Flow Metering Patents (Class 702/45)
  • Publication number: 20140257720
    Abstract: A mass flow controller and associated methods for providing indicated flow from the mass flow controller are disclosed. The method may include obtaining a measured flow signal indicative of a mass flow rate of a fluid that is controlled by the mass flow controller and filtering the measured flow signal to generate indicated flow that provides a representation of the actual mass flow rate of the fluid. The indicated flow is provided to an operator of the mass flow controller, and a rate of change of the mass flow rate of the fluid is determined based upon samples of the measured flow signal. A time constant used in connection with the filtering is then adjusted based upon the rate of change of the mass flow rate.
    Type: Application
    Filed: January 20, 2014
    Publication date: September 11, 2014
    Applicant: Hitachi Metals, Ltd.
    Inventor: Alexei V. Smirnov
  • Patent number: 8819438
    Abstract: A method for issuing a digital residence certificate using a module associated with a counter. Data from the counter are continuously monitored, whereby the data are read and a consistency test is performed on the basis of a predetermined criterion. In addition, after receiving a residence certificate request, a decision is made as to whether or not the request should be fulfilled, based on the results of the continuous data monitoring.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: August 26, 2014
    Assignee: Electricite de France
    Inventors: Ludovic Pietre-Cambacedes, Yves Dherbecourt
  • Patent number: 8812253
    Abstract: A system comprises a differential pressure sensor, a process pressure sensor, a temperature sensor and a microprocessor. The differential pressure sensor is positioned to sense differential pressure along a fluid flow, where fluid properties of the fluid flow have first and second phases separated along a transition curve. The process pressure sensor is positioned to sense a pressure of the fluid flow, and the temperature sensor is positioned to sense a temperature of the fluid flow. The microprocessor is coupled to the temperature sensor and the pressure sensor to determine a flow rate, and the microprocessor generates a diagnostic based on the process pressure and the temperature as compared to the transition curve.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: August 19, 2014
    Assignee: Rosemount Inc.
    Inventors: Dale Scott Davis, David Eugene Wiklund
  • Patent number: 8810394
    Abstract: A number of parameters related to the operation of a fluid delivery device are determined based on a pressure within the device sensed using a pressure sensor. In one example, the volume of therapeutic fluid added to or removed from a reservoir of a fluid delivery device is determined based on a sensed pressure of the reservoir. In another example, the volume of therapeutic fluid added to or removed from the reservoir is determined based on a sensed pressure of a refill port assembly of the device. In another example, an initial temperature of the reservoir as a therapeutic fluid is removed from the reservoir is estimated based on a sensed pressure within the device. In another example, a temperature of a therapeutic fluid added to the reservoir is estimated based on a sensed pressure within the device.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: August 19, 2014
    Assignee: Medtronic, Inc.
    Inventor: Scott L. Kalpin
  • Patent number: 8800592
    Abstract: In a flow control device 100, a comparator 40 outputs a first control voltage Vref based on a comparison of an instruction value signal Vi1 of the flow volume and a signal Vi2 according to the sensor output signal Vs. A feedback current generator 30 generates a feedback current Ifb according to a difference between the sensor output signal Vs and a signal Vi2 according to the instruction value signal Vi1. A feedback voltage generator 50 is a resister. A feed forward current generator 20 generates a feed forward current Iff according to the instruction value signal Vi1. A synthesis unit 60 generates a second control voltage Vdrv* obtained by adding to the feedback voltage Vfb a voltage according to a sum of the feedback current Ifb and the feed forward current Iff. The valve unit 90 is controlled according to the first and the second control voltage Vref, Vdrv*.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: August 12, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takao Goto, Toshihiro Aono, Tetsuroh Kawai
  • Patent number: 8798901
    Abstract: A travel distance estimating apparatus (100) estimates a travel distance of a moving body in a given section through which the moving body travels (hereinafter referred to as a “travel interval”). A current position acquiring unit (101) acquires the current position of the moving body. A variable acquiring unit (102) acquires information related to the speed of the moving body in the travel interval. An estimating unit (103) estimates based on a consumed energy estimating equation, energy consumption and a travelable distance for travel through the travel interval. A correcting unit (104) corrects information related to the moving body and used as variables of the consumed energy estimating equation. A storage unit (105) stores information related to roads associated with a travel history of the moving body. A display unit (110) displays map data including information related to travelable distance calculated by the estimating unit (103).
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 5, 2014
    Assignee: Pioneer Corporation
    Inventors: Mitsuo Yasushi, Susumu Ohsawa, Tatsuya Fukuda, Kyoichiro Fujii
  • Patent number: 8793025
    Abstract: Control devices for use in decoder-based irrigation control systems, and related methods, are provided herein. In one implementation, an irrigation control device comprises decoder circuitry located within a first housing and having an electrical connection configured to couple the decoder circuitry to a control wire path of a decoder-based irrigation control system; a coil located within a second housing; a first wire electrically coupling the decoder circuitry to a first connection of the coil; and a second wire electrically coupling the decoder circuitry to a second connection of the coil. The coil is configured to develop an electromagnetic flux sufficient to cause actuation of a device controlling irrigation equipment in response to signaling from the decoder circuitry. The first housing, the second housing, the first wire and the second wire are non-separably and functionally connected together.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 29, 2014
    Assignee: Rain Bird Corporation
    Inventor: Michael A. Lorenz
  • Publication number: 20140207393
    Abstract: Systems and methods for providing a cloud flowmeter are provided by certain embodiments of the disclosure. According to one embodiment of the disclosure, there is disclosed a method, which can include receiving, from a meter device, at least one flow signal via at least one network; determining, based in part on the at least one flow signal, at least one flow characteristic, data characteristic, or meter characteristic; and storing the at least one flow characteristic, data characteristic, or meter characteristic in a data storage device remote from the meter device.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Michael Brusilovsky
  • Publication number: 20140207392
    Abstract: A system, including a utility meter, smart meter and/or a central office of a utility company may provide output to assist consumers to identify gas use by individual appliances. The system may measure gas flow rates, categorize the rates to assist in association with a gas consuming appliance, and provide output to identify use by one or more appliances. The output may include information on consumption and/or cost associated with one or more appliances, such as a furnace, hot water tank and/or stove. The output may be graphical, tabular or otherwise presented in any desired user interface or invoice, etc.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Applicant: ITRON, INC.
    Inventor: Mark K. Cornwall
  • Publication number: 20140200838
    Abstract: A water saving device including a housing and a processor disposed within the housing. The processor calculates a water volume expended over a period of time based on a predetermined volumetric flow rate and time. A sensor is disposed within the housing for sensing the presence of a user. The sensor is operably connected to the processor. The sensor generates a signal to cause the processor to begin calculating the water volume upon sensing the presence of a user. A display indicates the expended water volume and is operatively connected to the processor. The display shows a virtual water level which rises as time and water usage increases.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 17, 2014
    Applicant: GREEN STARTS HERE, LLC
    Inventor: Kevin Myers
  • Patent number: 8781747
    Abstract: A method of determining parameters relating to the flow performance of subterranean sources is described using the steps of measuring a total flow rate and pressure at a reference datum for at least two different flow rates, allocating the flow from each of the sources using identified concentrations of characteristic components, and using the total flow rate, pressure and the allocation to determine selective inflow performance relationships for each source.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: July 15, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Murtaza Ziauddin
  • Patent number: 8776614
    Abstract: First and second ?? modulators convert output signals of two sensors into pulse density signals. First and second LPFs convert the pulse density signals into multi-bit signals. A signal computing module calculates a mass flow rate based on the multi-bit signals. A resonance circuit generates an excitation signal based on the output signals of the sensors. A drive output module amplifies the excitation signal. An exciter excites the measurement tube using an amplified excitation signal. A multiplier amplifies one of the pulse density signals to generate a multi-bit signal. An amplification factor controller controls an amplification factor of the multiplier based on the multi-bit signal. A third ?? modulator converts an amplified signal into a pulse density signal. A DAC generates the excitation signal based on the pulse density signal.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: July 15, 2014
    Assignee: Yokogawa Electric Corporation
    Inventor: Masami Wada
  • Patent number: 8781759
    Abstract: Meter electronics (20) for processing sensor signals for a multi-phase flow material in a flowmeter (5) is provided according to an embodiment of the invention. The meter electronics (20) includes an interface (201) for receiving first and second sensor signals (210 and 211) for the multi-phase flow material and a processing system (203).
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: July 15, 2014
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Craig B. McAnally
  • Patent number: 8773279
    Abstract: A visually and remotely readable apparatus is provided which comprises a plurality of sensing units, a control unit and a flexible printed cable (FPC) to connect two units for exchanging information therebetween. A preferable structure of the sensing unit includes a fixed part secured to the body of the apparatus and two oppositely positioned rotatable parts, where two rotatable parts mounted on a common shaft with the fixed part arranged therebetween forming two angular position sensors. Each sensor is based on the capacitive coupling between two working surfaces of the rotatable part and the respective working surfaces of the fixed part with the electrodes are secured thereto. Two working surfaces of one part are confronted with two respective working surfaces of another part forming two working surface pair. Each sensor has two working surface pairs, one working surface pair is sensing pair for sensing angular position; another is coupling pair for coupling sensing signals.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: July 8, 2014
    Inventors: Jinghua Shen, Jingrong Shen
  • Publication number: 20140183386
    Abstract: The presently disclosed subject matter includes a sensor device, and a method of operating thereof. The sensor device comprises a processing unit being operatively connected to a sensor unit comprising a sensor characterized by adaptable sampling frequency. The sensor being configured to periodically sample, in a first sampling frequency, a physical quantity and generate a signal indicative of a detected physical quantity. The processing unit is configured to receive the signal and determine a detected frequency of the signal and to adapt the first sampling frequency to the detected frequency. The adapting comprising calculating a difference between the first sampling frequency and the detected frequency and instructing the sensor to increase the first frequency, if the difference is less than a first predefined value; and to decrease the first frequency, if the difference is less than a second predefined value.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 3, 2014
    Applicant: AQUA - RIMAT LTD.
    Inventors: Moshe RAVID, Nir HASIDIM
  • Patent number: 8768632
    Abstract: A container is filled to a predetermined target mass of a free-flowing substance with the help of a device that dispenses measured doses of the substance. The device has a valve for variably adjusting the mass flow rate of the substance from a reservoir into the container. The device further includes a means for measuring the elapsed time from the beginning of the filling process, a balance for determining the mass of the substance in the container, and a controller unit for controlling the valve. The controller unit includes an adjustment module, and a memory unit wherein a desired mass flow rate is stored. At an elapsed time, if the mass flow rate is smaller or larger than the desired mass flow rate the flow rate is respectively increased or decreased by a flow rate adjustment.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: July 1, 2014
    Assignee: Mettler-Toledo AG
    Inventors: Pascal Frei, Guido Schuster, Markus Kottmann
  • Publication number: 20140180610
    Abstract: A MEMS sensor system for monitoring membrane elements in a membrane based water filtration plant having a remote telemetry unit (RTU), a SCADA, and a plurality of MEMS sensors for measuring pressure, flow rate. and conductivity. The water filtration plant has a train with a membrane vessel containing a plurality of membrane elements arranged in series creating interfaces between each membrane element. The MEMS sensors are located at the membrane element interfaces. A method of monitoring membrane elements in a membrane based water filtration plant using a plurality of MEMS sensors for measuring pressure, flow rate. and conductivity placed at the filtration plant membrane element interfaces.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: General Electric Company
    Inventors: Aveek Chatterjee, Arjun Bhattacharyya, Shankar Chandrasekaran
  • Patent number: 8761910
    Abstract: A method to monitor a status from a secondary location of a plurality of equipment on a drilling site, while simultaneously enabling preventive maintenance is described herein. A user can view at least one cycle, at least one control state, and at least one pressure. The user can also view equipment information, equipment repair history, and other information necessary to ensure that a piece of equipment has minimal down time.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: June 24, 2014
    Assignee: Ashford Technical Software, Inc.
    Inventors: Frank Marion Chapman, Jr., Ronald Lyle Brown
  • Patent number: 8761912
    Abstract: A system for monitoring the status of a plurality of tensioner assemblies and rig motion assemblies from a secondary location. The system not only monitors a status of a tensioner from a secondary location but simultaneously enables preventive maintenance to be ascertained remotely.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: June 24, 2014
    Assignee: Ashford Technical Software, Inc.
    Inventors: Frank Marion Chapman, Jr., Ronald Lyle Brown
  • Patent number: 8761911
    Abstract: A system to monitor a status from a secondary location of a plurality of equipment on a drilling site, while simultaneously enabling preventive maintenance is described herein. A user can view at least one cycle, at least one control state, and at least one pressure. The user can also view equipment information, equipment repair history, and other information necessary to ensure that a piece of equipment has minimal down time.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: June 24, 2014
    Assignee: Ashford Technical Software, Inc.
    Inventors: Frank Marion Chapman, Ronald Lyle Brown
  • Patent number: 8762079
    Abstract: (EN) The invention relates to a method for estimating the characteristic parameters of a cryogenic tank (1), in particular geometric parameters, including: a step comprising the measurement of the pressure differential between the upper and lower parts of the tank prior to filling DPmes—before; a step comprising the measurement of the pressure differential between the upper and lower parts of the tank after filling DPmes—after; a step comprising the determination of the mass of liquid delivered (mdelivered) during filling; and a step comprising the calculation of a first geometric parameter (R) of the tank, namely the radius (R) which is calculated from equation (I), wherein g is the Earth's gravitational acceleration and MAVO is a density coefficient that is a function of the density of the liquid and the gas in the tank and optionally in the pressure measuring pipes (11) when the pressure differential is measured by at least one remote pressure sensor connected to the upper and lower parts of the tank via r
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: June 24, 2014
    Assignee: L'air Liquide, Societe Anonyme pour l'etude et l'exploitation des Procedes Georges Claude
    Inventors: Fouad Ammouri, Florence Boutemy, Jonathan Macron
  • Patent number: 8762078
    Abstract: A cylinder intake air amount calculating apparatus for an internal combustion engine for calculating a cylinder intake air amount which is an amount of fresh air sucked into a cylinder of the engine, is provided. An intake air flow rate, which is a flow rate of fresh air passing through an intake air passage of the engine, is obtained, and an intake pressure and an intake air temperature of the engine are detected. A theoretical cylinder intake air amount is calculated based on the intake pressure, the intake air temperature, and a volume of the cylinder. A volumetric efficiency of the engine is calculated by dividing a preceding calculated value of the cylinder intake air amount by the theoretical cylinder intake air amount. The cylinder intake air amount is calculated using the volumetric efficiency, the intake air flow rate, and the preceding calculated value of the cylinder intake air amount.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: June 24, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toshinori Tsukamoto, Naoki Oie, Todd Robert Luken
  • Patent number: 8762063
    Abstract: A processor accepts sensor data about a geological formation from a sensor. The sensor data is such that processing the sensor data using a processing technique to estimate a parameter of the geological formation without a constraint, whose value is not yet known, produces a plurality of non-unique estimates of the parameter. The processor accepts more than two time-displaced images of fluid sampled from the geological formation. The time displacements between the images are substantially defined by a mathematical series. The processor processes the images to determine the constraint. The processor processes the sensor data using the processing technique constrained by the constraint to estimate the parameter of the geological formation. The processor uses the estimated parameter to affect the drilling of a well through the geological formation.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: June 24, 2014
    Inventors: Wei Zhang, Christopher M. Jones, Michael T. Pelletier, Robert S. Atkinson, Stephen A. Zannoni
  • Patent number: 8751171
    Abstract: Motion is induced in a conduit such that the conduit vibrates in a major mode of vibration having a major amplitude and a minor mode of vibration having a minor amplitude. The major amplitude is larger than the minor amplitude, the major mode of vibration has a first frequency of vibration and the minor mode of vibration has a second frequency of vibration, and the minor mode of vibration interferes with the major mode of vibration to cause a beat signal having a frequency related to the first frequency of vibration and the second frequency of vibration. The frequency of the beat signal is determined, and the second frequency of vibration is determined based on the determined frequency of the beat signal.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: June 10, 2014
    Assignee: Invensys Systems, Inc.
    Inventors: Manus P. Henry, Michael S. Tombs, Mihaela D. Duta
  • Patent number: 8746158
    Abstract: An agricultural implement system is provided including a fluid conduit configured to provide product to a ground engaging tool. The ground engaging tool is configured to deposit the product into soil. The agricultural implement system also includes an air source fluidly coupled to the fluid conduit, and configured to provide an air flow through the fluid conduit in a downstream direction toward the ground engaging tool. The agricultural implement system further includes a product delivery system fluidly coupled to the fluid conduit, and configured to transfer the product into the air flow. In addition, the agricultural implement system includes a product flow measurement system configured to determine a mass flow rate of the product based on a pressure drop between an upstream portion of the fluid conduit and a downstream portion of the fluid conduit, a flow rate of the air flow, and a velocity of the air flow.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: June 10, 2014
    Assignee: CNH Industrial Canada, Ltd.
    Inventors: Pana Binsirawanich, Scott David Noble, Jim Henry
  • Patent number: 8744784
    Abstract: This invention provides a diagnostic mechanism of a differential pressure type mass flow controller comprising a diagnostic parameter calculating section that obtains a mass flow rate integrated value by means of an integrating calculation from the lowering pressure value of an inlet side sensor among the inlet side sensor and an outlet side sensor arranged in communication respectively at the inlet side and the outlet side of a differential pressure generating resistive element that generates a differential pressure between the inlet and the outlet by changing a flow rate control valve arranged on the channel where a fluid flows from a flow rate control state to a closed state, and further obtains a diagnostic volume value from the obtained mass flow rate integrated value, and a comparing section that compares the diagnostic volume value obtained at the diagnostic parameter calculating section with a specified volume value.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: June 3, 2014
    Assignee: Horiba STEC, Co., Ltd.
    Inventors: Tadahiro Yasuda, Kazuhiro Matsuura, Kentaro Nagai, Daniel Mudd
  • Publication number: 20140149055
    Abstract: A multi-planar velocimetry approach to characterize 3D incompressible flows based on 2D perpendicular (or otherwise complementary) velocity fields is described. Two-dimensional velocity fields acquired on the planes are reconstructed into a 3D velocity field through interpolation and the imposition of a fluid incompressibility constraint.
    Type: Application
    Filed: May 3, 2013
    Publication date: May 29, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: The Regents Of The University Of California
  • Patent number: 8738305
    Abstract: A method for detecting blockage of a measuring tube of a Coriolis flow measuring device, which has at least two measuring tubes. For this, the at least two measuring tubes are excited by at least one exciter to execute mechanical oscillations, mechanical oscillations of the measuring tubes are registered by at least one sensor and at least one measurement signal representing the mechanical oscillations is produced. At least one produced measurement signal is analyzed for the occurrence of a deviation of a resonance frequency of one measuring tube relative to a resonance frequency of the at least one other measuring tube. In case such a deviation occurs, blockage of a measuring tube is established.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: May 27, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm, Hao Zhu, Marcel Braun
  • Patent number: 8738307
    Abstract: A method is provided for determining the viscosity of thin films which exhibit a viscous behavior at a measurement temperature, notably for polymer resins above their glass transition temperature. A thin layer of material is formed on a substrate, a known geometrical pattern is impressed in the thin layer by molding or etching, the thin layer being in the solid state at the end of the impression step. The initial topography of the impressed pattern is measured over the entire length of the pattern along a determined direction, the film is baked at the measurement temperature Tm for a determined creep time tflu, and the resulting topography of the crept pattern is measured. Mathematical processing of the topography measurements is carried out in order to deduce a value of viscosity at the measurement temperature therefrom. The impressed pattern at the start is aperiodic.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: May 27, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Stefan Landis, Etienne Rognin
  • Patent number: 8738306
    Abstract: Methods of and devices for testing medical pumps via tracking induced single or multiple bubble trajectories within a fluid flow conduit (60) and methods of synchronized (600) corrections (604) of flow data estimates.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: May 27, 2014
    Assignee: Pronk Technologies Inc.
    Inventors: Karl A. Ruiter, Mirik Hovsepian
  • Patent number: 8731848
    Abstract: Various embodiments include apparatus and methods to monitor flow of single and multiple phase fluids. Sensors of a tool can be dispersed along the tool to collect measurements to be processed using an autocorrelation operation on the collected measurements to provide information relative to the phases of the fluid. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 20, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher M. Jones, Anthony H. van Zuilekom, Michael T. Pelletier, Mark A. Proett, Robert Atkinson
  • Patent number: 8731849
    Abstract: A hydrostatic pressure testing system for hydrostatic pressure testing of pipe or other vessels. A control center may include a computer program that monitors, records, and controls the system during testing. A test fluid assembly may include a fill conduit capable of providing a test fluid to an inlet section of a vessel to be tested in response to a command from the computer program. A pressure-release safety assembly may have a vent conduit in fluid communication between an outlet section of the vessel and a safety valve. The safety valve may be in fluid communication with a bleed tank for storing an outlet flow of test fluid from the vessel. The safety valve is actuated to relieve fluid pressure in the vessel in response to a selective condition. A method of using the system to conduct hydrostatic pressure testing is also described.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: May 20, 2014
    Assignee: Greene's Energy Group, LLC
    Inventors: Lubbert Westra, Michael W. Breaux, Russell Richard, Jr., Christopher D. Wilson
  • Publication number: 20140135732
    Abstract: The present invention is concerned with monitoring systems (1) for medical liquid dispensing devices. The systems are intended for use in any medical setting wherein a medical liquid container (4), such as an infusion bag with fluid, is to be infused into a patient and are aimed at reducing the need for visual checking by nurses or other medical assistants. This is achieved by a combination of an identification unit (2), which identifies a medical liquid container and optionally the patient to be treated, a weight monitoring unit, which measures the weight of the medical liquid container when liquid is dispensed therefrom, and a processing unit (3), which processes and/or stores data that are acquired from the identification unit and the weight monitoring unit.
    Type: Application
    Filed: July 13, 2012
    Publication date: May 15, 2014
    Inventors: Leon Spronken, Michael Daenen, Ronald Thoelen, Vincent Claes
  • Publication number: 20140136125
    Abstract: The flow meter system includes flow meters taking measurements based on a set of parameters of a multiphase fluid, each measurement corresponding to respective groups of interrelated unknown variables. These unknown variables are selected from the set of parameters, and the groups of unknown variables are different from each other. A processor uses an iterative process to solve equations of a mathematical model, determined by the equations corresponding to the measurements and groups of unknown variables, so as to estimate an amount of a target unknown variable selected from the set of parameters. The method for estimating a target unknown variable of a multiphase fluid includes installing flow meters in the multiphase fluid; taking measurements based on a set of parameters; determining a mathematical model with equations corresponding to the measurements and groups of interrelated unknown variables; and solving equations with an iterative process.
    Type: Application
    Filed: April 16, 2013
    Publication date: May 15, 2014
    Applicant: Agar Corporation Ltd.
    Inventors: Joram AGAR, Vikram SIDDAVARAM
  • Patent number: 8725432
    Abstract: A signal processing method for a Coriolis flowmeter including: performing frequency conversion to combine an oscillation frequency to each of two flow rate signals obtained by A/D conversion on input signals of the phase difference and/or the vibration frequency proportional to the Coriolis force acting on the at least one flow tube; measuring a frequency of a composite waveform associated with at least one of the vibration detection sensors; transmitting a control signal based on the measured frequency; controlling so that a sum frequency component or a difference frequency component of a composite component of a composite frequency signal is constant; and measuring phases from a sum signal or a difference signal of each of controlled converted composite frequencies, to thereby obtain a phase difference signal component.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: May 13, 2014
    Assignee: Oval Corporation
    Inventors: Hirokazu Kitami, Hideki Shimada
  • Patent number: 8725433
    Abstract: A signal processing method, a signal processing apparatus, and a Coriolis flowmeter are capable of always performing measurement with constant precision and performing phase measurement with high filtering performance and a small amount of computation even when a temperature of a fluid to be measured changes, air bubbles are mixed into the fluid to be measured, or the fluid to be measured rapidly changes from a gas to a liquid. The Coriolis flowmeter detects at least one of a phase difference and a vibration frequency proportional to a Coriolis force acting on at least one flow tube or a pair of flow tubes.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: May 13, 2014
    Assignee: Oval Corporation
    Inventors: Hirokazu Kitami, Hideki Shimada
  • Patent number: 8712705
    Abstract: A system to configure a field device of the type used to calculate a flow of a process fluid. The system includes a flow repository comprising a list of process fluids with which the field device can be used, fluid equation data which provides information related to fluid equations for calculating fluid parameters of the process fluid, a list of primary elements, and primary element equation data which provides information related to primary element equations and fluid equations for calculating flow of the process fluid. The flow application is adapted to retrieve data from the flow repository and to generate information which is used by field device to calculate the flow of the process fluid.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 29, 2014
    Assignee: Rosemount Inc.
    Inventors: Marshall Leon Meier, Dale Scott Davis, David Eugene Wiklund, Andrey Leonidovich Rumyantsev, Kirill Victorovich Petrov
  • Publication number: 20140114588
    Abstract: A computer is caused to execute processes of: calculating a flow rate and a water level of a continuum at each point on a two-dimensional plane in a first region, on the basis of input data; expressing the continuum in a second region contained in the first region as an assembly of particles, and subjecting the state of the each particle to a three-dimensional analysis based on the calculated flow rate and water level.
    Type: Application
    Filed: August 15, 2013
    Publication date: April 24, 2014
    Applicant: FUJITSU LIMITED
    Inventor: Tamon SUWA
  • Publication number: 20140114589
    Abstract: A control and measurement system for a coriolis flowmeter having a flowtube, a driver adapted to vibrate the flowtube, and a pair of sensors adapted to generate signals indicative of movement of the flowtube when it is being vibrated by the driver, wherein the sensors are positioned relative to one another so the signals from the sensors are indicative of a mass flow rate of fluid through the flowtube. A digital drive signal generator is adapted to generate a variable digital drive signal for controlling operation of the driver. The digital drive signal generator can be adapted to cause the driver to resist motion of the flowtube during a first time period and amplify motion of the flowtube during a second time period. The digital drive signal generator can also be adapted to initiate motion of the flowtube by sending one or more square wave signals to the driver.
    Type: Application
    Filed: January 2, 2014
    Publication date: April 24, 2014
    Applicant: Invensys Systems, Inc.
    Inventors: Manus P. Henry, David W. Clarke, James H. Vignos
  • Patent number: 8706430
    Abstract: Motion is induced in a conduit that contains a fluid. The motion is induced such that the conduit oscillates in a first mode of vibration and a second mode of vibration. The first mode of vibration has a corresponding first frequency of vibration and the second mode of vibration has a corresponding second frequency of vibration. At least one of the first frequency of vibration or the second frequency of vibration is determined. A phase difference between the motion of the conduit at a first point of the conduit and the motion of the conduit at a second point of the conduit is determined. A quantity based on the phase difference and the determined frequency is determined. The quantity includes a ratio between the first frequency during a zero-flow condition and the second frequency during the zero-flow condition. A property of the fluid is determined based on the quantity.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: April 22, 2014
    Assignee: Invensys Systems, Inc.
    Inventor: Michael S. Tombs
  • Patent number: 8700343
    Abstract: A signal processing method for a Coriolis flowmeter including: performing frequency conversion to combine an oscillation frequency to each of two flow rate signals obtained by A/D conversion on input signals of the phase difference and/or the vibration frequency proportional to the Coriolis force acting on the at least one flow tube; measuring a frequency of a composite waveform associated with at least one of the vibration detection sensors; transmitting a control signal based on the measured frequency; controlling so that a sum frequency component or a difference frequency component of a composite component of a composite frequency signal is constant; and measuring phases from a sum signal or a difference signal of each of controlled converted composite frequencies, to thereby obtain a phase difference signal component.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: April 15, 2014
    Assignee: Oval Corporation
    Inventors: Hirokazu Kitami, Hideki Shimada
  • Patent number: 8694168
    Abstract: A digital shower system contains a showering equipment including at least one first watering device and at least one second watering device; an input interface including a power key, a knob, an ok key, a return key, and a plurality of outlet switches; a valve unit including a motor, a mixing valve, and a number of outlet valves; a central process unit including a setting module, a time module, a memory module, a calculator module, and a water monitor module; and an indicator so that quantity of water use is known by the user to save water consumption.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: April 8, 2014
    Assignee: Globe Union Industrial Corp.
    Inventor: Jingyang Lin
  • Patent number: 8677748
    Abstract: An apparatus includes an operating conditions module that interprets a number of compressor operating parameters; a compressor flow module that determines a compressor inlet flow in response to the number of compressor operating parameters; and a fresh air flow module that provides a fresh air flow value in response to the compressor inlet flow. The operating conditions module further interprets a current mass air flow value, and the apparatus further includes a mass air flow sensor trimming module that adjusts a mass air flow sensor drift value in response to the current mass air flow value and the fresh air flow value. The apparatus includes a diagnostics module that determines a mass air flow sensor is failed in response to the current mass air flow value and the fresh air flow value.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: March 25, 2014
    Assignee: Cummins Inc.
    Inventors: Indranil Brahma, Ashwin Vyas, Vivek Anand Sujan, Phanindra Garimella, John N. Chi, Abdoul Karim Abdoul Azizou
  • Patent number: 8682601
    Abstract: The safety valve vibration analyzer includes: a set condition input unit in which set conditions of a physical model including a safety valve and an upstream pipe connected to the safety valve are inputted; a safety valve governing equation holder that holds a safety valve governing equations; a pipe governing equation holder that holds a pipe governing equation; a processing unit that derives a time variation of a valve lift by using the set conditions inputted, the safety valve governing equations, and the pipe governing equations; and a valve lifting force function holder that holds a valve lifting force function. The processing unit derives the time variation of the valve lift by applying the valve lifting force function to the equation of motion of the valve disc.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: March 25, 2014
    Assignee: Chiyoda Corporation
    Inventor: Izuchi Hisao
  • Patent number: 8676526
    Abstract: Meter electronics (20) for processing sensor signals in a flow meter and for computing mass flow rate, density or volume flow rate includes an interface (201) for receiving a first sensor signal and a second sensor signal and a processing system (203) in communication with the interface (201) and configured to generate a ninety degree phase shift from the first sensor signal with a Hilbert transform and compute a phase difference from the ninety degree phase shift, the first sensor signal and the second sensor signal. A frequency is computed from the first sensor signal and the ninety degree phase shift. A second ninety degree phase shift can be generated from the second sensor signal.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: March 18, 2014
    Assignee: Micro Motion, Inc.
    Inventors: Mark James Bell, Richard L. Maginnis, Craig B. McAnally
  • Patent number: 8676518
    Abstract: A signal processing method for a Coriolis flowmeter, the signal processing method including: measuring a frequency of a first digital signal obtained by converting a first input signal from one of a pair of vibration detection sensors into the first digital signal; transmitting a modulatable frequency signal based on the measured frequency of the first digital signal; performing frequency conversion to add or subtract the frequency of the modulatable frequency signal to or from the frequency of the first digital signal; performing frequency conversion to add or subtract the frequency of the modulatable frequency signal to or from the frequency of a second digital signal obtained by converting a second input signal from the other one of the pair of vibration detection sensors into the second digital signal; and measuring a phase difference between (i) the frequency converted first digital signal and (ii) the frequency converted second digital signal.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: March 18, 2014
    Assignee: Oval Corporation
    Inventors: Hirokazu Kitami, Hideki Shimada
  • Patent number: 8676517
    Abstract: A signal processing method for a Coriolis flowmeter including: performing frequency conversion of a first digital signal, the frequency conversion performed on the first digital signal modulating the frequency of the first digital signal so that the frequency of the first digital signal after the frequency conversion is 1/Nth of the frequency of the first digital signal before the frequency conversion, where N is an integer; performing frequency conversion of a second digital signal, the frequency conversion performed on the second digital signal modulating the frequency of the second digital signal so that the frequency of the second digital signal after the frequency conversion is 1/Nth of the frequency of the second digital signal before the frequency conversion; and measuring a phase difference between (i) the frequency converted first digital signal and (ii) the frequency converted second digital signal.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: March 18, 2014
    Assignee: Oval Corporation
    Inventors: Hirokazu Kitami, Hideki Shimada
  • Publication number: 20140067287
    Abstract: An estimation device for a cylinder intake air amount in an internal combustion engine can make calculations in real time with a high accuracy in a small number of adaptation constants. The device includes an AFS, a volumetric efficiency corresponding value calculation unit that calculates a volumetric efficiency correction factor which is an index indicating an amount of air entering a cylinder, a physical model that models a response delay of an intake system, and a unit that calculates a cylinder intake air amount actually sucked into the cylinder by using the amount of intake air, the volumetric efficiency correction factor and the physical model. The volumetric efficiency correction factor required for calculating the amount of air sucked into the cylinder by a response delay model of the intake system is calculated by using the intake air amount, an intake manifold density, and an intake manifold density change amount.
    Type: Application
    Filed: March 26, 2013
    Publication date: March 6, 2014
    Inventor: Hideki HAGARI
  • Patent number: 8666683
    Abstract: In one aspect, the invention relates to a system for monitoring a fluid dispensing system having a storage tank and a piping system having a maximum output flow rate threshold. The system includes a dispenser configured to dispense fluid from the fluid dispensing system during a dispensing time interval, a metering device in fluid communication with piping system, the metering device configured to measure a plurality of sample flow rates over time in response to fluid passing through the metering device, a gauge for measuring a volume of fluid dispensed from the storage tank during the dispensing time interval and a processor for executing a monitoring application which generates an alert within a substantially real-time period in response to an event of interest, the monitoring application comparing the maximum output flow rate threshold to the plurality of sample flow rates over time to generate the alert when one of the sample flow rates exceeds the maximum output flow rate threshold.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: March 4, 2014
    Assignee: Warren Rogers Associates, Inc.
    Inventors: Warren F. Rogers, John R. Collins, Jillianne B. Jones, William P. Jones, Michael A. Lenox
  • Patent number: 8650948
    Abstract: The present invention relates to an automatic seepage meter for measuring groundwater-surface water exchange in a mixed zone of stream. The present invention includes: the chamber installed in streambed sediment; the device for measuring amount of groundwater recharge through a change in water level accompanied by discharging water in the water in case of losing stream; and the device for measuring amount of groundwater discharge through a change in water level according to an increased water from the chamber to the water bath for measuring discharge in case of gaining stream.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: February 18, 2014
    Assignee: Korea Institute of Geoscience and Mineral Resources
    Inventors: Bong Joo Lee, Kyung Seok Ko