which contains doped ions, and the metal basal body (21) is connected to the polymer film layer (22) by the doped ions. Since the metal basal body (21) may be bonded to the polymer film layer (22) by the doped ions, the polymer film layer (22) is unlikely to separate during delivery, therefore effectively preventing endothelium growth and covering in vivo.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: September 29, 2020
    Assignee: Lifetech Scientific (Shenzhen) Co. Ltd.
    Inventors: Zuqiang Qi, Xiaole Jia, Zhou Chen
  • Patent number: 10773087
    Abstract: A guiding catheter and method of its use are presented wherein the catheter includes an elongate catheter shaft having a proximal region and a distal region and a length. The shaft defines a distal region and includes a distal tip. The distal region defines an arc of approximately 180 degrees and having a radius of 0.3 inches to 0.6 inches. The distal tip forms a half turn of a left-hand helix having a pitch of 0 inches to 0.4 inches. The unique shape of the distal region allows the distal tip be perpendicularly aligned with the septal wall of the right atrium at the His bundle location when the catheter is advanced therein.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: September 15, 2020
    Inventors: Terrell M. Williams, Pugazhendhi Vijayaraman
  • Patent number: 10773077
    Abstract: A device for producing a trabecular fiber within a ventricle of a heart. The device includes a substrate and a first tissue anchor connected to the substrate. The substrate is formed of a non-rigid material.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: September 15, 2020
    Assignee: Boston Scientific Scimed Inc
    Inventors: Thomas J. Herbst, Craig M. Stolen, Candace A. Rhodes
  • Patent number: 10765858
    Abstract: A lead body having a defibrillation electrode positioned along a distal portion of the lead body is described. The defibrillation electrode includes a plurality of electrode segments spaced a distance apart from each other. At least one of the plurality of defibrillation electrode segments includes at least one coated portion and at least one uncoated portion. The at least one coated portion is coated with an electrically insulating material configured to prevent transmission of a low voltage signal (e.g., a pacing pulse) while allowing transmission of a high voltage signal (e.g., a cardioversion defibrillation shock). The at least one uncoated portion is configured to transmit both low voltage and high voltage signals. The lead may also include one or more discrete electrodes proximal, distal or between the defibrillation electrode segments.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: September 8, 2020
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Marshall, Amy E. Thompson-Nauman, Melissa G. T. Christie, Gonzalo Martinez, Kevin R. Seifert
  • Patent number: 10765490
    Abstract: Ablation probe tips (108, 148, 320, 360) and physical and virtual stents (110) for use in tooth bud ablation procedures that result in tooth agenesis as well as tooth bud ablation methods are described herein.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: September 8, 2020
    Assignee: TRIAGENICS, INC.
    Inventor: Leigh E. Colby
  • Patent number: 10716916
    Abstract: A tube or skeleton for a steerable catheter includes a cylindrical body structured to permit bending in at least one bending direction and to resist bending in directions transverse to the bending direction. The cylindrical body may include a laser cut metal tube, wires bent and connected to one another, or one or more coiled wires with axial support wires attached to the coil to define one or more bending directions to form bending segments. The skeleton includes axially stiff portions that resist compression when a pull wire is pulled to cause bending movement. The axially stiff portions may include a backbone, an alignment of pivot structures, connected axially extending portions of wire elements, or axially extending support wires or rods. Two or more bending portions may be provided, each with different bending directions. Complex bending shapes may be provided by arranging the segments in rotated positions along the skeleton.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: July 21, 2020
    Assignee: Creganna Unlimited Company
    Inventors: Bernard McDermott, Adam Szczepanski
  • Patent number: 10709504
    Abstract: A curved laser probe with single-use optic fiber may include a reusable handle, an optic fiber fixture, and a single-use optic fiber. The single-use optic fiber may include an optic fiber having an optic fiber distal end and an optic fiber proximal end. The optic fiber may be disposed in a first transitory connector having a first transitory connector distal end and a first transitory connector proximal end wherein the optic fiber distal end extends a fixed distance from the transitory connector distal end. The optic fiber may be disposed in a second transitory connector having a second transitory connector distal end and a second transitory connector proximal end wherein the optic fiber proximal end extends a fixed distance from the second transitory connector distal end. The first transitory connector may be inserted in the reusable handle and the second transitory connector may be inserted in the optic fiber fixture.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: July 14, 2020
    Assignee: KATALYST SURGICAL, LLC
    Inventors: Gregg D Scheller, Matthew N Yates, Steven G Scheller, Daniel J Wiener
  • Patent number: 10702326
    Abstract: The present invention relates to medical devices and methods for treating a lesion such as a vascular stenosis using non-thermal irreversible electroporation (NTIRE). Embodiments of the present invention provide a balloon catheter type NTIRE device for treating a target lesion comprising a plurality of electrodes positioned along the balloon that are electrically independent from each other so as to be individually selectable in order to more precisely treat an asymmetrical lesion in which the lesion extends only partially around the vessel.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: July 7, 2020
    Assignees: Virginia Tech Intellectual Properties, Inc., AngioDynamics, Inc.
    Inventors: Robert E. Neal, II, Paulo A. Garcia, Rafael V. Davalos, Peter Callas
  • Patent number: 10688308
    Abstract: A system and method for extra cardiac defibrillation is disclosed. In a particular embodiment, an extra cardiac implantable cardioverter defibrillator system includes an implantable defibrillator having a metal case and a defibrillation lead. The defibrillation lead has a connector at its proximal end for coupling to the implantable defibrillator and a first defibrillation coil electrode at a distal portion of the lead. The first defibrillation electrode configured to be disposed in an inferior vena cava.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: June 23, 2020
    Assignee: Sorin CRM SAS
    Inventor: Jean-Francois Ollivier
  • Patent number: 10668270
    Abstract: Implantable leadless cardiac pacing systems and methods for providing substernal pacing using the leadless cardiac pacing systems are described. In one embodiment, an implantable leadless cardiac pacing system includes a housing, a first electrode on the housing, a second electrode on the housing, and a pulse generator within the housing and electrically coupled to the first electrode and the second electrode. The housing is implanted substantially within an anterior mediastinum of a patient and the pulse generator is configured to deliver pacing pulses to a heart of the patient via a therapy vector formed between the first and second electrodes.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: June 2, 2020
    Assignee: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G. T. Christie, Paul J. DeGroot, Rick D. McVenes
  • Patent number: 10668196
    Abstract: A medical device for assisting a function of the heart is provided. The heart is placed in the thorax, the thoracic diaphragm is dividing the thorax from the abdomen and the pericardium is surrounding the heart and is attached to the thoracic diaphragm at a pericardial contacting section of the thoracic diaphragm. The medical device comprises a diaphragm passing part adapted to pass from the abdomen, through the thoracic diaphragm at the pericardial contacting section, into the pericardium, wherein said diaphragm passing part is adapted to allow the thoracic diaphragm to move during respiration, when implanted.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: June 2, 2020
    Inventor: Peter Forsell
  • Patent number: 10617865
    Abstract: Embodiments include a temporarily or permanently implantable medical device, wherein the medical device includes a housing connected to at least one elongate electrical function conductor to transmit therapy signals or diagnosis signals or both. The medical device includes at least one electrode pole connected to the at least one elongate electrical function conductor, via which electrode pole electric current is delivered to adjacent bodily, or electrode pole electrical potentials are sensed in surrounding tissue, or both. The medical device includes, in the housing, an electrical component as a line extension, wherein the electrical component is connected to the at least one elongate electrical function conductor and includes an electric length that is at least a quarter of a wavelength ? (lambda) of electromagnetic waves in a radio frequency range, such as of MRI scanners.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: April 14, 2020
    Assignee: BIOTRONIK SE & CO. KG
    Inventor: Jens Rump
  • Patent number: 10610119
    Abstract: A medical device may include a sheath, and an elongate member disposed within a distal portion of the sheath, the elongate member configured to reciprocally move between a sheathed configuration and a deployed configuration. The elongate member may be substantially linear and disposed within the sheath while in the sheathed configuration and extend distally from the sheath in a first direction in the deployed configuration. The elongate member may include a first bend disposed distal to the distal portion of the sheath, the first bend directing the elongate sheath in a second direction that is substantially opposite to the first direction, and a second bend distal to the first bend, the second bend directing the elongate sheath in a third direction substantially transverse to the first and second directions.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: April 7, 2020
    Inventors: Andrew Grace, Peter Van Der Sluis
  • Patent number: 10601147
    Abstract: The present invention enables a core wire that contains a plurality of strands and a bonding object to be bonded more reliably using an ultrasonic bonding device that cantilever supports a pressing portion that performs ultrasonic bonding. A bonding object (for example, a terminal) is supported as on a stage, a core wire is overlaid on the bonding object, and the core wire and the bonding object are ultrasonically bonded in a state where the core wire is pressed toward the bonding object, using a pressing portion that is supported in cantilever fashion. During ultrasonic bonding, a pressing surface of the pressing portion is inclined in a pressing direction progressively toward a side where the pressing portion is cantilever supported, and also a bonding surface of the bonding object is inclined in the pressing direction progressively toward the side where the pressing portion is cantilever supported.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: March 24, 2020
    Assignee: SUMITOMO WIRING SYSTEMS, LTD.
    Inventors: Tatsuo Tamagawa, Masamichi Yamagiwa, Takuya Suzuki, Daichi Miura
  • Patent number: 10588537
    Abstract: Methods, systems and probe devices for detecting EMG activity are used in aiding the diagnosis of Obstruction Sleep Apnea (OSA). A probe comprises an elongated member configured with a size and shape for placement adjacent at least one of the soft palate and pharyngeal wall of the patient after insertion of the probe into the patient. The probe includes at least one sensor configured to sense at least EMG activity of muscle layers of at least one of the soft palate and pharyngeal wall and output sensor signals corresponding thereto.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: March 17, 2020
    Assignee: Powell Mansfield, Inc.
    Inventors: Nelson Powell, Perry Thomas Mansfield
  • Patent number: 10582869
    Abstract: A method for attaching an electrode to cabling, including providing a cable having a plurality of insulated wires coiled around a central core. The method further includes removing insulation from each wire in a set of the coiled wires so as to provide a respective access channel to a respective section of a respective conductor of each wire in the set while the respective section remains coiled on the central core. The method further includes fastening a respective electrode to the respective access channel while the respective section remains coiled on the central core.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: March 10, 2020
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventor: Assaf Govari
  • Patent number: 10576267
    Abstract: Implantable devices and systems include one or more leads adapted to be emplaced in the internal thoracic vein (ITV) of a patient. The lead may include features to adapt the lead for such placement. An associated device for use with the lead may include operational circuitry adapted for use with a lead having an electrode for sensing and/or therapy purposes coupled thereto. Methods for implantation and use of such devices and systems are disclosed as well.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: March 3, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: G. Shantanu Reddy, James O. Gilkerson, Andrew L. De Kock, James K. Cawthra, Jr., Eric Hammill
  • Patent number: 10568574
    Abstract: An electrode device is disclosed comprising: an elongate, implantable body comprising elastomeric material, a plurality of electrodes positioned along a length of the implantable body; an electrical connection comprising one or more conductive elements extending through the elastomeric material and electrically connecting to the electrodes; and a reinforcement device extending through the elastomeric material. The length of the implantable body is extendible by placing the implantable body under tension. The reinforcement device limits the degree by which the length of the implantable body can extend under tension. At least one of the electrodes can extend circumferentially around a portion of the implantable body. A delivery device and method of delivery for an electrode device is also disclosed.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: February 25, 2020
    Assignee: THE BIONICS INSTITUTE OF AUSTRALIA
    Inventors: Christopher Edward Williams, Mark James Cook, Owen Burns, Chua Vanessa Maxim, Alan Lai