Catheter Or Endocardial (inside Heart) Type Patents (Class 607/122)
-
Patent number: 10582869Abstract: A method for attaching an electrode to cabling, including providing a cable having a plurality of insulated wires coiled around a central core. The method further includes removing insulation from each wire in a set of the coiled wires so as to provide a respective access channel to a respective section of a respective conductor of each wire in the set while the respective section remains coiled on the central core. The method further includes fastening a respective electrode to the respective access channel while the respective section remains coiled on the central core.Type: GrantFiled: October 25, 2013Date of Patent: March 10, 2020Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.Inventor: Assaf Govari
-
Patent number: 10576267Abstract: Implantable devices and systems include one or more leads adapted to be emplaced in the internal thoracic vein (ITV) of a patient. The lead may include features to adapt the lead for such placement. An associated device for use with the lead may include operational circuitry adapted for use with a lead having an electrode for sensing and/or therapy purposes coupled thereto. Methods for implantation and use of such devices and systems are disclosed as well.Type: GrantFiled: August 2, 2017Date of Patent: March 3, 2020Assignee: CARDIAC PACEMAKERS, INC.Inventors: G. Shantanu Reddy, James O. Gilkerson, Andrew L. De Kock, James K. Cawthra, Jr., Eric Hammill
-
Patent number: 10569080Abstract: Implantable medical leads and implantable lead extensions include a shield. The implantable medical lead is coupled to the implantable lead extension. Stimulation electrodes of the implantable medical lead contact stimulation connectors within a housing of the implantable extension to establish a conductive pathway for stimulation signals from filars of the implantable extension to filars of the implantable medical lead. Continuity is established between the shield of the implantable medical lead and the implantable extension by providing a radio frequency conductive pathway within the housing. The radio frequency conductive pathway extends from a shield of the implantable extension to a shield connector that contacts a shield electrode of the implantable medical lead. The radio frequency conductive pathway may have various forms such as a jumper wire or an extension of the shield within the implantable extension.Type: GrantFiled: May 2, 2018Date of Patent: February 25, 2020Assignee: MEDTRONIC, INC.Inventors: James M. Olsen, Bruce R. Mehdizadeh, Michael J. Kern
-
Patent number: 10568574Abstract: An electrode device is disclosed comprising: an elongate, implantable body comprising elastomeric material, a plurality of electrodes positioned along a length of the implantable body; an electrical connection comprising one or more conductive elements extending through the elastomeric material and electrically connecting to the electrodes; and a reinforcement device extending through the elastomeric material. The length of the implantable body is extendible by placing the implantable body under tension. The reinforcement device limits the degree by which the length of the implantable body can extend under tension. At least one of the electrodes can extend circumferentially around a portion of the implantable body. A delivery device and method of delivery for an electrode device is also disclosed.Type: GrantFiled: September 6, 2018Date of Patent: February 25, 2020Assignee: THE BIONICS INSTITUTE OF AUSTRALIAInventors: Christopher Edward Williams, Mark James Cook, Owen Burns, Chua Vanessa Maxim, Alan Lai
-
Patent number: 10548663Abstract: Neuromodulation catheters with shafts for enhanced flexibility and control and methods of making and using the catheters. A neuromodulation catheter can include an elongated shaft having a distal end portion and a mandrel extending at least along the distal end portion. The mandrel can have an at least substantially solid core. The neuromodulation catheter can further include a transition member and a neuromodulation assembly coupled to the transition member. The transition member can have a proximal portion, a distal portion, and a guide wire lumen extending through the proximal and distal portions. The neuromodulation assembly can extend distally from the distal portion of the transition member, and the mandrel can extend proximally from the proximal portion of the transition member.Type: GrantFiled: May 16, 2014Date of Patent: February 4, 2020Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.Inventors: Rudy Beasley, Leonel Mendoza, Martha A. Barajas-Torres
-
Patent number: 10506704Abstract: Microelectronic packages, modules, systems, and other assemblies containing enhanced electromagnetic (EM) shield structures are provided, as are methods for fabricating electromagnetically-shielded microelectronic assemblies. In an embodiment, the electromagnetically-shielded microelectronic assembly includes first and second signal paths, which carry different electrical signals during operation of the microelectronic assembly. An EM shield structure is positioned between the first and second signal paths. The EM shield structure includes, in turn, a magnetic shield portion adjacent (e.g., in contact with and/or directly or indirectly bonded to) an electrical shield portion. The magnetic shield portion has a first magnetic permeability and a first electrical conductivity, while the electrical shield portion has a second magnetic permeability less than the first magnetic permeability and having a second electrical conductivity greater than the first electrical conductivity.Type: GrantFiled: September 14, 2018Date of Patent: December 10, 2019Assignee: NXP USA, Inc.Inventors: Ramanujam Srinidhi Embar, Vikas Shilimkar, Lakshminarayan Viswanathan
-
Patent number: 10493250Abstract: A dilator comprises a guide extending through a tube, and a slidable sleeve exterior to the tube, such that a slit in the tube extending from a first end of the tube to a second end of the tube, opposite of the first end, is closed by a force applied via the slidable sleeve. When closed, the slit does not interfere with the tube being used as a dilator to dilate tissues of a patient through which the guide extends. When opened, the slit allows the tube to be placed onto the guide or removed from the guide.Type: GrantFiled: November 16, 2016Date of Patent: December 3, 2019Assignee: SaiNath Intellectual Properties, LLCInventor: Venkata Sesha Sayi Nath Iyunni
-
Patent number: 10478621Abstract: A retractable lead system is provided that includes a cup, a spherical contact, and a plunger. The cup is disposed proximate a vacuum end of the retractable lead system, and defines a cavity and a contact reception seat. The contact reception seat defines a spherical portion having a contact reception spherical radius. The spherical contact is disposed within the contact reception seat, and defines a contact spherical radius that corresponds to the contact reception spherical radius. The spherical contact is configured to be electrically coupled to an interior lead disposed within a vacuum environment. The plunger includes an ambient contact and a retractable contact disposed on opposite ends of the plunger. The plunger is configured to be actuated between an open position at which the retractable contact is retracted from the spherical contact and a closed position at which the retractable contact is coupled with the spherical contact.Type: GrantFiled: December 3, 2018Date of Patent: November 19, 2019Assignee: General Electric CompanyInventors: David Allen Nelson, Mark Derakhshan
-
Patent number: 10478613Abstract: A temporary implantable medical device lead includes a connector, a helically coiled conductor and a first mechanical element. The connector is configured to connect the lead to an external control module. The helically coiled conductor has a proximal end mechanically and electrically connected to the connector. The conductor includes a plurality of filars mechanically and electrically connected to the connector. The first mechanical element includes a metal tube having a plurality of longitudinally spaced grooves formed along an exterior of the tube. The plurality of longitudinally spaced grooves receives at least some of the plurality of filars. The at least some of the plurality of filars electrically connected to the first mechanical element such that the first mechanical element is configured as an electrode to deliver electrical stimulation to portions or systems of a body from the external control module.Type: GrantFiled: December 6, 2016Date of Patent: November 19, 2019Assignee: Cardiac Pacemakers, Inc.Inventors: Bryan A. Clark, Timothy R. Jackson, Benjamin J. Haasl
-
Patent number: 10463853Abstract: An implantable medical device includes ventricular and atrial portions, and a flexible leadlet that extends therebetween. An open channel of the atrial portion, formed along a core thereof, is sized to receive the leadlet therein, when the leadlet is folded over on itself. An interventional medical system includes the device and a delivery tool; a tubular sidewall of the tool defines a lumen and has a tether extending therein. A slot formed in the sidewall extends proximally from an open end thereof, coincident with a distal opening of the lumen. When the atrial portion is contained within the lumen, a segment of the leadlet extends alongside the atrial portion; another segment of the leadlet, being folded over on itself, proximal to the atrial portion, has the tether engaged therewith. The slot may allow passage of the leadlet therethrough, when the atrial portion is positioned for deployment through the distal opening.Type: GrantFiled: January 19, 2017Date of Patent: November 5, 2019Assignee: Medtronic, Inc.Inventors: Ronald A Drake, Xin Chen, Michael D Eggen, Matthew D Bonner, Vladimir Grubac, Brian P Colin, Kenneth C Gardeski, Kevin R Seifert
-
Patent number: 10426954Abstract: A medical lead is configured to be implanted into a patient's body and comprises a lead body, and an electrode coupled to the lead body. The electrode comprises a first section configured to contact the patient's body, and a second section capacitively coupled to the first section and configured to be electrically coupled to the patient's body.Type: GrantFiled: June 13, 2018Date of Patent: October 1, 2019Assignee: MEDTRONIC, INC.Inventors: James M. Olsen, Gregory A. Hrdlicka, Carl D. Wahlstrand, Thomas Barry Hoegh
-
Patent number: 10420930Abstract: An implantable medical lead may include a lead body, a substrate, and an elastic deflection component. The lead body includes a proximal end configured to couple to an implantable pulse generator, a distal end opposite the proximal end, and an electrical conductor extending through the lead body. The substrate is at the distal end and supports an array of electrodes. The elastic deflection component physically and electrically connects the electrical conductor and an electrode of the array of electrodes. The elastic deflection component is configured to compensate for at least one of tension forces or compression forces transferred from the electrical conductor to the electrode of the array of electrodes.Type: GrantFiled: February 13, 2017Date of Patent: September 24, 2019Assignee: PACESETTER, INC.Inventors: Jodi Townsley Dubuclet, Jeffrey Urbanski
-
Patent number: 10413720Abstract: A system for artificial stimulation of the heart of a subject is provided, the system comprising a controller comprising a receiver for receiving signal data, a processor for processing received signal data, and a transmitter for transmitting signal data; a sensing stent for location in the proximal coronary sinus of the subject, the sensing stent electrode comprising a sensing electrode assembly for sensing atrial and/or ventricular signals from the heart of the subject and a transmitting assembly for transmitting signal data to the receiver of the controller; and a stimulation stent for location in a vein of the subject distal of the sensing stent, the stimulation stent comprising a receiver for receiving signal data from the transmitter of the controller and an electrode assembly for providing a stimulating electrical signal to the heart of the subject in response to the data received.Type: GrantFiled: April 10, 2013Date of Patent: September 17, 2019Assignee: Gloucestershire Hospitals NHS Foundation TrustInventors: Bogdan Nuta, Ian Lines
-
Patent number: 10406370Abstract: A device and method for providing cardiac pacing of triangle of Koch and bundle of His zones by multiple electrodes inserted using in a single conduit are provided. The method includes providing a single conduit with multiple electrodes, positioning electrodes in the target zone of a heart, selecting acceptable electrodes as active based on a predetermined criteria and providing cardiac stimulation for multiple chambers of the heart from a single location.Type: GrantFiled: March 5, 2019Date of Patent: September 10, 2019Assignee: Eagle Point Medical LLCInventor: Leonid Makharinsky
-
Patent number: 10398901Abstract: An implantable medical device (IMD) may include a housing having a proximal end and a distal end and a set of one or more electrodes connected to but spaced apart from the housing. The IMD may further include a controller disposed within the housing, wherein the controller is configured to sense cardiac electrical signals, and deliver electrical stimulation pulses via the first set of one or more electrodes. In some embodiments, a first portion of the housing is configured to be disposed at least partly within a coronary sinus of a patient's heart and a second portion of the housing is configured to be disposed at least partly within a right atrium of the patient's heart.Type: GrantFiled: May 18, 2017Date of Patent: September 3, 2019Assignee: CARDIAC PACEMAKERS, INC.Inventor: Brendan E. Koop
-
Patent number: 10390714Abstract: Sensing devices and methods of implanting sensing devices within an anatomical vessel network of a patient are provided. In one method, a fixation element (e.g., a stent or coil) of the sensing device is expanded into firm contact with a wall of a main anatomical vessel (e.g., a right pulmonary artery), and a stabilization element of the sensing device is placed into contact with a wall of an anatomical vessel branch of the main anatomical vessel. In another method, a first fixation element of the sensing device is expanded into firm contact with the wall of the main anatomical vessel (e.g., a right pulmonary artery) at a longitudinal location proximal to the anatomical vessel branch, and a second fixation element of the sensing device is expanded into firm contact with the wall of the main anatomical vessel at a longitudinal location distal to the anatomical vessel branch.Type: GrantFiled: November 14, 2006Date of Patent: August 27, 2019Assignee: Remon Medical Technologies, LTD.Inventors: Lone Wolinsky, Alon Ben-Yoseph, Abraham Penner
-
Patent number: 10369355Abstract: An implantable neural tissue electrode assembly includes a cylindrical electrode lead with at least one electrode contact on the outer surface of the electrode lead. An active distal end fixation anchor is located at the distal end of the electrode lead and is adapted to fasten to adjacent tissue by rotation in a fastening direction. A passive rear fixation anchor is located on the outer surface of the electrode lead offset a longitudinal distance back from the distal end and has at least one curved blade with a blade tip directed away from rotation in the fastening direction. The rear fixation anchor is adapted to permanently fasten to adjacent tissue by rotation opposite to the fastening direction so that the blade tip cuts into the adjacent tissue, and the electrode assembly is adapted such that physiological induced strains are distributed along the electrode lead.Type: GrantFiled: August 23, 2017Date of Patent: August 6, 2019Assignee: MED-EL Elektromedizinische Geraete GmbHInventors: Birthe Rubehn, William Denny, Markus Oberparleiter, Werner Lindenthaler
-
Patent number: 10350007Abstract: An ablation catheter adapted for use with a guide wire has a 3-D shaped portion that carries ring electrodes for ablating a vessel or tubular region, including the renal artery. The 3-D shaped portion, for example, a helical portion, enables the ring electrodes to contact an inner surface of the vessel at a plurality of locations at different depths along the vessel to form a conduction block without forming a closed conduction loop which would otherwise increase the risk of stenosis of the vessel. In one embodiment, the catheter has a lumen with entry and exit ports to allow the guide wire to pass through the lumen but bypass the 3-D shaped portion. In another embodiment, the catheter has outer bands providing side tunnels through which the guide wire can pass through.Type: GrantFiled: December 22, 2017Date of Patent: July 16, 2019Assignee: Biosense Webster (Israel) Ltd.Inventors: Kristine B. Fuimaono, Debby Esther Grunewald
-
Patent number: 10350416Abstract: An implantable medical device having a housing that encloses a pulse generator and a sensing module includes a housing-based cathode electrode electrically coupled to the pulse generator and to the sensing module. A sensing extension extending from the housing proximal end includes an anode electrode electrically coupled to the sensing module for sensing cardiac electrical signals. The sensing extension includes a flotation member that causes the sensing extension to extend away from the housing along a direction of flowing blood when the implantable medical device is deployed within a cardiovascular system of a patient.Type: GrantFiled: July 28, 2015Date of Patent: July 16, 2019Assignee: Medtronic, Inc.Inventors: Matthew D Bonner, Mark K Erickson, Todd J Sheldon
-
Patent number: 10342970Abstract: The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.Type: GrantFiled: June 27, 2016Date of Patent: July 9, 2019Assignee: Medtronic, Inc.Inventors: Steven M. Goetz, Richard T. Stone, Warren W. Ball, Carl D. Wahlstrand, Michael T. Hegland, Gabriela C. Molnar, James M. Olsen
-
Patent number: 10335574Abstract: A catheter system including an accelerometer-based sensing assembly is provided. In particular the present teachings relate to an accelerometer based assembly used to determine contact between a catheter and surrounding proximate tissue, such as cardiac tissue. An embodiment of such a system may, for example, be used for visualization, mapping, ablation, or other methods of diagnosis and treatment of tissue and/or surrounding areas.Type: GrantFiled: October 3, 2017Date of Patent: July 2, 2019Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.Inventors: Troy T. Tegg, Saurav Paul
-
Patent number: 10315028Abstract: A medical electrical lead and a method of its use. The lead has an elongated lead body having an outer circumference and provided with an electrode. A push tube is mounted circumferentially around the lead body and the lead body is longitudinally movable with respect thereto. A fixation helix is mounted to the push tube, extending along a generally helical axis around the outer circumference of the lead body. The lead may be employed by advancing the lead to a desired location for the fixation helix and then rotating the push tube to secure the helix to tissue. The lead body may then be moved longitudinally with respect to the push tube to place the electrode in a desirable location.Type: GrantFiled: April 23, 2014Date of Patent: June 11, 2019Assignee: Medtronic, Inc.Inventors: John L Sommer, Linda L Franke
-
Patent number: 10307147Abstract: Partitioning devices that may be secured and sealed within a heart chamber for separating a patient's heart chamber into a productive portion and a non-productive portion are described herein. The partitioning devices described herein may include a membrane with a plurality of inflatable elements. The membrane may include a valve disposed in a central region of the membrane with a plurality of inflation channels extending radially from the valve. These devices may be secured within the heart chamber by sealing them to the wall of the heart chamber, for example, by inflating the plurality of inflatable elements on the periphery of the device. The non-productive portion may be filled with a material, including occlusive materials. Sealing and/or filling the non-productive portion formed by the devices described herein may help prevent leakage from the non-productive region.Type: GrantFiled: March 7, 2017Date of Patent: June 4, 2019Assignee: Edwards Lifesciences CorporationInventors: Alexander Khairkhahan, Serjan D. Nikolic, Hugh R. Sharkey
-
Patent number: 10293164Abstract: A catheter may include an outer layer defining a plurality of apertures therethrough, and a body defining at least one longitudinal lumen therein. The body may be within the outer layer, and the apertures may be radially outward of the lumen. The catheter may also include a plurality of electrodes positioned in or on the catheter, with each electrode being electrically exposed through an aperture of the plurality of apertures. A ribbon cable may extend through the lumen and include a plurality of leads, with the plurality of leads being electrically connected to the plurality of electrodes. The plurality of leads and electrodes may be formed by the deposition of conductive inks or paints, or by the electrodeposition of copper or other conductive metals or materials.Type: GrantFiled: May 26, 2017Date of Patent: May 21, 2019Assignee: Lungpacer Medical Inc.Inventors: John E. Nash, Douglas G. Evans, Viral Thakkar
-
Patent number: 10293165Abstract: The invention relates to an electrical multichannel system (100) and to a neural stimulation and/or recording device comprising such a system. The multichannel system comprises a plurality of application components (130), e.g. stimulation electrodes, and associated access points (120) that are connected by a plurality of electrical lines (110). The resistances of these lines are adjusted to given target values, for example to equal values, by incorporating appropriate tuning sections (140) into the electrical lines. The lines may for example comprise different geometries and/or materials in the tuning sections.Type: GrantFiled: November 4, 2013Date of Patent: May 21, 2019Assignee: Koninklijke Philips N.V.Inventors: Alfons Wouter Groenland, Ke Wang
-
Patent number: 10293157Abstract: A system and method are presented that electrically stimulates the phrenic nerve whereby said stimulation results in muscle activation of the diaphragm as observed by a measurement of work or power of breathing associated with the inspiratory portion of a stimulated breath.Type: GrantFiled: May 22, 2017Date of Patent: May 21, 2019Assignee: Stimdia Medical, Inc.Inventors: John O'Mahony, Patrick J. Wethington
-
Patent number: 10285609Abstract: Embodiments of the invention include a temporarily or permanently implantable medical device with an elongate electrical line, and a method of producing the implantable medical device. The elongate electrical line includes a first electrical component and a second component, wherein the first electrical component or part of the first electrical component includes a functional conductor. The second component includes at least one metal layer and at least one flexible plastic layer. The first electrical component is electrically connected in series to the at least one metal layer of the second component.Type: GrantFiled: August 19, 2014Date of Patent: May 14, 2019Assignee: BIOTRONIK SE & CO. KGInventors: Jens Rump, Michael Friedrich, Heinrich Buessing
-
Patent number: 10286205Abstract: An electrical stimulation lead includes a lead body that defines an alignment feature extending distally from a proximal end of the lead body and inwardly from an outer surface of the lead body. The lead also includes electrodes disposed along the distal portion of the lead body, segmented terminals disposed along the proximal portion of the lead and arranged in sets of segmented terminals, and lead conductors electrically coupling the electrodes to the terminals. Each set of segmented terminals includes at least two segmented terminals disposed in a circumferential arrangement at a same longitudinal position of the lead. A system can include the lead and a connector for receiving the proximal end of the lead. The connector can include an alignment protuberance extending into a connector lumen and configured to be received into the alignment groove of the lead to align the lead with the connector.Type: GrantFiled: January 29, 2016Date of Patent: May 14, 2019Assignee: Boston Scientific Neuromodulation CorporationInventors: G. Karl Steinke, Joshua Dale Howard, Geoffrey Abellana Villarta
-
Patent number: 10286208Abstract: Various aspects of the present disclosure are directed toward methods, apparatuses, and systems that include an implantable medical device comprising an implantable lead, a suture sleeve having an interior surface defining a lumen of the suture sleeve that receives the implantable lead, and an engagement feature configured to non-removeably secure the suture sleeve to the implantable lead.Type: GrantFiled: May 19, 2016Date of Patent: May 14, 2019Assignee: CARDIAC PACEMAKERS, INC.Inventors: Andrew L. De Kock, Christopher A. Fuhs, G. Shantanu Reddy, Diana K. Ma, David A. Durand, Daniel J. Cooke
-
Patent number: 10285608Abstract: A cable for use in biopotential measurements in a magnetic resonance (MR) environment comprises a flexible plastic or polymer sheet (32, 40) extending as a single unitary structure from a first end to an opposite second end, and an electrically conductive trace (38, 58) disposed on the flexible plastic or polymer sheet and running from the first end to the opposite second end. The electrically conductive trace has sheet resistance of one ohm/square or higher, and may have a hatching or checkerboard pattern. The cable may further include an electrically insulating protective layer (50, 70) disposed on the substrate and covering the electrically conductive trace, an electrode (30) disposed on the electrically conductive trace at the second end, an edge connector (74) at the first end, or various combinations of such features.Type: GrantFiled: May 27, 2013Date of Patent: May 14, 2019Assignee: KONINKLIJKE PHILIPS N.V.Inventors: Francis Patrick O'Neill, Eduardo Mario Rey, Mark Deems Nelson
-
Detection/stimulation microlead implantable in a vessel of the venous, arterial or lymphatic network
Patent number: 10271752Abstract: A microlead has a distal active portion formed by a microcable including an electrically conductive core coated with an insulation layer, with a plurality of exposed areas forming the stimulation electrodes. The microcable has a three-dimensional preshape inscribed in a cylindrical envelope volume so as to match the target vessel wall. The microcable includes a plurality of exposed areas regularly distributed over the circumference of the cylindrical envelope volume considered in axial projection, the exposed zones extending only over an angular sector of the microcable considered in cross section, said angular sector facing the outside of the envelope volume of the preshape.Type: GrantFiled: August 11, 2017Date of Patent: April 30, 2019Assignee: Sorin CRM SASInventors: Willy Régnier, Philippe d'Hiver -
Patent number: 10258471Abstract: The invention relates to a catheter (10a), comprising a flexible catheter body (10a) forming at least two hollow spaces (90, 100/110) along the longitudinal extension thereof, characterized in that the catheter body (10a) comprises at least two consecutively arranged sections (20) having sheaths (60) that are arranged between the sections (20) and seal the hollow spaces (90, 100/110) at least in some sections, wherein the one hollow space (90) is designed so it communicates with at least one opening (70) penetrating the catheter wall in each section (20), and the other hollow space (100/110) is equipped to introduce an element (40/50) that brings about a longitudinal change of at least one of the sections (20).Type: GrantFiled: February 11, 2009Date of Patent: April 16, 2019Assignee: VDYNE, LLCInventors: Georg Lutter, Lucian Lozonschi
-
Patent number: 10251569Abstract: Intravascular devices, systems, and methods are disclosed. In some embodiments, a method of assembling an intravascular device is provided that includes positioning a first tubular member around a plurality of conductors and a core member; advancing a first of the plurality of conductors through an opening of the first tubular member; positioning a first conductive member around the first tubular member; and electrically coupling the first of the plurality of conductors to the first conductive member. In some embodiments, an intravascular device is provided that includes an insulating member positioned around a plurality of conductors and a core member and a conductive member positioned around the insulating member, wherein at least one of the plurality of conductors extends through an opening in the insulating member and is electrically coupled to the first conductive member.Type: GrantFiled: September 4, 2017Date of Patent: April 9, 2019Assignee: VOLCANO CORPORATIONInventor: David Burkett
-
Patent number: 10232102Abstract: Treatment of cardiac tissue via an implantable heart treatment device is described. A device embodiment includes, but is not limited to, a substrate configured for implantation within a body; an electromagnetic signal generator coupled to the substrate and configured to generate one or more electric signals configured to stimulate one or more tissues of a heart; and an oxygenator coupled to the substrate and configured to supply one or more oxygenated molecules to one or more tissues of the heart, the oxygenator including a blood inlet portion, a blood outlet portion, and an oxygen exchange portion positioned between the blood inlet portion and the blood outlet portion, the oxygen exchange portion including a high surface area oxygen exchanger configured to transfer one or more oxygenated molecules from the high surface area oxygen exchanger to blood passing from the blood inlet portion to the blood outlet portion.Type: GrantFiled: January 23, 2017Date of Patent: March 19, 2019Assignee: Elwha LLCInventors: Roderick A. Hyde, Edward K. Y. Jung, Eric C. Leuthardt, Gary L. McKnight, Lowell L. Wood, Jr.
-
Patent number: 10226619Abstract: In one embodiment, a neurostimulation lead comprises: a lead body comprising a plurality of conductor wires; and a molded stimulation tip end comprising a plurality of segmented electrodes, hypotubes, and an annular frame structure: wherein (i) each segmented electrode of the plurality of segmented electrodes has an inner surface, an outer surface, and step-down region embedded within polymer material of the molded stimulation tip end, (ii) each respective hypotube is directly welded to the inner surface of a corresponding segmented electrode of the plurality of segmented electrodes.Type: GrantFiled: May 24, 2016Date of Patent: March 12, 2019Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.Inventors: Ryan Sefkow, Christopher A. Crawford, Jeffrey Mitchell, Kevin Wilson, Raymond P. Bray, John R. Gonzalez
-
Patent number: 10220187Abstract: A catheter apparatus comprises an elongated catheter body having a distal end, a proximal end, and at least one fluid lumen extending longitudinally therein; and a plurality of flexible electrode segments on a distal portion of the catheter body adjacent the distal end, each pair of neighboring flexible electrode segments being spaced from each other longitudinally by a corresponding electrically nonconductive segment. Each flexible electrode segment comprises a sidewall provided with one or more elongated stiffness reductions extending through the sidewall, the one or more elongated stiffness reductions providing flexibility in the sidewall for bending movement relative to a longitudinal axis of the catheter body. The electrically nonconductive segment is substantially smaller in length than each of the corresponding pair of neighboring flexible electrode segments.Type: GrantFiled: June 14, 2011Date of Patent: March 5, 2019Assignee: ST. JUDE MEDICAL, LLCInventors: Alan De La Rama, Cary Hata
-
Patent number: 10201699Abstract: A therapy lead has a distal header, a helix-shaft assembly, and a ring seal. The distal header has a cylindrical passage, and the helix-shaft assembly has a shaft and a helical anchor distally extending from the shaft. The shaft extends through the cylindrical passage. The ring seal circumferentially extends about the shaft and inside the cylindrical passage. The ring seal has a proximal face, a distal face, an outer circumferential surface, an inner circumferential surface, and a side wall. The distal face is opposite the proximal face. The outer circumferential surface extends between the proximal face and distal face. The inner circumferential surface is opposite the outer circumferential surface and extends between the proximal face and distal face. The inner circumferential surface defines a center hole of the ring seal that extends between the proximal face and distal face.Type: GrantFiled: February 23, 2016Date of Patent: February 12, 2019Assignee: PACESETTER, INC.Inventors: Matthew Malone, Tyler Smith, Tyler Strang, Xiangqun Chen, Steven R. Conger, Jeremy Hurwitz
-
Patent number: 10188512Abstract: The present invention's goal is to devise an apparatus (here-forth called ‘punch-ball’) made of a tension-reversible membrane that will assume a particular three-dimensional predetermined shape when under tension, apparatus that will border a central empty space, central space limited by the interior face of the membrane, and central space that will be in direct communication with the exterior space outside of the external face of the ‘punch-ball’ through orifices in the membrane (here-forth called ‘punches’), punches that will not decrease the ability of the membrane to exhibit a tension force. The punch-ball can be used freestanding or in connection with an object representing a confined space that will be abutting the exterior face of the punch-ball when the punch-ball is under tension.Type: GrantFiled: December 30, 2014Date of Patent: January 29, 2019Inventor: George O. Angheloiu
-
Patent number: 10183162Abstract: A coiled, closed-loop RF current attenuator is configured to be placed about an implantable lead conductor. A coiled conductor extends in a coiled shape defining a longitudinal axis from a first coil end to a second coil end. The first coil end is electrically connected to the second coil end. An insulator is disposed about the coiled conductor. The closed loop attenuator can also include in series a short, a capacitor and/or a resistor. In some embodiments the closed loop attenuator can be resonant at an MRI RF-pulsed frequency. The closed loop attenuator can be integrated as a permanent part of an implantable lead conductor, or alternatively, be a stand-alone device that is placed about a premade implantable lead conductor.Type: GrantFiled: January 1, 2016Date of Patent: January 22, 2019Assignee: Greatbatch Ltd.Inventors: Robert Shawn Johnson, Robert A. Stevenson
-
Patent number: 10172538Abstract: Devices, systems, and methods for the localization of body lumen junctions and other intraluminal structure are disclosed. Various embodiments permit clinicians to identify the locations of intraluminal structures and medical devices during non-surgical medical techniques, such as cardiac ablation, by determining the intralumen conductance and/or cross-sectional area at a plurality of locations within the body lumen.Type: GrantFiled: August 26, 2013Date of Patent: January 8, 2019Assignee: 3DT Holdings, LLCInventor: Ghassan S. Kassab
-
Patent number: 10173052Abstract: Guidewires and methods for transmitting electrical stimuli to a heart and for guiding and supporting the delivery of elongate treatment devices within the heart are disclosed. A guidewire can comprise an elongate body, including first and second elongate conductors, and at least first and second electrodes. A distal end portion of the elongate body can include a preformed bias shape, such as a pigtail-shaped region, on which the first and second electrodes can be located. The preformed bias shape can optionally be non-coplanar relative to an intermediate portion of the elongate body. The first and second elongate conductors can be formed of a single structure or two or more electrically connected structures. The conductors can extend from proximal end portions to distal end portions that electrically connect to the first and second electrodes.Type: GrantFiled: March 10, 2017Date of Patent: January 8, 2019Assignee: Teleflex Innovations S.à.r.l.Inventors: David Daniels, Chad Kugler, John Bridgeman, Derek Stratton, Dean Peterson, Joshua Brenizer
-
Patent number: 10166067Abstract: Ablation catheter comprising an elongate member with proximal and distal ends, wherein the distal end is arranged to apply a high energy electrical shock from a plurality of locations along the length of said distal end and wherein said distal end is curved. Preferably the distal end of the elongate member extends in a circle segment.Type: GrantFiled: February 12, 2009Date of Patent: January 1, 2019Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.Inventors: Frederik Henricus Mattheus Wittkampf, Helmert Van Wessel, Richard E. Stehr, Martin M. Grasse
-
Patent number: 10124162Abstract: A device for positioning an electrode in tissue includes: a lead body having a distal portion; an electrode array coupled to the lead distal portion; an anchoring element having an anchor tip and being operable in a first configuration in which the anchor tip is retracted within the lead and in a second configuration in which the anchor tip is extended outside the lead and configured to fixate within the tissue; and a displacement mechanism that is actuated to bias the electrode array or the anchoring element toward the tissue. A method for positioning an electrode in tissue includes: navigating, to the tissue, a lead with an electrode array, an anchoring element with a distal anchor tip, and a displacement mechanism; biasing the electrode array and anchoring element towards the tissue with the displacement mechanism; and deploying the anchoring element, and verifying fixation of the anchor tip within the tissue.Type: GrantFiled: August 30, 2017Date of Patent: November 13, 2018Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITYInventors: Ellis Garai, Aravind Swaminathan
-
Patent number: 10092747Abstract: A medical device for conducting electrical signal comprises an elongate member and a plurality of cables. Each cable may have three concentric layers: a first layer with an inner conductor, a second layer with an inner insulator, and a third layer with an outer conductor. The inner insulator electrically isolates the outer conductor from the inner conductor.Type: GrantFiled: May 1, 2015Date of Patent: October 9, 2018Assignee: NEVRO CORPORATIONInventors: Vivek Sharma, Andre Walker, Apratim Dixit
-
Patent number: 10086189Abstract: A medical device lead. The lead includes one or more jacketed conductive elements. The jacket comprises one or more covers. A first cover of polyether ketone (PEEK) is in direct contact with the at least one conductive element. At least one conductive element and a PEEK cover are coiled. The coiled conductive element can substantially retain its original coiled shape.Type: GrantFiled: August 12, 2011Date of Patent: October 2, 2018Assignee: Medtronic, Inc.Inventors: Gregory A. Boser, Kevin R. Seifert, Greg Garlough
-
Patent number: 10084250Abstract: An extensible medical lead comprises at least one proximal contact, at least one distal electrode, and having at least one conductive filer electrically coupled between the proximal contacts and the distal stimulation electrode. The lead further comprises an outer jacket made of a longitudinally compressible material. The conductive filer may also be coiled to provide extensibility.Type: GrantFiled: August 30, 2012Date of Patent: September 25, 2018Assignee: MEDTRONIC, INC.Inventor: Carl D. Wahlstrand
-
Patent number: 10084278Abstract: An implantable lead assembly is provided that comprises a lead body having a proximal end portion and a distal end portion, and having a length extending there between. A plurality of electrodes are disposed along the lead body. A plurality of cable conductors are contained within the lead body, the conductors extending from the electrodes to the proximal end portion. A lead connector is provided at the proximal end portion. The lead connector includes a connector pin configured to mate with a corresponding header contact; a first termination pin coupled to one of the plurality of cable conductors; a collar coupler securely and electrically coupling the connector pin and first termination pin in an axially offset alignment with one another; and a body segment that is elongated along a longitudinal axis and extends between a header mating face and a lead mating end.Type: GrantFiled: September 26, 2017Date of Patent: September 25, 2018Assignee: PACESETTER, INC.Inventors: Alexander Farr, Steven R. Conger, Keith Victorine, Sean Matthew Desmond
-
Patent number: 10045868Abstract: The present invention comprises articles and methods for atraumatic removal of a chronically implanted medical device, such as a vascular graft. Specifically, the invention comprises a thin, lubricious and durable tubular cover that aids in protecting the indwelling implant during implantation while also acting as an atraumatic removal aid.Type: GrantFiled: September 8, 2010Date of Patent: August 14, 2018Assignee: W. L. Gore & Associates Inc.Inventors: Edward H. Cully, Jeffrey B. Duncan
-
Patent number: 9999371Abstract: An integrated catheter placement system for accurately placing a catheter within a patient's vasculature is disclosed. In one embodiment, the integrated system comprises a system console, a tip location sensor for temporary placement on the patient's chest, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to intravascular introduction of the catheter. The ultrasound probe includes user input controls for controlling use of the ultrasound probe in an ultrasound mode and use of the tip location sensor in a tip location mode. In another embodiment, ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart.Type: GrantFiled: October 31, 2012Date of Patent: June 19, 2018Assignee: C. R. Bard, Inc.Inventors: Shayne Messerly, Matthew W. Bown, Eddie K. Burnside, Kelly J. Christian
-
Patent number: 9962099Abstract: An electrophysiology catheter, e.g., a coronary sinus catheter, for insertion into a cardiac vessel, such as the coronary sinus, includes a handle and a catheter shaft coupled at one end to the handle. The catheter shaft has a distal end and an anchor is associated with the catheter shaft and is movable between a deployed position and a collapsed position. In the deployed position, the anchor extends radially outward from an outer surface of the catheter shaft for contacting a wall and temporarily anchoring the catheter shaft within the coronary sinus. The catheter also includes an actuator for causing deployment and collapsing of the anchor upon manipulation of the actuator.Type: GrantFiled: April 29, 2016Date of Patent: May 8, 2018Assignee: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Charles A. Gibson, David P. MacAdam, Dustin Dufour