Base Metal One Or More Transition Metal Patents (Class 75/245)
  • Patent number: 6992881
    Abstract: Disclosed herein are capacitors having an anode based on niobium and a barrier layer based on niobium pentoxide, at least the barrier layer having a content of vanadium and process for their preparation and use.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: January 31, 2006
    Assignee: H. C. Starck GmbH
    Inventors: Karlheinz Reichert, Christoph Schnitter
  • Patent number: 6986834
    Abstract: Provided is a hafnium silicide target for forming a gate oxide film composed of HfSi0.82-0.98, wherein the oxygen content is 500 to 10000 ppm. Manufactured is a hafnium silicide target for forming a gate oxide film, wherein powder of the composition composed of HfSi0.82-0.98 is synthesized, pulverized to be 100 mesh or less, and thereafter subject to hot pressing or hot isostatic pressing (HIP) at 1700° C. to 2120° C. and 150 to 2000 kgf/cm2. Thereby obtained is a hafnium silicide target, and the manufacturing method thereof, suitable for forming a HfSiO film and HfSiON film that may be used as a high dielectric gate insulation film, superior in embrittlement resistance, having a low generation of particles, and which is not likely to cause ignition of sintering powder or explosion of powder dust during the manufacturing process thereof.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: January 17, 2006
    Assignee: Nikko Materials Co., Ltd.
    Inventors: Shuichi Irumata, Ryo Suzuki
  • Patent number: 6911063
    Abstract: Hardmetal compositions each including hard particles having a first material and a binder matrix having a second, different material comprising rhenium or a Ni-based superalloy. A two-step sintering process may be used to fabricate such hardmetals at relatively low sintering temperatures in the solid-state phase to produce substantially fully-densified hardmetals.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: June 28, 2005
    Assignee: Genius Metal, Inc.
    Inventor: Shaiw-Rong Scott Liu
  • Patent number: 6902600
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: June 7, 2005
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goval, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6896715
    Abstract: A nitrogen containing niobium powder is disclosed as well as electrolytic capacitors formed from the niobium powders. Methods to reduce DC leakage in a niobium anode are also disclosed.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: May 24, 2005
    Assignee: Cabot Corporation
    Inventor: James A. Fife
  • Patent number: 6890369
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: May 10, 2005
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6884277
    Abstract: The present invention relates to a powdered niobium for a capacitor, characterized in that the content of each of the elements such as iron, nickel, cobalt, silicon, sodium, potassium and magnesium is about 100 ppm by weight or less or that the total content thereof is about 350 ppm by weight or less is used, a sintered body thereof, a sintered body comprising niobium monoxide crystal and/or diniobium mononitride crystal, a capacitor using the sintered body and the production method of the capacitor. A capacitor using the above described niobium sintered body has a large capacity per the unit weight, a good specific leakage current value and excellent high temperature property.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: April 26, 2005
    Assignee: Showa Denko K.K.
    Inventor: Kazumi Naito
  • Patent number: 6872234
    Abstract: The cutting member comprises WC, two or more solid solutions of WC and compounds selected from carbides, nitrides and carbonitrides of metals of the groups 4a, 5a and 6a in the Periodic Table, and at least one metal of the iron group; and at least one of the two or more solid solutions being a solid solution having a high Nb or Zr content, whereby the wear resistance and plastic deformation resistance are improved in case of cutting hardly machinable materials such as stainless steel, thereby making it possible to prolong the service life of the cutting member.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: March 29, 2005
    Assignee: Kyocera Corporation
    Inventor: Daisuke Shibata
  • Patent number: 6855184
    Abstract: The present invention relates to a niobium powder for a capacitor having Mg and Zr contents each of 50 to 400 mass ppm, a W content of 20 to 200 mass ppm and a Ta content of 300 to 3,000 mass ppm, with the contents of elements other than oxygen, nitrogen, hydrogen, Mg, Zr, W and Ta, each being 50 mass ppm or less, a sintered body using the powder and the capacitor using the sintered body. The capacitor using the sintered body made of the niobium powder of the present invention has a large capacitance per unit mass and good heat resistance property.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: February 15, 2005
    Assignee: Showa Denko K.K.
    Inventor: Kazumi Naito
  • Patent number: 6849102
    Abstract: A discontinuously reinforced metal composite, having a metal matrix and a plurality of intermetallic particles comprising at least two different metals, the intermetallic particles having a size ranging from 1 ?m to about 10 ?m and being dispersed within the metal matrix in an amount of at least 20% by volume, wherein the intermetallic particles are particles having at least one same metal as the metal in the metal matrix.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: February 1, 2005
    Assignee: Touchstone Research Laboratory, Ltd.
    Inventors: Gollapudi S. Murty, Brian E. Joseph
  • Patent number: 6846344
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: January 25, 2005
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6843823
    Abstract: A braze preform and a method for making the braze preform are disclosed. The braze preform includes a filler metal that has been sintered to produce a liquid phase of at least a portion of the filler metal.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: January 18, 2005
    Assignee: Caterpillar Inc.
    Inventor: William L. Kovacich
  • Patent number: 6843825
    Abstract: A niobium primary powder having an average particle size of 0.01 to 0.5 ?m and an average circular degree of 0.8 or more, the circular degree being defined by 4 ?A/L2 (wherein A is an area of a solid projected on a plain face and L is an outer circumferential length of the projection view); a niobium primary agglomerated powder having an average particle size of 0.03 to 20 ?m, which is an agglomerate of the niobium primary powder; a niobium secondary agglomerated powder having an average particle size of 50 to 150 ?m, which is obtained by granulating the primary agglomerated powder; a sintered body of the niobium primary agglomerated powder or niobium secondary agglomerated powder; and a capacitor using the sintered body. By using sintered bodies of the niobium primary agglomerated powder or niobium secondary agglomerated powder, a capacitor having a large capacitance per unit volume and good voltage resistance can be manufactured.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: January 18, 2005
    Assignee: Showa Denko K.K.
    Inventors: Kazumi Naito, Nobuyuki Nagato
  • Patent number: 6840978
    Abstract: A porous metal body having a foam structure of 500 ?m or less in average pore diameter, wherein the skeleton is composed of an alloy primarily including Fe and Cr, and Cr carbide or FeCr carbide is uniformly dispersed in the texture. The metal porous body is produced by preparing a slurry primarily containing an Fe oxide powder having an average particle diameter of 5 ?m or less, at least one powder selected from metallic Cr, Cr alloys, and Cr oxides, a thermosetting resin, and a diluent, applying a coating of this slurry to a resin core body having a foam structure, performing drying, and thereafter, performing firing in a non-oxidizing atmosphere so as to produce a metal porous body having the aforementioned skeleton structure.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: January 11, 2005
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takahiro Matsuura, Keizo Harada
  • Patent number: 6835225
    Abstract: A niobium sintered body which is prepared in such a manner that a niobium powder is sintered at a temperature of 500° C. to 2000° C. and allowed to stand at a maximum sintering temperature for 60 minutes to 150 minutes in the course of sintering. The niobium sintered body of the present invention is characterized in that a product (CV) of a capacitance (C) per unit mass and a forming voltage (V) is 90,000 &mgr;F·V/g or more, and a value obtained by dividing a product of a mean particle diameter (D50) of a primary particle of said niobium powder and a leakage current (LC) by said CV is 5×10−4 &mgr;m·&mgr;A (&mgr;F·V) or less. And there can be provided a well-balanced capacitor with respect to a preferably low leakage current value regardless of the large capacitance, that is, a highly reliable capacitance.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: December 28, 2004
    Assignee: Showa Denko K.K.
    Inventors: Kazumi Naito, Isao Kabe
  • Publication number: 20040250651
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Application
    Filed: August 30, 2002
    Publication date: December 16, 2004
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Publication number: 20040237714
    Abstract: A niobium powder is described which when formed into an electrolytic capacitor anode, the anode has the capacitance of at least 62,000 CV/g. Methods of making flaked niobium powder which have high capacitance capability when formed into electrolytic capacitor anodes is also described. Besides niobium, the present invention is also applicable to other metals, including valve metals.
    Type: Application
    Filed: March 8, 2004
    Publication date: December 2, 2004
    Inventors: Kurt A. Habecker, James A. Fife
  • Patent number: 6824586
    Abstract: A powder for capacitors, which contains 0.01 to 15 atom % of zirconium and mainly comprises niobium and/or tantalum having an average particle size of from 0.2 to 5 &mgr;m; a sintered body thereof; an a capacitor fabricated from the sintered body as one part electrode, a dielectric material formed on the surface of the sintered body, and another part electrode provided on the dielectric material. A capacitor manufactured from the sintered body of a powder for capacitors of the present invention have a large capacitance per unit mass and good leakage current characteristics.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: November 30, 2004
    Assignee: Showa Denko K.K.
    Inventors: Kazuhiro Omori, Kazumi Naito
  • Patent number: 6815073
    Abstract: The present invention has an object to enhance the reliability of the electrical connection of a silver-based conductor film on the surface of a glass ceramic board. In order to achieve the object, according to the present invention, by the use of a conductor paste containing a silver particle having a specific surface area of 0.3 m2/g to 3.0 m2/g and no glass, printing is carried out on a glass ceramic board and the conductor paste is fired at a firing temperature having a difference of ±50° C. from a softening temperature of amorphous borosilicate glass contained in the glass ceramic. Consequently, a silver-based conductor film having high reliability of the electrical connection is formed on the ceramic board.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: November 9, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Hirayoshi Tanei, Tsuyoshi Fujita, Masato Kirigaya, Yasuo Akutsu, Kaoru Uchiyama, Hiroshi Soma, Hiroatsu Tokuda
  • Publication number: 20040216558
    Abstract: Methods of forming sintered valve metal are described. The methods involve sintering a valve metal such as tantalum or niobium in the presence of an iodine source. The method optionally includes deoxidizing the metal using the same equipment used in sintering and/or as a combined step. The sintered valve metal formed by the methods of the present invention preferably has relatively large pores and other properties desirable for making capacitors that have high capacitance and low leakage.
    Type: Application
    Filed: April 21, 2004
    Publication date: November 4, 2004
    Inventor: Robert Mariani
  • Patent number: 6808549
    Abstract: A negative electrode of a battery, chiefly includes hydrogen absorption alloy particles each having a surface layer. The alloy particles satisfy R2/R1≧0.004 and 5 &mgr;m≦R1≦20 &mgr;m, or preferably 5 &mgr;m≦R1≦12.5 &mgr;m, where R1 is a half of a median diameter of the particles and R2 is thickness of the surface layers.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: October 26, 2004
    Assignees: Matsushita Electric Industrial Co., Ltd, Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichiro Ito, Hajime Seri, Kojiro Ito, Shinichi Yuasa, Nobuyasu Morishita
  • Patent number: 6805725
    Abstract: A bond coat composition for use in thermal barrier coatings comprises a NiAl—CoCrAlY matrix containing particles of AlN dispersed therein. The bond coat composition is prepared by croymilling NiAl and CoCrAlY in liquid nitrogen.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: October 19, 2004
    Assignee: Ohio Aerospace Institute
    Inventor: Mohan G. Hebsur
  • Patent number: 6802884
    Abstract: The allows: Ta—Si, Nb—Si, TaN—Si, NbN—Si and variants are used as enhanced powder anode substrates for electrolytic capacitor anodes (sintered powder masses) with dielectric oxide formation at walls of the internal pores.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: October 12, 2004
    Assignee: H.C. Starck, Inc.
    Inventors: Leah Simkins, Anastasia Conlon
  • Publication number: 20040195094
    Abstract: Provided is a hafnium silicide target for forming a gate oxide film composed of HfSi0.82-0.98, wherein the oxygen content is 500 to 10000 ppm. Manufactured is a hafnium silicide target for forming a gate oxide film, wherein powder of the composition composed of HfSi0.82-0.98 is synthesized, pulverized to be 100 mesh or less, and thereafter subject to hot pressing or hot isostatic pressing (HIP) at 1700° C. to 2120° C. and 150 to 2000 kgf/cm2. Thereby obtained is a hafnium silicide target, and the manufacturing method thereof, suitable for forming a HfSiO film and HfSiON film that may be used as a high dielectric gate insulation film, superior in embrittlement resistance, having a low generation of particles, and which is not likely to cause ignition of sintering powder or explosion of powder dust during the manufacturing process thereof.
    Type: Application
    Filed: February 20, 2004
    Publication date: October 7, 2004
    Inventors: Shuichi Irumata, Ryo Suzuki
  • Publication number: 20040182199
    Abstract: The present invention relates to a niobium powder for a capacitor having Mg and Zr contents each of 50 to 400 mass ppm, a W content of 20 to 200 mass ppm and a Ta content of 300 to 3,000 mass ppm, with the contents of elements other than oxygen, nitrogen, hydrogen, Mg, Zr, W and Ta, each being 50 mass ppm or less, a sintered body using the powder and the capacitor using the sintered body. The capacitor using the sintered body made of the niobium powder of the present invention has a large capacitance per unit mass and good heat resistance property.
    Type: Application
    Filed: January 9, 2004
    Publication date: September 23, 2004
    Inventor: Kazumi Naito
  • Publication number: 20040170552
    Abstract: The present invention relates to a hafnium silicide target for forming a gate oxide film composed of HfSi1.02-2.00. Obtained is a hafnium silicide target superior in workability and embrittlement resistance, and suitable for forming a HfSiO film and HfSiON film that may be used as a high dielectric gate insulation film in substitute for a SiO2 film, and to the manufacturing method thereof.
    Type: Application
    Filed: December 10, 2003
    Publication date: September 2, 2004
    Inventors: Shuichi Irumata, Ryo Suzuki
  • Publication number: 20040163491
    Abstract: High purity refractory metals, valve metals, refractory metal oxides, valve metal oxides, or alloys thereof suitable for a variety of electrical, optical and mill product/fabricated parts usages are produced from their respective oxides by metalothermic reduction of a solid or liquid form of such oxide using a reducing agent that establishes (after ignition) a highly exothermic reaction, the reaction preferably taking place in a continuously or step-wise moving oxide such as gravity fall with metal retrievable at the bottom and an oxide of the reducing agent being removable as a gas or in other convenient form and unreacted reducing agent derivatives being removable by leaching or like process.
    Type: Application
    Filed: March 3, 2004
    Publication date: August 26, 2004
    Inventors: Leonid N. Shekhter, Terrance B. Tripp, Leonid L. Lanin, Anastasia M. Conlon, Howard V. Goldberg
  • Patent number: 6770154
    Abstract: The sputter target includes a tantalum body having tantalum grains formed from consolidating tantalum powder and a sputter face. The sputter face has an atom transport direction for transporting tantalum atoms away from the sputter face for coating a substrate. The tantalum grains have at least a 40 percent (222) direction orientation ratio and less than a 15 percent (110) direction orientation ratio in an atom transport direction away from the sputter face for increasing sputtering uniformity.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: August 3, 2004
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Holger J. Koenigsmann, Paul S. Gilman
  • Patent number: 6770114
    Abstract: A powder for metal injection molding of has a silicon content of less than 0.1%. Silica inclusions are substantially eliminated in the finished molded product.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: August 3, 2004
    Assignee: Honeywell International Inc.
    Inventors: Kenneth J. Bartone, Santosh K. Das
  • Publication number: 20040125537
    Abstract: An object of the present invention is to provide a niobium sintered body free of reduction in the CV value, a niobium powder for use in the manufacture of the niobium sintered body, and a capacitor using the niobium sintered body. A niobium powder of the present invention has niobium and tantalum, where the tantalum is present in an amount at most of about 700 ppm by mass. A sintered body and a capacitor each is manufactured using the niobium powder.
    Type: Application
    Filed: December 9, 2003
    Publication date: July 1, 2004
    Applicant: SHOWA DENKO K.K.
    Inventors: Kazumi Naito, Kazuhiro Omori
  • Patent number: 6755884
    Abstract: A niobium powder for capacitors, having an average particle size of from 10 to 500 &mgr;m, which is a granulated powder having an oxygen content of 3 to 9% by mass; a sintered body thereof; and a capacitor fabricated from the sintered body as one part electrode, a dielectric material formed on the surface of the sintered body, and another part electrode provided on the dielectric material. A capacitor manufactured from the sintered body of a niobium powder of the present invention is prevented from deterioration in the performance for a long period of time and has high reliability.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: June 29, 2004
    Assignee: Showa Denko K.K.
    Inventors: Kazumi Naito, Nobuyuki Nagato
  • Patent number: 6755883
    Abstract: A powder pressing apparatus comprises a die having a through hole, an upper punch and a lower punch. At least one of the upper and lower punches has a punching surface having an edge portion provided with a projection. The projection has a tip chamfered by a width not greater than 0.5 mm. The punching surface has a slope having a surface roughness Ra not greater than 1.0 &mgr;m. A rare-earth alloy powder is fed into a cavity formed in the through hole of the die. The rare-earth alloy powder in the cavity is oriented by magnetic field, and pressed by using the upper and lower punches. The upper punch and the lower punch are brought closest to each other at a minimum distance not smaller than 1.7 mm during the pressing. An obtained compact is used for manufacture of a sintered body and a voice coil motor.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: June 29, 2004
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Seiichi Kohara, Shinji Kidowaki
  • Publication number: 20040118484
    Abstract: A sintered body with a composition consisting of 25% to 35% by weight of R (wherein R represents one or more rare earth elements, providing that the rare earth elements include Y), 0.5% to 4.5% by weight of B, 0.02% to 0.6% by weight of Al and/or Cu, 0.03% to 0.25% by weight of Zr, 4% or less by weight (excluding 0) of Co, and the balance substantially being Fe, wherein a coefficient of variation (CV) showing the dispersion of Zr is 130 or lower. This sintered body enables to inhibit the grain growth, while keeping the decrease of magnetic properties to a minimum, and to improve the suitable sintering temperature range.
    Type: Application
    Filed: September 29, 2003
    Publication date: June 24, 2004
    Applicant: TDK CORPORATION
    Inventors: Gouichi Nishizawa, Chikara Ishizaka, Tetsuya Hidaka, Akira Fukuno
  • Publication number: 20040107797
    Abstract: A niobium powder for capacitors, having an average particle size of from 10 to 500 &mgr;m, which is a granulated powder having an oxygen content of 3 to 9% by mass; a sintered body thereof; and a capacitor fabricated from the sintered body as one part electrode, a dielectric material formed on the surface of the sintered body, and another part electrode provided on the dielectric material. A capacitor manufactured from the sintered body of a niobium powder of the present invention is prevented from deterioration in the performance for a long period of time and has high reliability.
    Type: Application
    Filed: December 5, 2003
    Publication date: June 10, 2004
    Applicant: SHOWA DENKO K.K.
    Inventors: Kazumi Naito, Nobuyuki Nagato
  • Patent number: 6746508
    Abstract: Nanoparticles of intermetallic alloys such as FeAl, Fe3Al, NiAl, TiAl and FeCoV exhibit a wide variety of interesting structural, magnetic, catalytic, resistive and electronic, and bar coding applications. The nanosized powders can be used to make structural parts having enhanced mechanical properties, magnetic parts having enhanced magnetic saturation, catalyst materials having enhanced catalytic activity, thick film circuit elements having enhanced resolution, and screen printed images such as magnetic bar codes having enhanced magnetic properties. In contrast to bulk FeAl materials which are nonmagnetic at room temperature, the FeAl nanoparticles exhibit magnetic properties at room temperature.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: June 8, 2004
    Assignee: Chrysalis Technologies Incorporated
    Inventors: Seetharama C. Deevi, A. Clifford Lilly, Jr.
  • Patent number: 6723387
    Abstract: A thermal spray method for the fabrication of ceramic/metal and ceramic/ceramic hardcoating for wear applications. The method makes use of feedstock powder, composed of micron-scale aggregates of hard phase material particles that are either mixed or coated with a readily fusible nano-scale binder phase material. Thus, during thermal spraying, the nanostructured material undergoes rapid melting while the aggregated material is heated but not necessarily melted. A dense coating is formed when the molten nano-material fills the available pore spaces between the heated and softened aggregates, providing a strong and tough matrix for the consolidated material. Optimal wear properties are achieved when the volume fraction of aggregated particles is high, typically in the range of 0.5-0.9. Aggregated material may be composed of one, two or more particles of difference sizes and/or compositions, with particle size distribution that gives high packing density for the hard phase.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: April 20, 2004
    Assignee: Rutgers University
    Inventors: Bernard H. Kear, Ganesh Skandan
  • Patent number: 6689187
    Abstract: The tantalum powder for capacitors of the present invention has a specific surface area SB as determined by the BET method of 1.3 m2/g or more, and an SB/SF ratio between the specific surface area SB as determined by the BET method and the specific surface area SF determined by the FSS method of 4 to 10. This tantalum powder not only has a large specific surface area SB, but also has suitable cohesive strength and uniform porosity. Consequently, a solid state electrolytic capacitor having high capacitance and low ESR can be obtained by providing with a capacitor anode formed from a sintered body of this tantalum powder. In addition, whether or not this tantalum powder is suitable for the production of a tantalum capacitor having high capacitance and low ESR can be determined easily and reliably by evaluating the tantalum powder using the specific surface area SB as determined by the BET method and the SB/SF ratio between SB and the specific surface area SF determined by the FSS method.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: February 10, 2004
    Assignee: Cabot Supermetals K.K.
    Inventor: Yukio Oda
  • Publication number: 20040022008
    Abstract: A powder for capacitors, which contains 0.01 to 15 atom % of zirconium and mainly comprises niobium and/or tantalum having an average particle size of from 0.2 to 5 &mgr;m; a sintered body thereof; an a capacitor fabricated from the sintered body as one part electrode, a dielectric material formed on the surface of the sintered body, and another part electrode provided on the dielectric material. A capacitor manufactured from the sintered body of a powder for capacitors of the present invention have a large capacitance per unit mass and good leakage current characteristics.
    Type: Application
    Filed: May 30, 2003
    Publication date: February 5, 2004
    Inventors: Kazuhiro Omori, Kazumi Naito
  • Patent number: 6679934
    Abstract: Nitrided valve metals are described, such as nitrided tantalum and nitrided niobium. The nitrided valve metals preferably have improved flow properties, higher Scott Densities, and/or improved pore size distribution which leads to improved physical properties of the valve metal and improved electrical properties once the valve metal is formed into a capacitor anode. Processes for preparing a nitrided valve metal are further described and involve nitriding the valve metal at a sufficient temperature and pressure during a heat treatment that is prior to the deoxidation step. Capacitor anodes and other products incorporating the valve metals of the present invention are further described.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: January 20, 2004
    Assignee: Cabot Corporation
    Inventors: Bhamidipaty K. D. P. Rao, Shi Yuan
  • Patent number: 6660057
    Abstract: A powder composition for a capacitor comprising a tantalum or niobium and a compound having a silicon-oxygen bond, at least a part of which may be nitrided and which has an average particle size of from 0.1 to 5 &mgr;m; a sintered body using the composition; and a capacitor constituted by the sintered body as one part electrode, and another part electrode. A capacitor favored with high reliability, lower dissipation level of power and smaller deterioration of capacitance than conventional tantalum capacitors using tantalum can be produced by using a sintered body of the powder composition for a capacitor.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: December 9, 2003
    Assignee: Showa Denko K.K.
    Inventors: Kazumi Naito, Kazuhiro Omori, Nobuyuki Nagato
  • Patent number: 6656245
    Abstract: A niobium sintered body for a capacitor, which exhibits an LC value of not larger than 300 &mgr;A/g as measured after an electrolytic oxide film is formed thereon. The sintered body preferably exhibits a product (CV) [i.e., a product of capacity (C) with electrolysis voltage (V)] of at least 40,000 &mgr;F·V/g. The sintered body is produced by sintering a niobium powder containing at least one niobium compound selected from niobium nitride, niobium carbide and niobium boride. A capacitor manufactured from the sintered body has a large capacity per unit weight and good leak current characteristics. Especially, a sintered body made of a niobium powder having a large average degree of roundness has a relatively large porosity and a good packed density, and a capacitor manufactured from this sintered body has a large capacity and good withstand voltage characteristics.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: December 2, 2003
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Kazumi Naito, Atsushi Shimojima
  • Patent number: 6652619
    Abstract: A niobium powder comprising at least one element selected from the group consisting of chromium, molybdenum, tungsten, boron, aluminum, gallium, indium, thallium, cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, bismuth, rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, lanthanum, praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, hafnium, vanadium, osmium, iridium, platinum, gold, cadmium, mercury, lead, selenium and tellurium; a sintered body of the niobium powder; and a capacitor comprising a sintered body as one electrode, a dielectric material formed on the surface of the sintered body, and counter electrode provided on the dielectric material.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: November 25, 2003
    Assignee: Showa Denko K.K.
    Inventors: Kazuhiro Omori, Kazumi Naito
  • Publication number: 20030205106
    Abstract: A niobium powder comprising at least one element selected from the group consisting of chromium, molybdenum, tungsten, boron, aluminum, gallium, indium, thallium, cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, bismuth, rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, lanthanum, praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, hafnium, vanadium, osmium, iridium, platinum, gold, cadmium, mercury, lead, selenium and tellurium; a sintered body of the niobium powder; and a capacitor comprising a sintered body as one electrode, a dielectric material formed on the surface of the sintered body, and counter electrode provided on the dielectric material.
    Type: Application
    Filed: January 13, 2003
    Publication date: November 6, 2003
    Applicant: SHOWA DENKO K.K.
    Inventors: Kazuhiro Omori, Kazumi Naito
  • Publication number: 20030200834
    Abstract: A method for forming dendritic metal powders, comprising the steps of: (1) heating a powder comprising non-dendritic particles, under conditions suitable for initial stage sintering, to form a lightly sintered material; and (2) breaking the lightly sintered material to form a powder comprising dendritic particles. In one embodiment, the lightly sintered material is broken by brushing the material through a screen.
    Type: Application
    Filed: March 31, 2003
    Publication date: October 30, 2003
    Applicant: Mykrolis Corporation
    Inventors: Robert S. Zeller, Christopher J. Vroman
  • Patent number: 6639787
    Abstract: Pressed material such as anodes are described and formed from oxygen reduced oxide powders using additives, such as binders and/or lubricants. Methods to form the pressed material are also described, such as with the use of atomizing, spray drying, fluid bed processing, microencapsulation, and/or coacervation.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: October 28, 2003
    Assignee: Cabot Corporation
    Inventors: Jonathon L. Kimmel, Randall V. Redd
  • Patent number: 6635098
    Abstract: A low cost titanium, titanium alloy material, or Ti matrix composite comprising clean and divided titanium turnings that are blended with titanium, titanium alloy powder, and/or ceramic powder and consolidated is provided. A method of making the material is also provided. The low cost material is formed into preshapes, such as a billet, which is subsequently used as feedstock for extrusion, forging, casting, or rolling.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: October 21, 2003
    Assignee: Dynamet Technology, Inc.
    Inventors: Stanley Abkowitz, Susan M. Abkowitz, Harold L. Heussi, Kevin M. McCarthy
  • Publication number: 20030183042
    Abstract: A niobium or tantalum powder of the present invention comprises aggregates in which primary particles of niobium or tantalum are aggregated, and have a pore distribution having a peak in the range from 1 to 20 &mgr;m as measured by mercury porosimetry. That is, the niobium or tantalum powder of the present invention comprises aggregates having large pores, which connect with vacancies between the primary particles and facilitate the permeation of an electrolyte over the entirety of the inside of each aggregate. Accordingly, a solid electrolytic capacitor comprising an anode electrode made of the niobium or tantalum powder has high capacity and also a low ESR.
    Type: Application
    Filed: December 2, 2002
    Publication date: October 2, 2003
    Inventors: Yukio Oda, Yujiro Mizusaki
  • Patent number: 6623543
    Abstract: A method for forming dendritic metal powders, comprising the steps of: (1) heating a powder comprising non-dendritic particles, under conditions suitable for initial stage sintering, to form a lightly sintered material; and (2) breaking the lightly sintered material to form a powder comprising dendritic particles. In one embodiment, the lightly sintered material is broken by brushing the material through a screen. Another aspect of the present invention comprises the dendritic particles that are produced by the method described above. These particles can comprise any suitable metal, such as transition metals, rare earth metals, main group metals or metalloids or an alloy of two or more such metals. The particles can also comprise a ceramic material, such as a metal oxide. These particles are characterized by a dendritic, highly anisotropic, morphology arising from the fusion of substantially non-dendritic particles, and by a low apparent density relative to the substantially non-dendritic starting material.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: September 23, 2003
    Assignee: Mykrolis Corporation
    Inventors: Robert S. Zeller, Christopher J. Vroman
  • Patent number: 6613123
    Abstract: Variable melting point solders and brazes having compositions comprising a metal or metal alloy powder having a low melting point with a metal powder having a higher melting point. Upon heating, in-situ alloying occurs between the low and high melting point powders such that solidification occurs at the solder or braze temperature thus creating a new, higher solidus (or melting) temperature with little or no intermetallic formation. A solder comprising Sn powder mixed with a Sn—Bi eutectic powder having a composition of 63 wt % Sn:57 wt % Bi such that the bulk composition of the mixture is 3 wt % Bi has an initial melting point of 140° C. and a re-melt temperature of 220° C. after heating due to in-situ alloying. A composition of Pb powder mixed with a Pb—Sn eutectic powder having a composition of 62 wt % Sn:58 wt % Pb such that the bulk composition of the mixture is 15 wt % Sn has an initial melting point of 183° C. and a re-melt temperature of 250° C.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: September 2, 2003
    Inventors: Stephen F. Corbin, Douglas J. McIsaac, Xin Qiao
  • Publication number: 20030161751
    Abstract: High-density composite materials comprising tungsten and bronze are useful as lead replacements in the production of ammunition, weights and other high density articles. The composition of the composite, articles manufactured using the composite, and a process for making the composite are disclosed.
    Type: Application
    Filed: October 16, 2002
    Publication date: August 28, 2003
    Inventor: Kenneth H. Elliott