Producing Alloy Patents (Class 75/351)
-
Publication number: 20140283650Abstract: A method of manufacturing a powder having a high surface area is provided. According to the method of manufacturing a powder having a high surface area, a metal electrolyte in which metal ions of different kinds of first metals are dissociated is prepared. Subsequently, a metal alloy powder formed of the first metals is formed by soaking a second metal having a higher reducing power than the first metals in the metal electrolyte to induce a first spontaneous substitution reaction. Therefore, it is possible to form a powder having an improved specific surface area.Type: ApplicationFiled: October 23, 2012Publication date: September 25, 2014Applicant: Research & Business Foundation Sungkyunkwan UniversityInventors: Chan-Hwa Chung, Myung Gi Jeong
-
Patent number: 8840701Abstract: Disclosed are methods of making multi-element, finely divided, metal powders containing one or more reactive metals and one or more non-reactive metals. Reactive metals include metals or mixtures thereof from titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), vanadium (V), nickel (Ni), cobalt (Co), molybdenum (Mo), manganese (Mn), and iron (Fe). Non-reactive metals include metals or mixtures such as silver (Ag), tin (Sn), bismuth (Bi), lead (Pb), antimony (Sb), zinc (Zn), germanium (Ge), phosphorus (P), gold (Au), cadmium (Cd), berrylium (Be), tellurium (Te).Type: GrantFiled: August 12, 2009Date of Patent: September 23, 2014Assignee: E I du Pont de Nemours and CompanyInventors: William J. Borland, Howard David Glicksman
-
Patent number: 8834785Abstract: A method for producing a metal article according to one embodiment may involve the steps of: Providing a composite metal powder including a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form individual particles of the composite metal powder; and compressing the molybdenum/molybdenum disulfide composite metal powder under sufficient pressure to cause the mixture to behave as a nearly solid mass.Type: GrantFiled: July 11, 2011Date of Patent: September 16, 2014Assignee: Climax Engineered Materials, LLCInventors: Matthew C. Shaw, Carl V. Cox, Yakov Epshteyn
-
Publication number: 20140251801Abstract: Provided are a sputtering target which has excellent machinability and is capable of forming a compound film that mainly contains Cu and Ga and a method for producing the sputtering target. The sputtering target of the present invention has a component composition that contains 15 to 40 at % of Ga, 0.1 to 5 at % of Bi, and the balance composed of Cu and unavoidable impurities with respect to all metal elements in the sputtering target. The method for producing the sputtering target includes a step of melting at least Cu, Ga and Bi as simple substances or an alloy that contains two or more of these elements at 1,050° C. or higher to produce an ingot.Type: ApplicationFiled: July 6, 2012Publication date: September 11, 2014Applicants: MITSUBISHI MATERIALS CORPORATION, Showa Shell Sekiyu K.K.Inventors: Shoubin Zhang, Masahiro Shoji, Keita Umemoto
-
Patent number: 8821611Abstract: A titanium metal or a titanium alloy having submicron titanium boride substantially uniformly dispersed therein and a method of making same is disclosed. Ti power of Ti alloy powder has dispersed within the particles forming the powder titanum boride which is other than whisker-shaped or spherical substantially uniformly dispersed therein.Type: GrantFiled: December 6, 2012Date of Patent: September 2, 2014Assignee: Cristal Metals Inc.Inventors: Lance Jacobsen, Adam Benish
-
Patent number: 8821610Abstract: A method and a device are described for the production of metal powder or alloy powder of a moderate grain sizes less than 10 ?m, comprising or containing at least one of the reactive metals zirconium, titanium, or hafnium, by metallothermic reduction of oxides or halogenides of the cited reactive metals with the aid of a reducing metal, wherein said metal powder or alloy powder is phlegmatized by adding a passivating gas or gas mixture during and/or after the reduction of the oxides or halogenides and/or is phlegmatized by adding a passivating solid before the reduction of the oxides or halogenides, wherein both said reduction and also said phlegmatization are performed in a single gas-tight reaction vessel which can be evacuated.Type: GrantFiled: January 8, 2009Date of Patent: September 2, 2014Assignee: Tradium GmbHInventor: Ulrich Gerhard Baudis
-
Patent number: 8815151Abstract: Nanowire preparation methods, compositions, and articles are disclosed. Such methods which reduce metal ions to metal nanowires in the presence complexes comprising metal-metal bonds, are capable of producing long, narrow, nanowires useful for electronics and optical applications.Type: GrantFiled: April 23, 2012Date of Patent: August 26, 2014Assignee: Carestream Health, Inc.Inventor: David R. Whitcomb
-
Publication number: 20140224067Abstract: Branched nanowire preparation methods, compositions, and articles are disclosed. Such branched nanowires are useful for electronics and optical applications.Type: ApplicationFiled: April 15, 2014Publication date: August 14, 2014Applicant: Carestream Health, Inc.Inventor: David R. Whitcomb
-
Patent number: 8790615Abstract: A method of synthesizing carbon-magnetite nanocomposites. In one embodiment, the method includes the steps of (a) dissolving a first amount of an alkali salt of lignosulfonate in water to form a first solution, (b) heating the first solution to a first temperature, (c) adding a second amount of iron sulfate (FeSO4) to the first solution to form a second solution, (d) heating the second solution at a second temperature for a first duration of time effective to form a third solution of iron lignosulfonate, (e) adding a third amount of 1N sodium hydroxide (NaOH) to the third solution of iron lignosulfonate to form a fourth solution with a first pH level, (f) heating the fourth solution at a third temperature for a second duration of time to form a first sample, and (g) subjecting the first sample to a microwave radiation for a third duration of time effective to form a second sample containing a plurality of carbon-magnetite nanocomposites.Type: GrantFiled: March 22, 2011Date of Patent: July 29, 2014Assignee: Board of Trustees of the University of ArkansasInventor: Tito Viswanathan
-
Patent number: 8765025Abstract: A metal nanoparticle composition includes an organic-stabilized metal nanoparticle and a solvent in which the solvent selected has the following Hansen solubility parameters: a dispersion parameter of about 16 MPa0.5 or more, and a sum of a polarity parameter and a hydrogen bonding parameter of about 8.0 MPa0.5 or less. The metal nanoparticle composition is suitable for printing conductive lines that are uniform, smooth and narrow on various substrate surfaces. The metal nanoparticle composition is able to form printed conductive features having a coffee ring effect ratio of about 1.2 to about 0.8, a surface roughness of about 15 or less and a line width of about 200 microns or less.Type: GrantFiled: June 9, 2010Date of Patent: July 1, 2014Assignee: Xerox CorporationInventors: Yiliang Wu, Yulin Wang, Mahya Mohktari, Roger E. Gaynor, Nan-Xing Hu, Marko D. Saban
-
Patent number: 8758900Abstract: The present invention provides nanometer-size spherical particles. Each of the particles is made of at least one selected from the group consisting of a metal, an alloy, and a metal compound. The particles include one or both of a polycrystalline region and a single-crystalline region. The particles have a particle size of less than 1 ?m; and a sphericity of ?10% to +10%.Type: GrantFiled: May 27, 2010Date of Patent: June 24, 2014Assignee: Napra Co., Ltd.Inventors: Shigenobu Sekine, Yurina Sekine
-
Patent number: 8721762Abstract: A process for synthesizing metal submicron and nano-scale powders for use in articles of manufacture. In a suitable reactor, single metal or multiple metal complexes are heated to a temperature whereby, upon contact with hydrogen gas, an exothermic reaction begins. The further temperature rise in response to the exothermic reaction is minimized by reducing the external heat input, thereby minimizing the agglomeration or sintering of the metal nano-scale particles resulting from the process. Preferably, after drawing a vacuum on the metal complexes in the reactor, the hydrogen is introduced at about, equal to or below ambient pressure and the reaction is purposely made slow to prevent agglomeration or sintering.Type: GrantFiled: June 10, 2010Date of Patent: May 13, 2014Assignee: Chemano, Inc.Inventor: Wei Wu
-
Patent number: 8709126Abstract: Various embodiments provide methods of forming metallic particles or carbon/graphite coated metallic particles with zero-valence from metal precursor compounds by a reductive/expansion synthesis method using nitrogen-hydrogen containing molecules.Type: GrantFiled: February 3, 2011Date of Patent: April 29, 2014Assignee: STC.UNMInventors: Claudia Catalina Luhrs, Zayd Leseman, Jonathan Phillips, Hugo Ricardo Zea-Ramirez
-
Publication number: 20140113139Abstract: A method of producing inorganic compound particles is provided. It includes a step of impregnating a melt liquid of second raw particles into first raw particles by heating a raw material including them at a temperature, which equals to or higher than an eutectic temperature between a region-II (solid-liquid phase range) and a region-I (solid phase range) in a phase diagram and lower than the melting temperature of the inorganic compound. The first raw particles contain an element with a melting point equals to or higher than a melting point of the inorganic compound. The second raw particles contain an element with a melting point lower than the inciting point of the inorganic compound. The method also includes a step of synthesizing inorganic compound particles by a synthetic reaction in the first raw particles between the elements contained in the first and second raw particles.Type: ApplicationFiled: December 27, 2013Publication date: April 24, 2014Applicants: Mitsuba Corporation, National Institute for Materials ScienceInventors: Yukihiro Isoda, Naoki Shioda
-
Publication number: 20140106241Abstract: An electrochemical cell has an electrode which includes a zinc-indium alloy as electrochemically active material, wherein the alloy is present in the form of particles and the entirety of the particles is composed of at least two particle fractions differing in indium concentration.Type: ApplicationFiled: October 15, 2013Publication date: April 17, 2014Applicant: VARTA Microbattery GmbHInventors: Cornelia Csrenko, Ulrich Kohls, Bernd Kreidler, Hermann Löffelmann, Andreas Rupp
-
Patent number: 8685137Abstract: The invention relates to a process for producing an iron-and/or tungsten containing powder or powder agglomerate including the steps of: a) mixing at least a first powder fraction comprising a tungsten carbide containing powder, and at least a second powder fraction comprising an iron oxide powder and/or a tungsten oxide containing powder and optionally an iron powder, the weight of the first fraction being in the range of 50-90% by weight of the mix and the weight of the second fraction being in the range of 10-50% by weight of the mix, b) heating the mix of step a) to a temperature in the range of 400-1300° C., preferably 1000-1200° C. The invention also relates to an iron-and/or tungsten containing powder or powder agglomerate.Type: GrantFiled: October 26, 2010Date of Patent: April 1, 2014Assignee: Minpro AktiebolagInventor: Johan Arvidsson
-
Publication number: 20140047950Abstract: The present invention relates to a continuous reactor a method for manufacturing nanoparticles. The reactor of the present invention includes: a plurality of first inputs for individually inputting a plurality of reagents; a first mixing part connected to the first inputs to mix the reagents; N number of first reaction units, each comprising a plurality of first diverging channels and a first converging channel to form a channel having the first diverging channels and the first converging channels alternately connected to one another in series for N times of diverging-converging actions, wherein N?1, and the first diverging channels of a 1st one of the first reaction units are connected to the first mixing part; and a first output connected to the first converging channel of an Nth one of the first reaction units, so as to output a product of nanoparticles.Type: ApplicationFiled: November 21, 2012Publication date: February 20, 2014Applicant: National Tsing Hua UniversityInventors: Kan-Sen CHOU, Yu-Chun CHANG, Yi-Chu CHEN, Yu-Chieh LU
-
Patent number: 8641798Abstract: A one-step process for synthesizing gold-copper bimetallic nanocubes. The process comprises the step of simultaneously reducing a copper II salt and a gold halide by 1,2-hexadecanediol in diphenyl ether, and 1-dodecanethiol as well as surfactants 1-adamantanecarboxylic acid and 1-hexadecylamine. The copper II salt may be copper (II) acetylacetonate, copper chloride, copper sulfate, or copper phosphate. The gold halide may be chloroauric acid, gold chloride, gold bromide, or tetrabromoauric acid. The reduction may occur at a temperature between about 160 and 180 degrees Celsius. The copper II salt may be copper (II) acetylacetonate and the gold halide may be chloroauric acid.Type: GrantFiled: July 12, 2011Date of Patent: February 4, 2014Assignee: The United States of America, as represented by the Secretary of Commerce, NISTInventors: Angela R. Hight-Walker, Yonglin Liu
-
Publication number: 20140027667Abstract: Superparamagnetic core shell nanoparticles having a core of a iron cobalt ternary alloy and a shell of a silicon oxide directly on the core and a particle size of 2 to 200 nm are provided. Methods to prepare the nanoparticles are also provided.Type: ApplicationFiled: July 26, 2012Publication date: January 30, 2014Applicant: Toyota Motor Engineering & Manufacturing NAInventor: Michael Paul Rowe
-
Patent number: 8617290Abstract: The present invention relates to a method for manufacturing a Fe—Si alloy powder. A method for manufacturing a Fe—Si alloy powder includes: providing a mixture of an Al2O3 powder, an active agent powder, a Si powder, and a Fe powder; heating the mixture with a temperature of 700° C. to 1200° C. in the hydrogen atomosphere; magnetically separating a Fe-containing material from the mixture; and separating a Fe—Si alloy powder by soaking the Fe-containing material in an alkali solution. In the heating of the mixture, the Si powder is deposited on the surface of the Fe powder and diffused into the Fe powder.Type: GrantFiled: October 22, 2010Date of Patent: December 31, 2013Assignee: Korea Institute of Science and TechnologyInventors: Ji-Young Byun, Yoon-Bae Kim, Hyun-Kwang Seok, Jang-Won Kim, Dow-Bin Hyun, Heon-Phil Ha, Do-Hyung Kim
-
Publication number: 20130343945Abstract: A titanium metal or a titanium alloy having submicron titanium boride substantially uniformly dispersed therein and a method of making same is disclosed. Ti power of Ti alloy powder has dispersed within the particles forming the powder titanum boride which is other than whisker-shaped or spherical substantially uniformly dispersed therein.Type: ApplicationFiled: December 6, 2012Publication date: December 26, 2013Applicant: CRISTAL METALS INC.Inventors: Amy Simpson, Cristal Metals Inc.
-
Publication number: 20130309160Abstract: A process for preparing a composition of mixed crystalline particles from columns 13-15 in which a liquid solution is produced by solubilization in a non-aqueous solvent medium of at least one first precursor chosen from coordination complexes including at least one element E1 from column 13, then the liquid solution is brought into contact with at least one second precursor chosen from the hydrides of at least one element E2 from column 15.Type: ApplicationFiled: December 15, 2011Publication date: November 21, 2013Applicant: CENTRE NATIONAL DE AL RECHERCHE SCIENTIFIQUE (C.N.R.S.)Inventors: Myrtil Kahn, Sebastien Graule, Gregory Spataro
-
Patent number: 8574337Abstract: A method of producing carbon-metal nanocomposites includes (a) treating a material containing at least one o-catechol unit with a first solution of hexamine such that the material becomes hexamine treated; (b) treating the material with a second solution having a plurality of metal ions such that the material becomes metal treated; (c) treating the material with a third solution of alkali such that the material becomes alkali treated; and (d) heating the alkali, metal and hexamine treated material after (a), (b), and (c) for a predetermined period of time such that a plurality of carbon-metal nanocomposites having metal nanoparticles dispersed in the material are produced.Type: GrantFiled: December 22, 2011Date of Patent: November 5, 2013Assignee: Board of Trustees of the University of ArkansasInventor: Tito Viswanathan
-
Patent number: 8535573Abstract: A method for producing copper fine particles by heating and reducing an oxide, hydroxide, or salt of copper included in a solution of ethylene glycol, diethylene glycol, or triethylene glycol, the method comprising controlling a total halogen content of the solution to be less than 20 ppm by mass relative to copper and adding a water-soluble polymer as a dispersant such as polyethyleneimine and a noble metal compound or noble metal colloid for nucleation to the solution. This method makes it possible to provide copper fine particles for use in a wiring material, which are very fine as small as 50 nm or less in average particle size and high dispersibility, extremely low undesirable halogen content, and can be sintered at a low temperature.Type: GrantFiled: October 31, 2008Date of Patent: September 17, 2013Assignee: Sumitomo Metal Mining Co., Ltd.Inventors: Kazuomi Ryoshi, Yasumasa Hattori, Hiroko Oshita
-
Publication number: 20130192986Abstract: Provided are a method for producing a Cu—Ga alloy powder, by which a high quality Cu—Ga alloy powder to be produced readily; a Cu—Ga alloy powder; a method for producing a Cu—Ga alloy sputtering target; and a Cu—Ga alloy sputtering target. Specifically, a Cu—Ga alloy powder is produced by stirring a mixed powder containing a Cu powder and a Ga in a mass ratio of 85:15 to 55:45 at a temperature of 30 to 700° C. in an inert atmosphere thereby accomplishing alloying. Also a Cu—Ga alloy sputtering target is produced by molding the Cu—Ga alloy powder followed by sintering.Type: ApplicationFiled: April 7, 2011Publication date: August 1, 2013Applicant: SUMITOMO METAL MINING CO., LTD.Inventors: Toshio Morimoto, Tatsuya Takahashi, Isao Ando, Tetsufumi Komukai, Masanori Takagi, Eriko Sato, Hirotaka Minami
-
Patent number: 8491697Abstract: [Problem]To provide a method for producing an electrocatalyst having no compositional scatter, wherein nano-level alloy catalyst molecules with an ordered particle size are supported in a highly dispersed state. [Means of Solution] The method includes the steps of preparing a reverse micelle solution by mixing two or more catalyst precursors selected from among metal salts and/or metal complexes, a solvent having hydrophilic groups and a non-aqueous solvent, forming alloy particles in the reverse micelle by adding a non-aqueous solution having a reducing action to the reverse micelle and heating, and supporting the alloy particles on a carrier.Type: GrantFiled: October 6, 2005Date of Patent: July 23, 2013Assignee: Yamanashi UniversityInventors: Masahiro Watanabe, Hiroyuki Uchida
-
Patent number: 8460584Abstract: Processes for producing carboxylic acid-stabilized silver nanoparticles are disclosed. The processes comprise (a) forming a suspension of silver salt particles in a carboxylic acid; (b) forming a solution of an organohydrazine and a first organic solvent; (c) heating the suspension; (d) adding the solution to the suspension to form a mixture; and (e) reacting the mixture to form carboxylic acid-stabilized silver nanoparticles.Type: GrantFiled: October 14, 2008Date of Patent: June 11, 2013Assignee: Xerox CorporationInventors: Mahya Mokhtari, Marko Saban, Roger Earl Gaynor
-
Publication number: 20130133483Abstract: Selective gas-reducing methods for making shape-defined metal-based nanoparticles. By avoiding the use of solid or liquid reducing reagents, the gas reducing reagent can be used to make shape well-defined metal- and metal alloy-based nanoparticles without producing contaminates in solution. Therefore, the post-synthesis process including surface treatment become simple or unnecessary. Weak capping reagents can be used for preventing nanoparticles from aggregation, which makes the further removing the capping reagents easier. The selective gas-reducing technique represents a new concept for shape control of nanoparticles, which is based on the concepts of tuning the reducing rate of the different facets. This technique can be used to produce morphology-controlled nanoparticles from nanometer- to submicron- to micron-sized scale. The Pt-based nanoparticles show improved catalytic properties (e.g., activity and durability).Type: ApplicationFiled: March 8, 2011Publication date: May 30, 2013Applicant: UNIVERSITY OF ROCHESTERInventors: Hong Yang, Jianbo Wu, Miao Shi, Adam Gross
-
Patent number: 8414678Abstract: A method for generating metallic nanomaterials using acetylenic-bridged metal-carbonyl complexes as a precursor allows control of nanoparticle properties. The novel method produced metallic nanomaterials resistant to oxidation.Type: GrantFiled: September 14, 2007Date of Patent: April 9, 2013Assignee: Board of Supervisors of Lousiana State University And Agricultural and Mechanical CollegeInventors: Challa S. S. R. Kumar, Rohini M. de Silva, Josef Hormes
-
Publication number: 20130084502Abstract: A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.Type: ApplicationFiled: September 30, 2011Publication date: April 4, 2013Inventors: Dileep Singh, Yusuf Yusufoglu, Elena Timofeeva, Jules Routbort
-
Patent number: 8409371Abstract: A method for producing a soft magnetic metal powder coated with a Mg-containing oxide film, comprising the steps of adding and mixing a Mg powder with a soft magnetic metal powder which has been subjected to heating treatment in an oxidizing atmosphere at a temperature of 40 to 500° C. to obtain a mixed powder, and heating the mixed powder at a temperature of 150 to 1,100° C. in an inert gas or vacuum atmosphere under a pressure of 1×10?12 to 1×10?1 MPa, while optionally tumbling; and a method for producing a composite soft magnetic material from the soft magnetic metal powder coated with a Mg-containing oxide film.Type: GrantFiled: September 7, 2011Date of Patent: April 2, 2013Assignee: Diamet CorporationInventors: Muneaki Watanabe, Ryoji Nakayama, Gakuji Uozumi
-
Patent number: 8382877Abstract: The present invention provides an approach to control the generation and grow of nanocrystal with membrane diffusion method and related apparatuses to produce inorganic oxide nanopowders and metal nanoparticles. With this method, the size and size distribution of inorganic oxide nanopowders and metal nanoparticles can be tuned. It overcomes the shortcomings possessed by the common chemical and physical method of preparing nanoparticles.Type: GrantFiled: July 5, 2011Date of Patent: February 26, 2013Assignee: Beijing University of TechnologyInventors: Hong He, Hongxing Dai, Xuehong Zi
-
Patent number: 8349467Abstract: The present invention provides metal nanowires including at least silver, and a metal other than silver, wherein the metal other than silver has a standard electrode potential more positive than the standard electrode potential of silver, and the metal nanowires have a long-axis length of 1 ?m or more and a short-axis length of 300 nm or less.Type: GrantFiled: March 5, 2009Date of Patent: January 8, 2013Assignee: FUJIFILM CorporationInventor: Kenji Naoi
-
Patent number: 8343668Abstract: A porous tin particle and its preparation method are provided in the present invention. The method includes steps of: (a) performing a reductive (or reductive electrochemical) reaction on a tin particle which simultaneously reacts with lithium ions to form a tin-lithium (Sn—Li) alloy; and (b) performing an oxidative (or oxidative electrochemical) reaction on Sn—Li alloy to release the lithium ions therefrom, and the porous tin particle is formed. The porous tin particle could be further applied in manufacturing the electrochemical electrode for lithium-ion battery with longer cycle life and higher reversibility.Type: GrantFiled: November 1, 2010Date of Patent: January 1, 2013Assignee: National Taiwan UniversityInventors: Nae-Lih Wu, Sung-Chieh Chao
-
Publication number: 20120301353Abstract: Nanowire preparation methods, compositions, and articles are disclosed. Such methods which reduce metal ions to metal nanowires in the presence complexes comprising metal-metal bonds, are capable of producing long, narrow, nanowires useful for electronics and optical applications.Type: ApplicationFiled: April 23, 2012Publication date: November 29, 2012Inventor: David R. Whitcomb
-
Publication number: 20120295110Abstract: The invention relates to a composition for synthesizing bimetallic nanoparticles, wherein the composition contains a first organometallic precursor and a second organometallic precursor having different decomposition rates and contained within an ionic liquid solution. The invention also relates to a method for synthesizing bimetallic nanoparticles, in which the composition is transformed under a hydrogen gas pressure between 0.1 and 10 MPa at a temperature between 0 and 150° C. until a suspension of bimetallic nanoparticles is obtained. The resulting nanoparticles are useful in diverse fields including the fields of catalysis and microelectronics.Type: ApplicationFiled: April 20, 2012Publication date: November 22, 2012Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT, CPE LYON, UNIVERSITE CLAUDE BERNARD LYON 1, CNRS -Centre National de la Recherche ScientifiqueInventors: Philippe Arquilliere, Paul-Henri Haumesser, Inga Helgadottir, Catherine Santini
-
Patent number: 8313551Abstract: The present invention provides a novel process for synthesis of a copper-alloy particle with improved grain boundary properties. The process comprises the steps of: forming a solution from an alcoholic agent and a branched dispersing agent; forming a reaction mixture with the solution and a copper precursor and optionally a nickel precursor; heating the reaction mixture; cooling the reaction mixture; adding an additional amount of copper precursor and at least one precursor selected from the group consisting of: nickel, zinc, and bismuth; heating the reaction mixture; and maintaining the reaction mixture for a time sufficient to reduce the reaction mixture to copper-alloy particles.Type: GrantFiled: March 17, 2010Date of Patent: November 20, 2012Assignee: Energetic Materials LLCInventor: Joshua M. Deinzer
-
Publication number: 20120288440Abstract: The present invention relates to pulverulent materials suitable for storing hydrogen, and more particularly to a method of preparing such a material, in which: (A) a composite metallic material having a specific granular structure is prepared by co-melting the following mixtures: a first metallic mixture (m1), which is an alloy (a1) of body-centred cubic crystal structure, based on titanium, vanadium, chromium and/or manganese, or a mixture of these metals in the proportions of the alloy (a1); and a second mixture (m2), which is an alloy (a2), comprising 38 to 42% zirconium, niobium, molybdenum, hafnium, tantalum and/or tungsten and 56 to 60 mol % of nickel and/or copper, or else a mixture of these metals in the proportions of the alloy (a2), with a mass ratio (m2)/(m1+m2) ranging from 0.1 wt % to 20 wt %; and (B) the composite metallic material thus obtained is hydrogenated, whereby the composite material is fragmented (hydrogen decrepitation).Type: ApplicationFiled: July 30, 2012Publication date: November 15, 2012Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S.)Inventors: Jean Charbonnier, Patricia De Rango, Daniel Fruchart, Salvatore Miraglia, Sophie Rivoirard, Natalia Skryabina
-
Publication number: 20120282130Abstract: A carbothermic reduction method is provided for reducing a rare earth element-containing oxide including at least one of neodymium (Nd) and praseodymium (Pr) and possibly other rare earth elements (La, Ce, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, and Y) as alloying agents in the presence of carbon and a source of a reactant element including one or more of silicon, germanium, tin, lead, arsenic, antimony and bismuth to form a rare earth element-containing intermediate alloy as a master alloy for making permanent magnet material. The process is a more efficient, lower cost and environmentally friendly technology than current methods of manufacturing rare earth metals. The intermediate material is useful as a master alloy for making a permanent magnet material comprising at least one of neodymium and praseodymium, and possibly other rare earth metals as alloying additives.Type: ApplicationFiled: April 18, 2012Publication date: November 8, 2012Inventors: Karl A. Gschneidner, JR., Frederick A. Schmidt, Ralph W. McCallum
-
Publication number: 20120272790Abstract: The invention relates to Sn—Cu—Ag alloy nanoparticles, preparation method thereof and ink or paste using the alloy nanoparticles in which the alloy nanoparticles are suitable for metal ink having excellent electrical conductivity or solder materials having low calcinating temperature.Type: ApplicationFiled: June 13, 2012Publication date: November 1, 2012Applicant: Samsung Electro-Mechanics Co., Ltd.Inventors: Kwi-Jong Lee, Hyuck-Mo Lee, Hyun-Joon Song, Yun-Hwan Jo, Ji-Chan Park, Jung-Up Bang, Dong-Hoon Kim
-
Patent number: 8287617Abstract: A method for producing an alloy fine particle colloid by heating and evaporating a raw material binary alloy which is in a solid state in an ambient temperature and pressure environment in a reduced-pressure environment, cooling a generated vapor for condensation and solidification and collecting a formed alloy fine particle in a liquid medium, wherein (1) when an atomic fraction of a component element in the raw material alloy is defined as X, a component ratio of each of the elements of the raw material alloy is regulated such that a fraction of a vapor pressure of the component element to the total vapor pressure of the raw material alloy falls within the range of from (X?0.1) to (X+0.1); and (2) the raw material binary alloy is an alloy species which forms a homogeneous alloy phase in an alloy ingot. Thus, an alloy fine particle colloid is rationally and efficiently produced.Type: GrantFiled: April 25, 2007Date of Patent: October 16, 2012Assignee: National Institute for Materials ScienceInventor: Isao Nakatani
-
Publication number: 20120251380Abstract: The invention relates to a process for producing an iron-and/or tungsten containing powder or powder agglomerate including the steps of: a) mixing at least a first powder fraction comprising a tungsten carbide containing powder, and at least a second powder fraction comprising an iron oxide powder and/or a tungsten oxide containing powder and optionally an iron powder, the weight of the first fraction being in the range of 50-90% by weight of the mix and the weight of the second fraction being in the range of 10-50% by weight of the mix, b) heating the mix of step a) to a temperature in the range of 400-1300° C., preferably 1000-1200° C. The invention also relates to an iron-and/or tungsten containing powder or powder agglomerate.Type: ApplicationFiled: October 26, 2010Publication date: October 4, 2012Applicant: MINPRO AKTIEBOLAGInventor: Johan Arvidsson
-
Publication number: 20120244030Abstract: Provided are a powder for a magnet, which provides a rare-earth magnet having excellent magnet properties and which has excellent formability, a method for producing the powder for a magnet, a powder compact, a rare-earth-iron-based alloy material, and a rare-earth-iron-nitrogen-based alloy material which are used as materials for the magnet, and methods for producing the powder compact and these alloy materials. Magnetic particles 1 constituting the powder for a magnet each have a texture in which grains of a phase 3 of a hydride of a rare-earth element are dispersed in a phase 2 of an iron-containing material, such as Fe. The uniform presence of the phase 2 of the iron-containing material in each magnetic particle 1 results in the powder having excellent formability, thereby providing a powder compact 4 having a high relative density.Type: ApplicationFiled: December 2, 2010Publication date: September 27, 2012Applicant: Sumitomo Electric Industries, Ltd.Inventor: Toru Maeda
-
Publication number: 20120238443Abstract: The present invention is directed to a process for manufacture of base metal nano-particles using precious metal seed particles. The process comprises the steps of mixing at least one base metal precursor and at least one precious metal precursor in one or more polyol solvents, reacting the mixture at a temperature in the range of 110 to 150° C. to form precious metal seed particles (STEP A) and reacting the mixture at a temperature in the range of 180 to 220° C. to form the final metal particles (STEP B). Base metal particles of Co, Ni and Cu containing 100 to 10000 ppm of precious metals Ru, Pd, Pt or Ir are obtained. The resulting metal nano-particles with medium diameters of 20 to 200 nm are useful for electronic and catalytic applications and can be used as core materials for the manufacture core/shell type catalysts.Type: ApplicationFiled: March 16, 2011Publication date: September 20, 2012Inventors: Dan V. Goia, Marco Lopez, Igor V. Sevonkaev
-
Publication number: 20120230860Abstract: A method for purifying metal M1 particles manufactured by an electrochemical reduction process, the method comprising the steps of introducing the metal M1 particles into a heat source (13) at a temperature substantially equal to or higher than the melting point of M1 so as to cause vaporisation of some or substantially all of the contaminating impurities present, removing the vaporised impurities from the vicinity of the particles, and cooling the purified metal M1 particles. The purified particles can be used directly in lower temperature powder metallurgy processes and have a fully dense spherical particle morphology, imparting good flowability. The purification process can also be incorporated as an integral stage of sheet or stock production processes based on particle feedstocks that have been produced by electrochemical reduction.Type: ApplicationFiled: May 22, 2012Publication date: September 13, 2012Applicant: METALYSIS LIMITEDInventors: Charles M. WARD-CLOSE, Alastair B. Godfrey, Paul S. Goodwin
-
Patent number: 8257464Abstract: The present invention relates to pulverulent materials suitable for storing hydrogen, and more particularly to a method of preparing such a material, in which: (A) a composite metallic material having a specific granular structure is prepared by co-melting the following mixtures: a first metallic mixture (m1), which is an alloy (a1) of body-centered cubic crystal structure, based on titanium, vanadium, chromium and/or manganese, or a mixture of these metals in the proportions of the alloy (a1); and a second mixture (m2), which is an alloy (a2), comprising 38 to 42% zirconium, niobium, molybdenum, hafnium, tantalum and/or tungsten and 56 to 60 mol % of nickel and/or copper, or else a mixture of these metals in the proportions of the alloy (a2), with a mass ratio (m2)/(m1+m2) ranging from 0.1 wt % to 20 wt %; and (B) the composite metallic material thus obtained is hydrogenated, whereby the composite material is fragmented (hydrogen decrepitation).Type: GrantFiled: February 22, 2007Date of Patent: September 4, 2012Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)Inventors: Jean Charbonnier, Patricia De Rango, Daniel Fruchart, Salvatore Miraglia, Sophie Rivoirard, Natalia Skryabina
-
Patent number: 8216508Abstract: A method for preparing an article of a base metal alloyed with an alloying element includes the steps of preparing a compound mixture by the steps of providing a chemically reducible nonmetallic base-metal precursor compound of a base metal, providing a chemically reducible nonmetallic alloying-element precursor compound of an alloying element, and thereafter mixing the base-metal precursor compound and the alloying-element precursor compound to form a compound mixture. The compound mixture is thereafter reduced to a metallic alloy, without melting the metallic alloy. The step of preparing or the step of chemically reducing includes the step of adding an other additive constituent. The metallic alloy is thereafter consolidated to produce a consolidated metallic article, without melting the metallic alloy and without melting the consolidated metallic article.Type: GrantFiled: August 7, 2008Date of Patent: July 10, 2012Assignee: General Electric CompanyInventors: Andrew Philip Woodfield, Eric Allen Ott, Clifford Earl Shamblen, Michael Francis Xavier Gigliotti
-
Patent number: 8197885Abstract: A method for producing a metal article according to one embodiment may include: Providing a supply of a sodium/molybdenum composite metal powder; compacting the sodium/molybdenum composite metal powder under sufficient pressure to form a preformed article; placing the preformed article in a sealed container; raising the temperature of the sealed container to a temperature that is lower than a sintering temperature of molybdenum; and subjecting the sealed container to an isostatic pressure for a time sufficient to increase the density of the article to at least about 90% of theoretical density.Type: GrantFiled: February 25, 2009Date of Patent: June 12, 2012Assignee: Climax Engineered Materials, LLCInventors: Dave Honecker, Christopher Michaluk, Carl Cox, James Cole
-
Publication number: 20120114962Abstract: A system and method to tailor the optical properties of nanomaterials using a core-alloy-shell nano-ultrastructure. Atomic diffusion is used at the nanoscale in order to process as-synthesized nanomaterials into core-alloy-shell architectures. The alloy formation is controlled by the deposition of the alloy solute atoms, and then by alloy interdiffusion of the solute into the core nanoparticle. By controlling temperature, it is possible to control how far the solute diffuses into the core, which in turn allows the tailoring of the optical response of the particle itself. The alloy formation and subsequent interdiffusion allows tailoring of the nanoparticle composition and ultrastructure, resulting in a dramatic tunability of the metal nanostructures surface plasmon response.Type: ApplicationFiled: November 8, 2011Publication date: May 10, 2012Applicant: SYRACUSE UNIVERSITYInventors: Mathew Maye, Peter Njoki, Wenjie Wu, Hyunjoo Han
-
Patent number: 8167972Abstract: The present invention has an object of providing a single-stage production method that enables the production of ultra fine metal nanoparticles and ordered alloy nanoparticles within solution. The production method includes irradiating a solution of a salt or complex of a metal element, thereby decomposing and/or reducing the salt or complex within the solution and generating metal nanoparticles having an average particle size within a range from 0.3 to 100 nm within the solution.Type: GrantFiled: June 27, 2007Date of Patent: May 1, 2012Assignee: N.E. Chemcat CorporationInventors: Takashi Ito, Hiroshi Sugai, Masato Watanabe