Consolidated Metal Powder Compositions Patents (Class 75/228)
  • Publication number: 20140234152
    Abstract: Provided is a sintered bearing that is capable of reducing cost through reduction in usage amount of copper, excellent in initial running-in characteristics and quietness, and is high in durability. Raw material powders including iron powder, flat copper powder, low-melting point metal powder, and graphite are loaded into a mold, and a green compact is formed under a state in which the flat copper powder is caused to adhere onto a molding surface. Subsequently, sintering is carried out without causing iron in the green compact to react with carbon so that an iron structure is formed of a ferrite phase. In this manner, a sintered bearing (1) including a base part (S2) including copper at a uniform content, and a surface layer (S1) covering a surface of the base part (S2) and including copper at a larger content than the base part (S2) can be obtained.
    Type: Application
    Filed: September 18, 2012
    Publication date: August 21, 2014
    Applicant: NTN CORPORATION
    Inventors: Yoshinori Ito, Sunao Shimizu, Eiichirou Shimazu, Takahiro Okuno
  • Publication number: 20140218144
    Abstract: The present invention relates to an elliptical unit block for preparing a core using soft magnetic metal powder and a core with excellent high current DC bias characteristics using the same, and more specifically, to an elliptical unit block for preparing a core using soft magnetic metal powder used in an inductor for an automotive electronic sub-assembly using a high current buck or boost inductor or a three phase line reactor or fuel cell system for power factor correction (PFC), and a powered magnetic core prepared using the same.
    Type: Application
    Filed: September 5, 2012
    Publication date: August 7, 2014
    Applicant: CHANG SUNG CO.
    Inventors: Jae-Yeol Park, Dal-Joong Kim, Bong-Gi Yoo, Gu-Hyun Kim, Kwang-Yong Yoo
  • Publication number: 20140212685
    Abstract: Disclosed herein is an engine 52, in particular a combustion engine or a jet-power unit, or an engine part 54, 56 made from metal, and in particular Al or Mg, or an alloy comprising one or more thereof.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: Bayer International SA
    Inventors: Henning Zoz, Michael Dvorak, Horst Adams
  • Patent number: 8784729
    Abstract: The present invention is directed to a process for producing high density, refractory metal products via a press/sintering process. The invention is also directed to a process for producing a sputtering target and to the sputtering target so produced.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: July 22, 2014
    Assignee: H.C. Starck Inc.
    Inventors: Prabhat Kumar, Charles Wood, Gary Rozak, Steven A. Miller, Glen Zeman, Rong-Chein Richard Wu
  • Publication number: 20140154126
    Abstract: A multiphase composite system is made by binding hard particles, such as TiC particles, of various sizes with a mixture of titanium powder and aluminum, nickel, and titanium in a master alloy or as elemental materials to produce a composite system that has advantageous energy absorbing characteristics. The multiple phases of this composite system include an aggregate phase of hard particles bound with a matrix phase. The matrix phase has at least two phases with varying amounts of aluminum, nickel, and titanium. The matrix phase forms a bond with the hard particles and has varying degrees of hard and ductile phases. The composite system may be used alone or bonded to other materials such as bodies of titanium or ceramic in the manufacture of ballistic armor tiles.
    Type: Application
    Filed: November 18, 2013
    Publication date: June 5, 2014
    Inventor: Robert G. Lee
  • Publication number: 20140147326
    Abstract: Seizure resistance and wear resistance of Cu—Bi—In copper-alloy sliding material are enhanced by forming a soft phase of as pure as possible Bi. Mixed powder of Cu—In cuprous alloy powder and Cu—Bi containing Cu-based alloy powder is used. A sintering condition is set such that Bi moves outside particles of said Cu—Bi containing Cu-based powder and forms a Bi grain-boundary phase free of In, and In diffuses from said Cu—In containing Cu-based powder to said Cu—Bi containing Cu-based powder.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: TAIHO KOGYO CO., LTD.
    Inventors: Hitoshi WADA, Takashi TOMIKAWA, Daisuke YOSHITOME, Hiromi YOKOTA
  • Patent number: 8733313
    Abstract: It is an object of the present invention to provide a valve seat product in which the amount of hard particles added to improve the wear resistance of a valve seat of an internal combustion engine is increased, and is excellent in the mechanical strength and machinability.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: May 27, 2014
    Assignee: Nippon Piston Ring Co., Ltd.
    Inventors: Kenichi Sato, Hiroshi Oshige, Takeshi Haniu
  • Publication number: 20140130698
    Abstract: The present invention relates to a composite material for the production of ecological ammunition characterized in that it comprises a) a metal matrix formed by a zinc and bismuth alloy, zinc and aluminum alloy, tin and bismuth alloy or zinc and tin alloy and a metal selected from aluminum, bismuth and the combination thereof and b) reinforcing metal particles distributed therein selected from wolframium, ferro-wolframium, ferro-wolframium carbides, wolframium carbides, wolframium oxides and ferro-wolframium oxides, subjected to oxidation before being added to the metal matrix.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 15, 2014
    Applicant: REAL FEDERACION ESPANOLA DE CAZA
    Inventors: Javier Francisco Perez Trujillo, Pilar Maria Hierro De Bengoa, Isabel Maria Lasanta Carrasco, Marta Tejero Garcia, Aito Rey Bonet, Gabriel Angel Fernandez Diaz-Carralero
  • Publication number: 20140126680
    Abstract: An apparatus for the generation of thermal energy comprises a reactor vessel containing a volume of pressurized hydrogen; a hydrogen-storing nickel alloy structure in the reactor vessel and configured to have an electric potential applied across it and to be heated to at least about 100 C; and a heat exchange conduit configured to carry a heat exchange medium past the nickel alloy structure so as to allow thermal energy generated in the nickel alloy structure to be transferred to the heat exchange medium. The hydrogen-storing nickel alloy structure comprises a nickel alloy skeletal catalyst mixed with an oxide. The applied electric potential, and the increase in the gas pressure and temperature of the hydrogen from the applied heat, create a reaction between hydrogen nuclei and nickel nuclei in the nickel alloy structure whereby thermal energy is generated by the emission of phonons from the nickel alloy structure.
    Type: Application
    Filed: May 30, 2012
    Publication date: May 8, 2014
    Applicant: TARGET TECHNOLOGY INTERNATIONAL , LTD.
    Inventor: Han H. Nee
  • Publication number: 20140127070
    Abstract: A material includes at least two different alloy phases. At least two alloy phases are each formed by at least one thermodynamically stable semi-Heusler alloy. The semi-Heusler alloys of the at least two alloy phases are different from one another. At least two of the semi-Heusler alloys have at least partly sintered particles that have an average particle size D50 in the range of less than or equal to 100 nm. Such a material has particularly good thermoelectric properties. A process is implemented to produce the material.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 8, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Michael Schwall, Benjamin Balke, Martin Koehne
  • Publication number: 20140120359
    Abstract: [OBJECT] A composition of a metal nanoparticle is provided in which reproducibility in a method of producing a metal film with excellent low-temperature sinterable properties is improved. An article using the metal nanoparticle composition is also provided. [SOLVING MEANS] A composition of a metal nanoparticle that has a secondary aggregation diameter (median diameter) of 2.0 ?m or less as determined by disk centrifugal-type particle size measurement is used.
    Type: Application
    Filed: March 17, 2011
    Publication date: May 1, 2014
    Applicant: DOWA Electronics Materials Co., Ltd.
    Inventors: Gregory A JABLONSKI, Michael A MASTROPIETRO, Kimitaka SATO, Satoru KURITA, Hidefumi FUJITA
  • Publication number: 20140106144
    Abstract: The method for forming a 3-D metal object by 3-D printing or injection molding comprising providing as a feed material metal particles formed by establishing multiple metal components in a primary billet of a ductile material, working the primary billet through a series of reduction steps to form the components into elongated elements, leaching the ductile material from the elongated elements and reducing the length to short uniform lengths.
    Type: Application
    Filed: August 8, 2013
    Publication date: April 17, 2014
    Applicant: COMPOSITE MATERIALS TECHNOLOGY, INC.
    Inventor: James Wong
  • Patent number: 8685592
    Abstract: An inorganic proton conductor for an electrochemical device and an electrochemical device using the inorganic proton conductor, the inorganic proton conductor including a tetravalent metallic element and an alkali metal.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: April 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-young Kim, Pil-won Heo, Sang-kyun Kang
  • Publication number: 20140086695
    Abstract: A process for the production of cutting tool inserts is described. A bottom punch is positioned into a powder compaction mold. A metallurgical powder is introduced into a mold cavity. A top punch is positioned into the powder compaction mold in an orientation opposed to the bottom punch. The metallurgical powder is compressed between the bottom punch and the top punch to form a powder compact. Also disclosed are cutting tool inserts produced in accordance with the process and powder pressing apparatuses for the production of cutting tool inserts.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 27, 2014
    Applicant: Kennametal Inc.
    Inventors: Steven A. Jameson, Michael R. Cripps, Christopher J. Smith, Terry Hammond, Robert K. Carlson, John Dummermuth
  • Patent number: 8673051
    Abstract: The present invention is directed to a method of manufacture of metal or alloy powders that uses liquid phase reduction of a metal halide, or a mixture of metal halides, to produce a metal particle coated in salts produced as a reaction byproduct. The reaction conditions can be chosen to select a range of metal particle sizes, and the salt coating prevents oxidation (or reaction with other atmospheric gases) and permits a range of applications hitherto difficult to achieve using metal powders.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: March 18, 2014
    Assignee: Boston Electronic Materials LLC
    Inventor: Andrew Matheson
  • Publication number: 20140072823
    Abstract: The invention relates to a generative production method for producing a component by selectively melting and/or sintering a powder several times consecutively by introducing an amount of heat by means of beam energy, such that the powder particles melt and/or sinter in layers, wherein the powder particles (1) are made of a first material (2) and the powder particles are surrounded by a second material (3) partially or over the entire surface thereof, wherein the second material has a lower melting point than the first material and/or lowers the melting point of the first material when mixed with the first material. The invention further relates to a corresponding powder and to a prototype produced from said powder.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 13, 2014
    Inventors: Manuel Hertter, Erwin Bayer, Markus Waltemathe, Klaus Broichhausen, Wilhelm Meir, Bertram Kopperger, Josef Waermann, Andreas Jakimov
  • Publication number: 20140065718
    Abstract: Provided is a hydrogen peroxide sensitive metal nanoparticle including: a metal nanoparticle including a biocompatible metal and a hydrogen peroxide reactive ion which is bonded to a surface of the metal nanoparticle and is oxidized by hydrogen peroxide.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 6, 2014
    Applicants: POSTECH ACADEMY-INDUSTRY FOUNDATION, Samsung Electronics Co., Ltd.
    Inventors: Kyu-hyun IM, No-kyoung PARK, Jae-hyun HUR, Sung-jee KIM, Ju-taek NAM, Seong-ho PARK, Sang-hwa JEONG
  • Publication number: 20140037490
    Abstract: A powder metallurgy method includes (a) forming a metallic powder into a shape, (b) thermo-mechanically forming the shape into an article having a polycrystalline microstructure, (c) heat treating the article to cause coarsening of the polycrystalline microstructure, and (d) controlling the grain size homogeneity and distribution in the article formed during coarsening in step (c) by selecting the metallic powder in step (a) to include a metallic powder particle size distribution that is truncated on fine and coarse particle size sides, the selected metallic powder particle size distribution reducing abnormal grain growth such that the polycrystalline microstructure coarsens to a predefined target grain size range.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Inventors: Agnieszka M. Wusatowska-Sarnek, Ronald S. Mace, Harpreet Wasan, Ruston M. Moore, John M. Wezalis, Larry G. Housefield
  • Publication number: 20140037986
    Abstract: A brazing filler metal powder is provided for brazing thin stainless steel parts together with reduced erosion. The brazing filler metal powder is formed by processing first metal particles, which typically comprise a nickel-based alloy including chromium, phosphorous, silicon, to a particle size of not greater than 0.0098 inch; providing second metal particles, typically consisting of copper, molybdenum, or cobalt; combining the first metal particles with the second metal particles by mixing and/or, milling, or sintering; and processing the combined composition to a particle size of not greater than 0.0098 inch. The first and second metal particles are less than fully alloyed together and are distinct from one another. A preferred composition of the brazing filler metal powder is 26.1 wt. % chromium, 5.4 wt. % phosphorous, 5.9 wt. % silicon, 10.0 wt. % cobalt, and a balance essentially of nickel.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 6, 2014
    Inventors: Michael Weinstein, Eric Krosche, Lydia W. Lee, Christopher Jacob Skinner
  • Publication number: 20140037489
    Abstract: A method of producing a workpiece is disclosed. The method includes: providing a first powder, a hardness of the first powder being less than 250 HV, and a mean particle size of the first powder being less than 20 ?m; mixing the first powder and a second powder to form a mixed powder; the mixed powder includes carbon, chromium, iron, and elements selected from the group consisting of molybdenum, nickel, copper, niobium, vanadium, tungsten, silicon, cobalt, and manganese; adding a binder and water to the mixed powder; applying a spray drying process to granulate the mixed powder to form a spray-dried powder; applying a dry pressing process to the spray-dried powder to form a green part; applying a debinding process to the green part to form a debound body; and sintering the debound body into a workpiece having a hardness of higher than 250 HV.
    Type: Application
    Filed: October 26, 2012
    Publication date: February 6, 2014
    Applicant: Taiwan Powder Technologies Co., Ltd.
    Inventor: Kuen-Shyang Hwang
  • Publication number: 20140020881
    Abstract: A composite article (1; 10; 40) comprises a plurality of inclusions (5) of a magnetocalorically active material embedded in a matrix (4) of a magnetocalorically passive material. The inclusions (5) and the matrix (4) have a microstructure characteristic of a compacted powder.
    Type: Application
    Filed: September 16, 2013
    Publication date: January 23, 2014
    Applicant: Vacuumschmeize GmbH & Co. KG
    Inventors: George Werner REPPEL, Matthias KATTER
  • Publication number: 20140017415
    Abstract: An electrospark deposition electrode and an associated method for depositing coatings using the electrode are provided. The electrode includes a powder of a first metal and a powder of a second metal. The second metal is a braze alloy including nickel, the second metal having a lower melting point than the first metal. The powder of the first metal and the powder of the second metal are sintered together to form the electrode so that the powders are comingled but not combined within the electrode. The method includes depositing a layer of the first metal onto the substrate using an electrospark deposition process.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 16, 2014
    Applicant: General Electric Company
    Inventors: Dechao Lin, David Vincent Bucci, Srikanth Chandrudu Kottilingam, Yan Cui, Brian Iee Tollison, David Edward Schick
  • Publication number: 20140010701
    Abstract: Alloys based on titanium aluminides, such as ? (TiAl) which may be made through the use of casting or powder metallurgical processes and heat treatments. The alloys contain titanium, 38 to 46 atom % aluminum, and 5 to 10 atom % niobium, and they contain composite lamella structures with B19 phase and ? phase there in a volume ratio of the B19 phase to ? phase 0.05:1 and 20:1.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 9, 2014
    Applicant: GKSS-Forschungszentrum Geesthacht GmbH
    Inventors: Fritz Appel, Jonathan Paul, Michael Oehring
  • Publication number: 20130330557
    Abstract: A method of forming micrometric or millimetric sized granules by the agglomeration of nanometric sized particles, comprising the addition of a set of nanometric sized particles into a container having an inside wall surface with a circular or approximately circular section and setting the set of particles in motion along said inside wall surface by rotating the container about a rotation axis passing through said container. The setting in motion of the particles is done in a dry state and the container is rotated continuously at constant speed for several consecutive hours.
    Type: Application
    Filed: December 9, 2011
    Publication date: December 12, 2013
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVE
    Inventor: Hicham Maskrot
  • Publication number: 20130318989
    Abstract: An apparatus for manufacturing an article from powder material including a first table, a second table rotatably mounted on the first table about a first axis and a third table rotatably mounted on the second table about a second axis. A hollow canister is supported by the third table. A vibrator is arranged to vibrate the canister. A first device is arranged to rotate the second table about the first axis and a second device is arranged to rotate the third table about the second axis. A hopper is arranged to supply powder material into the canister and a valve controls the flow of powder material from the hopper into the canister. A processor is arranged to control the valve, the vibrator, the first device and the second device to control the filling and packing density of the canister.
    Type: Application
    Filed: May 16, 2013
    Publication date: December 5, 2013
    Inventors: Christopher HOOD, Daniel CLARK
  • Publication number: 20130323107
    Abstract: A method and composition of a sintered superhard compact is provided. The sintered superhard compact body may comprise superhard particles and a binder phase. The binder phase may bond the superhard particles together. The binder phase comprises tungsten and cobalt. The ratio of tungsten to cobalt is between 1 and 2 and sum of W and Co in the sintered superhard compact is in a range of from about 2 to about 20 percent by weight.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Inventors: Gerold Weinl, Torbjorn Selinder, Rui Shao
  • Publication number: 20130306197
    Abstract: Described herein is a method of combining discrete pieces of BMG in to a BMG feedstock that has at least one dimension greater than a critical dimension of the BMG, by methods such as thermoplastic forming, pressing, extruding, folding or forging. Other embodiments relate to a bulk metallic glass (BMG) component or feedstock having discrete pieces of a BMG, wherein the BMG component or feedstock has at least one dimension greater than a critical dimension of the BMG.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicants: Crucible Intellectual Property LLC, Apple Inc.
    Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Quoc Tran Pham, Theodore Andrew Waniuk
  • Publication number: 20130298730
    Abstract: A composite soft magnetic material having low magnetostriction and high magnetic flux density contains: pure iron-based composite soft magnetic powder particles that are subjected to an insulating treatment by a Mg-containing insulating film or a phosphate film; and Fe—Si alloy powder particles including 11%-16% by mass of Si. A ratio of an amount of the Fe—Si alloy powder particles to a total amount is in a range of 10%-60% by mass. A method for producing the composite soft magnetic material comprises the steps of: mixing a pure iron-based composite soft magnetic powder, and the Fe—Si alloy powder in such a manner that a ratio of the Fe—Si alloy powder to a total amount is in a range of 10%-60%; subjecting a resultant mixture to compression molding; and subjecting a resultant molded body to a baking treatment in a non-oxidizing atmosphere.
    Type: Application
    Filed: February 22, 2012
    Publication date: November 14, 2013
    Applicants: DIAMET CORPORATION, MITSUBISHI MATERIALS CORPORATION
    Inventors: Hiroaki Ikeda, Hiroshi Tanaka, Kazunori Igarashi
  • Publication number: 20130266474
    Abstract: A method is provided for producing magnetic green compacts. Material powder including a rare earth alloy and containing not less than 15 mass % of fine particles with particle diameter of not more than 2 ?m is filled into a compacting mold, then compacted and compressed, and subjected to magnetic fields to give a green compact. A powder compact having a packing density 1.05 to 1.2 times the bulk density is subjected to a weak magnetic field of 1 to 2 T to give a compact. The magnetic field strength is increased to not less than 3 T at an excitation rate of 0.01 to 0.15 T/sec, and the strong magnetic field of not less than 3 T is applied to the compact by a high-temperature superconducting coil. The magnetic field is applied by the high-temperature superconducting coil in a direction opposite to a direction applied by a normal conducting coil.
    Type: Application
    Filed: August 9, 2012
    Publication date: October 10, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Toru Maeda, Takeshi Kato
  • Publication number: 20130251447
    Abstract: The present invention relates to a starting material for producing a sintered connection. In order to avoid the formation of cracks in the joining partners in the case of fluctuating thermal loading, the starting material comprises second particles 20 in addition to metallic first particles 10, wherein the second particles 20 at least proportionately contain a particle core material which has a coefficient of thermal linear expansion ? at 20° C. which is less than the coefficient of thermal linear expansion ? at 20° C. of the metal or of the metals of the first particles in metallic form, and wherein the D50 value of the second particles 20 is greater than or equal to half the D50 value of the first particles 10 and less than or equal to two times the D50 value of the first particles 10. In addition, the present invention relates to a corresponding sintered connection 100?, to an electronic circuit 70 and also to a process for forming a thermally and/or electrically conductive sintered connection.
    Type: Application
    Filed: March 29, 2011
    Publication date: September 26, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Thomas Kalich, Daniel Wolde-Giorgis, Andrea Feiock, Robert Kolb
  • Publication number: 20130243638
    Abstract: A magnetic material is provided, the magnetic material including a powder composite material sintered from at least one magnetizable alloy powder of a high energy density, and fibers admixed with the powder composite. The fibers may be aligned in one direction to improve at least one of high-melting, high-modulus and high-strength material properties.
    Type: Application
    Filed: May 9, 2013
    Publication date: September 19, 2013
    Applicant: KSB Aktiengesellschaft
    Inventor: Dirk Ingmar Uhlenhaut
  • Patent number: 8535604
    Abstract: A method of producing composites of micro-engineered, coated particulates embedded in a matrix of metal, ceramic powders, or combinations thereof, capable of being tailored to exhibit application-specific desired thermal, physical and mechanical properties to form substitute materials for nickel, titanium, rhenium, magnesium, aluminum, graphite epoxy, and beryllium. The particulates are solid and/or hollow and may be coated with one or more layers of deposited materials before being combined within a substrate of powder metal, ceramic or some combination thereof which also may be coated. The combined micro-engineered nano design powder is consolidated using novel solid-state processes that prevent melting of the matrix and which involve the application of varying pressures to control the formation of the microstructure and resultant mechanical properties.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: September 17, 2013
    Inventors: Dean M. Baker, Henry S. Meeks
  • Publication number: 20130209265
    Abstract: A composition of matter comprises, in combination, in weight percent: a content of nickel as a largest content; 3.10-3.75 aluminum; 0.02-0.09 boron; 0.02-0.09 carbon; 9.5-11.25 chromium; 20.0-22.0 cobalt; 2.8-4.2 molybdenum; 1.6-2.4 niobium; 4.2-6.1 tantalum; 2.6-3.5 titanium; 1.8-2.5 tungsten; and 0.04-0.09 zirconium.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 15, 2013
    Inventors: Paul L. Reynolds, Darryl Slade Stolz
  • Publication number: 20130192559
    Abstract: A method of forming a connecting rod, the method including the steps of: forming the connecting rod via a powder forging process; forming an integral wear resistant surface inside a bore of the connecting rod via an inductive heating process after completion of the powder forging process.
    Type: Application
    Filed: January 30, 2013
    Publication date: August 1, 2013
    Inventor: Russell A. Chernenkoff
  • Publication number: 20130195708
    Abstract: A metal-bonded graphite foam composite includes a ductile metal continuous phase and a dispersed phase that includes graphite foam particles.
    Type: Application
    Filed: June 21, 2012
    Publication date: August 1, 2013
    Applicant: UT-Battelle, LLC
    Inventors: James W. Klett, Paul A. Menchhofer, James A. Hunter
  • Publication number: 20130183188
    Abstract: A mixture of powders for preparing a sintered nickel-titanium-rare earth (Ni—Ti—RE) alloy includes Ni—Ti alloy powders comprising from about 55 wt. % Ni to about 61 wt. % Ni and from about 39 wt. % Ti to about 45 wt. % Ti, and RE alloy powders comprising a RE element.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 18, 2013
    Applicants: Medical Engineering and Development Institute, Inc, UNIVERSITY OF LIMERICK
    Inventors: University of Limerick, Medical Engineering and Development Institute, Inc.
  • Publication number: 20130177767
    Abstract: An apparatus for the layer-by-layer production of three-dimensional objects having a material application unit containing a doctor blade with an edge closest to the construction field having a non-continuous straight line. In one embodiment the blade may vibrate. A process for layer-by-layer production, wherein the construction field is completely coated with applied powder prior to irradiation is also provided. Three dimensional articles made according to the invention are also provided.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 11, 2013
    Inventors: Maik GREBE, Wolfgang DIEKMANN, Juergen KREUTZ
  • Publication number: 20130167687
    Abstract: There is provided a nickel alloy having an excellent creep strength as well as high-temperature oxidation resistance. The nickel alloy of the present invention comprises, by mass percent, Cr in a range of 11.5 to 11.9%, Co in a range of 25 to 29%, Mo in a range of 3.4 to 3.7%, W in a range of 1.9 to 2.1%, Ti in a range of 3.9 to 4.4%, Al in a range of 2.9 to 3.2%, C in a range of 0.02 to 0.03%, B in a range of 0.01 to 0.03%, Zr in a range of 0.04 to 0.06%, Ta in a range of 2.1 to 2.2%, Hf in a range of 0.3 to 0.4%, and Nb in a range of 0.5 to 0.8%, the balance being Ni and unavoidable impurities, and contains carbides and borides precipitating in crystal grains and at grain boundaries.
    Type: Application
    Filed: November 9, 2011
    Publication date: July 4, 2013
    Applicants: NATIONAL INSTITUTE FOR MATERIALS SCIENCE, HONDA MOTOR CO., LTD.
    Inventors: Yuefeng Gu, Tadaharu Yokokawa, Toshiharu Kobayashi, Toshio Osada, Junzo Fujioka, Hiroshi Harada, Daisuke Nagahama, Yusuke Kikuchi
  • Publication number: 20130160805
    Abstract: The invention provides a thermoelectric material, a method for fabricating the same, and a thermoelectric module employing the same. The thermoelectric material is composed of Zn4Sb(3-x)Rex, wherein 0<x<0.02. Further, the thermoelectric module includes a first electrode, and a thermoelectric element, wherein the thermoelectric element includes the thermoelectric material composed of Zn4Sb(3-x)Rex and contacts to the first electrode; and a second electrode contacting to the thermoelectric element, wherein the first and second electrodes are separated by the thermoelectric element.
    Type: Application
    Filed: May 3, 2012
    Publication date: June 27, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chia-Chan Hsu, Chun-Mu Chen, Shan-Haw Chiou
  • Publication number: 20130156555
    Abstract: Braze materials, brazing processes, and coatings produced therefrom, for example, a wear-resistant coating suitable for protecting surfaces subjected to wear at high temperatures. The braze material includes first particles formed of a metallic alloy and second particles formed of a cobalt-base braze alloy having a melting point below the melting point of the first particles. The braze alloy consists of, by weight, 3.5 to 15.0% silicon, 2.0 to 6.0% boron, and the balance cobalt and incidental impurities, and the second particles constitute at least 30 up to 90 weight percent of the first and second particles combined. Following a brazing cycle performed on the braze material, a wear-resistant coating is formed in which the first particles are dispersed in a matrix of the braze alloy.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Edwin Budinger, Jonathan Reid Biberstine
  • Patent number: 8449817
    Abstract: The invention is directed at sputter targets including 50 atomic % or more molybdenum, a second metal element of niobium or vanadium, and a third metal element selected from the group consisting of titanium, chromium, niobium, vanadium, and tantalum, wherein the third metal element is different from the second metal element, and deposited films prepared by the sputter targets. In a preferred aspect of the invention, the sputter target includes a phase that is rich in molybdenum, a phase that is rich in the second metal element, and a phase that is rich in the third metal element.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 28, 2013
    Assignee: H.C. Stark, Inc.
    Inventors: Gary Alan Rozak, Mark E. Gaydos, Patrick Alan Hogan, Shuwei Sun
  • Patent number: 8449816
    Abstract: A composition suitable for use as a target containing antimony to be irradiated by accelerated charged particles (e.g., by protons to produce tin-117m) comprises an intermetallic compound of antimony and titanium which is synthesized at high-temperature, for example, in an arc furnace. The formed material is powdered and melted in an induction furnace, or heated at high gas pressure in gas static camera. The obtained product has a density, temperature stability, and heat conductivity sufficient to provide an appropriate target material.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: May 28, 2013
    Assignee: Brookhaven Science Associates
    Inventors: Yurii D. Seropeghin, Boris L. Zhuikov
  • Publication number: 20130125475
    Abstract: The present invention relates to tungsten rhenium compounds and composites and to methods of forming the same. Tungsten and rhenium powders are mixed together and sintered at high temperature and high pressure to form a unique compound. An ultra hard material may also be added. The tungsten, rhenium, and ultra hard material are mixed together and then sintered at high temperature and high pressure.
    Type: Application
    Filed: January 14, 2013
    Publication date: May 23, 2013
    Applicant: SMITH INTERNATIONAL, INC.
    Inventor: Smith International, Inc.
  • Publication number: 20130101455
    Abstract: A method of forming a sintered nickel-titanium-rare earth (Ni—Ti-RE) alloy includes adding one or more powders comprising Ni, Ti, and a rare earth constituent to a powder consolidation unit comprising an electrically conductive die and punch connectable to a power supply. The one or more powders are heated at a ramp rate of about 35° C./min or less to a sintering temperature, and pressure is applied to the powders at the sintering temperature, thereby forming a sintered Ni—Ti-RE alloy.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 25, 2013
    Applicant: University of Limerick
    Inventor: University of Limerick
  • Patent number: 8414827
    Abstract: The present invention relates to a porous lightweight iron and a method for preparing the same, and more particularly to a porous lightweight iron having decreased weight due to pores formed therein while having a strength similar to that of existing steel products; and a method for preparing a porous lightweight iron having desired properties or various properties according to intended use. As described above in detail, according to the present invention, the thickness, weight and strength of lightweight iron to be produced, can be controlled, thus making it possible to prepare porous lightweight iron having desired properties by controlling the sintering temperature during the preparation process, the mixing ratio of diamond or silicon carbide and the mixing ratio of raw materials.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: April 9, 2013
    Inventor: Se-Lin Lee
  • Publication number: 20130084462
    Abstract: A wear-resistant material comprising an alloy that contains: 1.5-5.5 wt. % carbon, 0.1-2.0 wt. % silicon, max. 2.0 wt. % manganese, 3.5-30.0 wt. % chromium, 0.3-10 wt. % molybdenum, 0-10 wt. % tungsten, 0.1-30 wt. % vanadium, 0-12 wt. % niobium, 0.1-12 wt. % titanium and 1.3-3.5 wt. % nickel, the remainder being comprised of iron and production-related impurities, whereby the carbon content fulfils the following condition: CAlloy [w %]=S1+S2+S3 where S1=(Nb+2(Ti+V?0.9))/a, S2=(Mo+W/2+Cr?b)/5, S3=c+(TH?900)·0.0025, where 7<a<9, 6<b<8, 0.3<c<0.5 and 900° C.<TH<1,220° C.
    Type: Application
    Filed: November 21, 2012
    Publication date: April 4, 2013
    Applicant: KOPPERN ENTWICKLUNGS GMBH & CO. KG
    Inventor: KOPPERN ENTWICKLUNGS GMBH & CO. KG
  • Publication number: 20130084446
    Abstract: The present invention relates to tungsten-rhenium coated compounds, materials formed from tungsten-rhenium coated compounds, and to methods of forming the same. In embodiments, tungsten and rhenium are coated on ultra hard material particles to form coated ultra hard material particles, and the coated ultra hard material particles are sintered at high temperature and high pressure.
    Type: Application
    Filed: August 30, 2012
    Publication date: April 4, 2013
    Applicant: SMITH INTERNATIONAL, INC.
    Inventors: YAHUA BAO, SCOTT L. HORMAN
  • Publication number: 20130071627
    Abstract: A process is provided for producing a component. The process comprising the steps of: producing a former corresponding to the internal dimensions of the component to be formed; providing a layer of a second material on at least one surface of the former; locating the former in a containment and filling the containment with a first material; subjecting the containment to hot isostatic pressing such that the second material diffuses into the first material.
    Type: Application
    Filed: December 22, 2010
    Publication date: March 21, 2013
    Inventor: Geoffrey Frederick Archer
  • Publication number: 20130058824
    Abstract: Provided is a method for producing a decorative sintered metallic article and the same, used in jewelry goods, ornaments, clothing accessories, by combining a copper paste and a silver paste. The method comprises the steps of: producing a patterned piece by alternately arranging the copper paste containing an organic binder and water in 10 to 35 wt % and one or more kinds of copper powders selected from a copper powder and a copper alloy powder, and the silver paste similarly prepared to the copper paste; forming patterned pastes by drawing a pattern through deforming at least rows on the upper surface of the alternately arranged copper and silver pastes; drying the patterned pastes to produce a patterned piece; shaping a decorative object by processing the produced patterned piece; and firing the decorative object to produce a decorative sintered object.
    Type: Application
    Filed: November 4, 2010
    Publication date: March 7, 2013
    Applicant: AIDA CHEMICAL INDUSTRIES CO., LTD.
    Inventors: Masashi Hirama, Hidekazu Yoshihara, Toshie Ito
  • Publication number: 20130055852
    Abstract: A selectively corrodible powder compact that may be used to make the components of a selectively corrodible perforating system is disclosed. The selectively corrodible powder compact includes a cellular nanomatrix comprising a nanomatrix material. The selectively corrodible powder compact also includes a plurality of dispersed particles comprising a particle core material having a density of about 7.5 g/cm3 or more, dispersed in the cellular nanomatrix. The selectively corrodible powder compact further includes a bond layer extending throughout the cellular nanomatrix between the dispersed particles.
    Type: Application
    Filed: September 3, 2011
    Publication date: March 7, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Zhiyue Xu