Producing Alloy Patents (Class 75/351)
  • Patent number: 8167973
    Abstract: A process for synthesizing carbon-metal nanocomposites. In one embodiment, the process includes the steps of preparing a metal derivative or a metal chelated derivative of a carbon-containing precursor in solid form, and subjecting the metal derivative or metal chelated derivative of a carbon-containing precursor in solid form to microwave radiation at a frequency in the range of 900 MHz to 5.8 GHz, for a period of time effective to generate a heat flow from inside of the metal derivative or metal chelated derivative of a carbon-containing precursor in solid form to the outside such that the temperature of the metal derivative or metal chelated derivative of a carbon-containing precursor in solid form reaches 1,000° C. in less than 6 minutes with a temperature (T) derivative over time (t), ?T/?t, no less than 2.5° C./second to form carbon-metal nanocomposites.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: May 1, 2012
    Assignee: Board of Trustees of the University of Arkansas
    Inventor: Tito Viswanathan
  • Publication number: 20120094140
    Abstract: The alloy fine particles of the present invention are fine particles of a solid solution alloy, in which a plurality of metal elements are mixed at the atomic level. The production method of the present invention is a method for producing alloy fine particles composed of a plurality of metal elements. This production method includes the steps of: (i) preparing a solution containing ions of the plurality of metal elements and a liquid containing a reducing agent; and (ii) mixing the solution with the liquid that has been heated.
    Type: Application
    Filed: April 23, 2010
    Publication date: April 19, 2012
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hiroshi Kitagawa, Kohei Kusada, Rie Makiura
  • Patent number: 8157889
    Abstract: A magnetic metal powder having fluidity is provided which is composed of FePt nanoparticles synthesized by the polyol synthesis method that possess fct (face-centered tetragonal) structure and exhibit crystal magnetic anisotropy from immediately after synthesis. Specifically, there is provided a magnetic metal powder having fluidity which is composed of magnetic metal particles whose main components and the contents thereof are represented by the following general formula (1): [TXM1?X]YZ1?Y??(1), where T is one or both of Fe and Co, M is one or both of Pt and Pd, Z is at least one member selected from the group composed of Ag, Cu, Bi, Sb, Pb and Sn, X represents 0.3˜0.7, and Y represents 0.7˜1.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: April 17, 2012
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventor: Kazuyuki Tohji
  • Publication number: 20120055873
    Abstract: The present invention relates to methods of making and using and compositions of metal nanoparticles formed by green chemistry synthetic techniques. For example, the present invention relates to metal nanoparticles formed with solutions of plant extracts and use of these metal nanoparticles in removing contaminants from soil and groundwater and other contaminated sites. In some embodiments, the invention comprises methods of making and using compositions of metal nanoparticles formed using green chemistry techniques.
    Type: Application
    Filed: November 8, 2011
    Publication date: March 8, 2012
    Applicants: The U.S.A as represented by the Administrator of the U.S. Environmental Protection Agency, VeruTEK, Inc.
    Inventors: George E. Hoag, John B. Collins, Rajendar S. Varma, Mallikarjuna N. Nadagouda
  • Patent number: 8129306
    Abstract: A polymetallic nanoparticle alloy having enhanced catalytic properties including at least one noble metal and at least one base metal, where the noble metal is preferentially dispersed near the surface of the nanoparticle and the base metal modifies the electronic properties of the surface disposed noble metal. The polymetallic nanoparticles having application as a catalyst when dispersed on a carbon substrate and in particular applications in a fuel cell. In various embodiments a bimetallic noble metal-base metal nanoparticle alloy may be used as an electrocatalyst offering enhanced ORR activity compared to the monometallic electrocatalyst of noble metal.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: March 6, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Deborah J. Myers, Xiaoping Wang, Nancy N. Kariuki
  • Patent number: 8110021
    Abstract: Synthesis of nanoparticles with particle size control is provided by the method of using two different metal-containing precursors, a capping component, an optional reducing agent, and then contacting the two precursors with the capping component to form a reaction solution, which is heated to produce first and second metals-containing nanoparticles. By controlling the ratio of the concentration of the capping component to the total concentration of the two metal-containing precursors, the nanoparticles can have diameters ranging between about 1 nm to about 15 nm. A decrease in the concentration of the capping component typically increases the size of the nanoparticles. Preferred compositions include Pt and Co-containing alloy nanoparticles. Controlled synthesis of larger, about 6 nm to about 12 nm, sized nanoparticles can be achieved in a solvent-free reaction process.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: February 7, 2012
    Assignees: Honda Motor Co., Ltd., The Research Foundation of the State University of New York
    Inventors: Chuan-Jian Zhong, Jin Luo, Zhichaun Xu, Ting He
  • Patent number: 8088485
    Abstract: Metal nanoparticles containing two or more metals are formed by heating or refluxing a mixture of two or more metal salts, such as a metal acetates, and a passivating solvent, such as a glycol ether, at a temperature above the melting point of the metal salts for an effective amount of time.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: January 3, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Avetik Harutyunyan, Leonid Grigorian, Toshio Tokune
  • Patent number: 8084140
    Abstract: The invention provides an aqueous solution-based method for producing nanosized silver platelets, which employs the controlled mixing of a silver ion solution, a reducing solution, and an acidic solution in the presence of palladium ions.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: December 27, 2011
    Assignee: Clarkson University
    Inventors: Dan V. Goia, Brendan P. Farrell
  • Publication number: 20110291049
    Abstract: The present invention provides high quality monodisperse or substantially monodisperse InAs nanocrystals in the as-prepared state. In some embodiments, the as-prepared substantially monodisperse InAs nanocrystals demonstrate a photoluminescence of between about 700 nm and 1400 nm.
    Type: Application
    Filed: June 10, 2009
    Publication date: December 1, 2011
    Applicant: Board of Trustees of the University of Arkansas
    Inventors: Xiagang Peng, Renguo Xie
  • Publication number: 20110283835
    Abstract: A metal powder manufacturing device for manufacturing a metal powder includes a feed for supplying a molten metal, a fluid spout unit, and a course modification unit. The fluid spout unit further includes a channel and an orifice. The channel is provided below the feed, allowing passing of the molten metal supplied from the feed. The orifice is opened at a bottom end of the channel, spouting a fluid into the channel. The above course modification unit is provided below the fluid spout unit, and forcibly changes the traveling direction of a dispersion liquid. This dispersion liquid is composed of multiple fine droplets dispersed into the fluid. The above droplets are a resultant of a breakup caused by a contact between the molten metal and the fluid ejected from the orifice. Here, the dispersion liquid is transported so that the droplets is cooled and solidified in the dispersion liquid in order to manufacture the metal powder.
    Type: Application
    Filed: August 3, 2011
    Publication date: November 24, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Atsushi WATANABE
  • Publication number: 20110283834
    Abstract: A one-step process for synthesizing gold-copper bimetallic nanocubes. The process comprises the step of simultaneously reducing a copper II salt and a gold halide by 1,2-hexadecanediol in diphenyl ether, and 1-dodecanethiol as well as surfactants 1-adamantanecarboxylic acid and 1-hexadecylamine. The copper II salt may be copper (II) acetylacetonate, copper chloride, copper sulfate, or copper phosphate. The gold halide may be chloroauric acid, gold chloride, gold bromide, or tetrabromoauric acid. The reduction may occur at a temperature between about 160 and 180 degrees Celsius. The copper II salt may be copper (II) acetylacetonate and the gold halide may be chloroauric acid.
    Type: Application
    Filed: July 12, 2011
    Publication date: November 24, 2011
    Inventors: Angela R. Hight-Walker, Yonglin Liu
  • Publication number: 20110252922
    Abstract: A method is provided for producing a diffusion alloyed powder consisting of an iron or iron-based core powder having particles of an alloying powder containing Cu and Ni bonded to the surface of the core particles, comprising providing a unitary alloying powder capable of forming particles of a Cu and Ni containing alloy, mixing the unitary alloying powder with the core powder, and heating the mixed powders in a non-oxidizing or reducing atmosphere to a temperature of 500-1000° C. during a period of 10-120 minutes to convert the alloying powder into a Cu and Ni containing alloy, so as to diffusion bond particles of the Cu and Ni alloy to the surface of the iron or iron-based core powder. The alloying powder may be a Cu and Ni alloy, oxide, carbonate or other suitable compound that on heating will form a Cu and Ni alloy.
    Type: Application
    Filed: December 16, 2009
    Publication date: October 20, 2011
    Inventor: Mats Larsson
  • Publication number: 20110254230
    Abstract: This invention relates to thermal spray coatings, powders useful in deposition of the thermal spray coatings, methods of producing the powders, and uses of the thermal spray coatings, for example, coating of piston rings and cylinder liners of internal combustion engines. The coatings of this invention are applied by thermal spray deposition of a powder. The powder contains bimetallic carbides of chromium and molybdenum dispersed in a matrix metal. The matrix metal contains nickel/chromium/molybdenum.
    Type: Application
    Filed: April 19, 2010
    Publication date: October 20, 2011
    Inventors: WILLIAM JOHN CRIM JAROSINSKI, VLADIMIR BELOV
  • Publication number: 20110252923
    Abstract: The Ultrafine alloy particles of an alloy includes a primary metal and one or more subsidiary metals solid-soluble in said primary metal, a content of the one or more subsidiary metals is in a range of 1 wt % to 25 wt % and the one or more subsidiary metals solid-solved in the primary metal inhibit coalescence or oxidation of the ultrafine alloy particles including the primary metal, or both. The process introduces powder materials including the primary metal and the one or more subsidiary metals for producing the ultrafine alloy particles into a thermal plasma flame under reduced pressure to form a vapor-phase mixture and introduces a cooling gas toward an end portion of the thermal plasma flame in a supply amount sufficient for quenching the vapor-phase mixture so as to generate the ultrafine alloy particles.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 20, 2011
    Inventors: Keitaroh Nakamura, Takashi Fujii
  • Patent number: 8038763
    Abstract: Au—Pt heteroaggregate dendritic nanostructures and AuPt alloy nanoparticles, and their use as anodic catalysts in fuel cells.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: October 18, 2011
    Assignee: University of Maryland
    Inventors: Bryan W. Eichhorn, Shenghu Zhou, Gregory Scott Jackson
  • Publication number: 20110243787
    Abstract: This invention is related to a powder of a tungsten alloy with a transition metal dissolved therein as a solid solution that is suitable as material for a cemented carbide represented by formula [1] and a material for a catalyst. The powder of tungsten alloy is characterized in that at least one transition metal element selected from the group consisting of cobalt, iron, manganese and nickel is dissolved as a solid solution in a tungsten grating and a peak derived from a bcc tungsten phase appears in an X-ray diffraction diagram. Formula [1]: M?W wherein M represents one or more elements selected from Co, Fe, Mn and Ni. The use of tungsten alloy powder can provide a tungsten carbide with a transition metal dissolved therein as a solid solution in which a solid solution phase comprising at least one transition metal element selected from the group consisting of cobalt, iron, manganese and nickel, tungsten and carbon is included in a tungsten carbide skeleton, and a tungsten carbide diffused cemented carbide.
    Type: Application
    Filed: August 19, 2009
    Publication date: October 6, 2011
    Applicant: Sanalloy Industry Co., Ltd.
    Inventors: Masao Morishita, Hiroaki Yamamoto, Masaaki Ikebe, Masahiro Iwasaki, Hidefumi Yanagita, Hiroshi Nishimaki
  • Publication number: 20110239824
    Abstract: A target consisting essentially of a CoCrPt-based metal or a CoCrPtRu-based metal, and one or more metal oxides selected from the group consisting of SiO2, Cr2O3, CoO, TiO2 and Ta2O5, is heated in an upper crucible of a two-level crucible that includes the upper crucible with a through hole formed in a bottom surface, and a lower crucible disposed below the through hole. The target is heated at a temperature of from 1400 to 1790° C. if the target does not contain both TiO2 and Ta2O5. The target is heated at a temperature of from 1400 to 1630° C. if the target contains TiO2 but does not contain Ta2O5. The target is heated at a temperature of from 1400 to 1460° C. if the target contains Ta2O5. The metal thereby melted is caused to flow into the lower crucible, so that the metal is separated from the metal oxide.
    Type: Application
    Filed: March 21, 2011
    Publication date: October 6, 2011
    Applicant: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Toshiya YAMAMOTO, Takanobu MIYASHITA, Kiyoshi HIGUCHI, Yasuyuki GOTO
  • Patent number: 8025710
    Abstract: Provided are an ancillary material, used for shape processing, which is capable of shortening a processing time, avoiding a reduction in quality of a shape provided to a workpiece material, and allowing a relatively low manufacturing cost; a processing method using the ancillary material; and a method of manufacturing the ancillary material. The tungsten alloy grains (1) comprise: tungsten of greater than or equal to 80% by mass and less than or equal to 98% by mass; nickel; at least one kind of metal selected from the group consisting of iron, copper, and cobalt; and an inevitable impurity, a maximum diameter thereof is greater than or equal to 0.1 mm and less than or equal to 5.00 mm, and a specific surface area thereof is less than or equal to 0.02 m2/g. The tungsten alloy grains (1, 10), the workpiece material (30), an abrasive (20) are blended in a container (100) and the container is rotated, thereby processing the shape of the workpiece material (30).
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: September 27, 2011
    Assignee: A.L.M.T. Corp.
    Inventors: Shinji Kikuhara, Hitoshi Inoue, Noboru Uenishi, Satoshi Umemoto
  • Patent number: 8012273
    Abstract: A metallic article is produced by furnishing one or more nonmetallic precursor compound comprising the metallic constituent element(s), and chemically reducing the nonmetallic precursor compound(s) to produce an initial metallic particle, preferably having a size of no greater than about 0.070 inch, without melting the initial metallic particle. The initial metallic particle is thereafter melted and solidified to produce the metallic article. By this approach, the incidence of chemical defects in the metal article is minimized. The melted-and-solidified metal may be used in the as-cast form, or it may be converted to billet and further worked to the final form.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: September 6, 2011
    Assignee: General Electric Company
    Inventors: Andrew P. Woodfield, Clifford E. Shamblen, Eric A. Ott
  • Patent number: 8012452
    Abstract: The invention relates to a method for preparation of a material adapted to reversible storage of hydrogen, including steps consisting of providing a first powder of a magnesium-based material, hydrogenating the first powder to convert at least part of the first powder into metal hydrides, mixing the first hydrogenating powder with a second powder additive, the proportion by mass of the second powder in the mix obtained being between 1% and 20% by mass, wherein the additive is formed from an alloy with a centred cubic structure based on titatnium, vanadium and at least one other metal chosen from chromium or manganese, and grinding the mix of first and second powders.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: September 6, 2011
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Daniel Fruchart, Patricia De Rango, Jean Charbonnier, Salvatore Miraglia, Sophie Rivoirard, Nataliya Skryabina, Michel Jehan
  • Publication number: 20110197710
    Abstract: A method of making metal nanostructures having a nanometer size in at least one dimension includes preparing an aqueous solution comprising a cation of a first metal and an anion, and mixing commercial elemental powder particles of an elemental second metal having a greater reduction potential than the first metal with the aqueous solution in an amount that reacts and dissolves all of the second metal and precipitates the first metal as metal nanostructures. The temperature and concentration of the aqueous solution and the selection of the anions and the second metal are chosen to produce metal nanostructures of a desired shape, for example ribbons, wires, flowers, rods, spheres, hollow spheres, scrolls, tubes, sheets, hexagonal sheets, rice, cones, dendrites, or particles.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 18, 2011
    Applicants: THE UNIVERSITY OF WESTERN ONTARIO, GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Xueliang Sun, Gaixia Zhang, Mei Cai, Shuhui Sun, Ruying Li
  • Patent number: 7943255
    Abstract: A method of manufacturing a hydrogen-absorption alloy electrode which comprises particles of a hydrogen-absorption alloy that comprises a rare earth element, Ni, Co and Al. The method comprises subjecting the hydrogen-absorption alloy particles to an alkaline treatment in a 10 to 50 weight % NaOH solution at 60 to 140° C. for 0.5 to 5 hours such that on the surface of the particles (amount of Al on surface/amount of Al in alloy)<(amount of Co on surface/amount of Co in alloy).
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: May 17, 2011
    Assignee: Panasonic Corporation
    Inventors: Kojiro Ito, Shinichiro Ito, Hajime Seri, Shinichi Yuasa, Munehisa Ikoma
  • Publication number: 20110104043
    Abstract: The subject of the invention is the (50) continuous flow system for the synthesis of nanoparticles which consist of the (1a) feeding unit connected to the flow path, at least one (2) first reactor unit possessing the (13) heatable reactor-zone, the (3) second reactor unit which follows (2) in the same cascade; the (5) mixing unit and the (1b) second feeding unit between (2) and (3) reactor units, the (9) and (10) feeding pumps connected to the raw material source and/or (22) control unit which is capable of controlling at least one (18) pressure controller and/or controlling the temperature of at least one (13) heatable reactor-zone; each (13) heatable reactor-zone is followed by (14) cooling unit in the cascade. In addition, the subject of this invention is a process for the synthesis of nanoparticles, preferably metal-containing nanoparticles, and nanoparticles of biologically active organic molecules wherein the process is accomplished in the device according to FIG. 1.
    Type: Application
    Filed: April 28, 2009
    Publication date: May 5, 2011
    Applicant: Nangenex Nanotechnology Incorporated
    Inventors: Krisztián Niesz, Attila Wootsch, Maxime Groualle, Zsolt Ötvös, Ferenc Darvas
  • Patent number: 7931941
    Abstract: A process is described for the synthesis of metallic nanoparticles by chemical reduction of metal salts in the presence of organic ligands capable of binding to the metal particle surfaces and stabilizing them against agglomeration. The resultant nanoparticles or dispersions of the particles can be sintered into highly conductive films or traces at temperatures as low as 80° C. in 10 minutes or less.
    Type: Grant
    Filed: October 29, 2005
    Date of Patent: April 26, 2011
    Assignee: PCHEM Associates, Inc.
    Inventors: Michael A. Mastropietro, Gregory A. Jablonski
  • Patent number: 7905943
    Abstract: Bimetallic hybrid nanostructures exhibit enhanced properties beyond a single composition nanoparticle, but present technical challenges for synthesis that includes the ability to process two or more materials while offering control over structural arrangement. Unlike conventional synthetic strategies, biological systems are excellent manufacturers of complex inorganic materials which possess maximal functionality, quality, and structures. Using a bio-mediated approach, Applicants have developed a synthetic method for the controlled synthesis of bimetallic nanostructures using multifunctional peptides.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: March 15, 2011
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Joseph M. Slocik, Rajesh R. Naik
  • Publication number: 20110042210
    Abstract: The invention relates to a method of manufacturing metal nanoparticles by using metal seed and metal nanoparticles including such metal seed. It is to provide the Au nanoparticles prepared by a method comprising: preparing a solution by adding a monosurfactant into a non-aqueous solvent; heating the solution; preparing a platinum seed solution by adding platinum salt chosen form platinum, palladium, iridium into the heated solution; and adding gold salt in the platinum seed solution.
    Type: Application
    Filed: December 30, 2009
    Publication date: February 24, 2011
    Inventors: Sung Koo KANG, Hyunjoon Song, Daeha Seo, Jongwook Jung, Garam Park, Donghoon Kim, KwiJong Lee
  • Publication number: 20110042611
    Abstract: An apparatus (10) and a method (200) for the manufacture of nanoparticles. The apparatus and the method allows for the nucleation and growth of nanoparticles at independent temperatures. The independent temperatures allow for the growth of nanoparticles in a controlled environment avoiding spontaneous nucleation and allowing particle sizes to be controlled and facilitating the manufacture of particles of a substantially uniform size. Furthermore the apparatus (10) allows for the manufacture of core-shell nanoparticles and core-shell-shell nanoparticles.
    Type: Application
    Filed: February 11, 2009
    Publication date: February 24, 2011
    Applicant: CENTRUM FUR ANGEWANDTE NANOTECHNOLOGIE (CAN) GMBH
    Inventors: Horst Weller, Jan Niehaus
  • Patent number: 7892599
    Abstract: Methods for functionalizing the surface of nanomaterials to improve processing and product manufacturing. These methods are useful for oxides, nitrides, carbides, borides, metals, alloys, chalcogenides, and other compositions.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: February 22, 2011
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Tapesh Yadav, Karl Pfaffenbach
  • Patent number: 7879131
    Abstract: A process for encapsulating metal microparticles in a pH sensitive polymer matrix using a suspension containing the polymer. The process first disperses the metal particles in a polymeric solution consisting of a pH sensitive polymer. The particles are then encapsulated in the form of micro-spheres of about 5-10 microns in diameter comprising the pH sensitive polymer and the metal ions (Ni2+, Cu2+) to be coated. The encapsulated matrix includes first metal particles homogeneously dispersed in a pH sensitive matrix, comprising the second metal ions. A high shear homogenization process ensures homogenization of the aqueous mixture resulting in uniform particle encapsulation. The encapsulated powder may be formed using spray drying. The powder may be then coated in a controlled aqueous media using an electroless deposition process. The polymer is removed when the encapsulated micro-spheres encounter a pH change in the aqueous solution.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: February 1, 2011
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Zvi Yaniv, Prabhu Soundarrajan
  • Patent number: 7867316
    Abstract: The present invention relates to a method for manufacturing metal nanoparticles including: preparing a first solution including a metal precursor and a non-polar solvent; preparing a second solution with adding a capping molecule presented by the following Formula 1 into the first solution; and stirring the second solution with applying heat, wherein R1 and R2 are independently —COOH, —NH2 or —CH3 but R1 and R2 cannot be —COOH at the same time, and x and y is independently an integer from 3 to 20 respectively and x+y is 20 to 40.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: January 11, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Byung-Ho Jun, Dong-Hoon Kim, Kwi-Jong Lee
  • Publication number: 20100316549
    Abstract: A method for the manufacture of a III-V compound in the form of nanoparticles, such as those used in semi-conductors. The reaction proceeds at atmospheric pressure in a reaction solution by the reaction of a III compound source and a V compound source. The reaction proceeds in solvent of high boiling point. The solvent contains a stabiliser and a base. The manufactured III-V compound is precipitated from the reaction solution, isolated, purified and analysed.
    Type: Application
    Filed: September 19, 2008
    Publication date: December 16, 2010
    Applicant: CENTRUM FUR ANGEWANDTE NANOTECHNOLOGIE (CAN) GMBH
    Inventors: Tim Strupeit, Horst Weller, Andreas Kornowski
  • Publication number: 20100313709
    Abstract: A method for manufacturing alloy powders based on titanium, zirconium and hafnium alloyed with the elements Ni, Cu, Ta, W, Re, Os, and Ir is described in which an oxide of Ti and Zr and Hf is mixed with a metal powder of the elements named and with a reducing agent, and wherein this mixture is heated in a furnace, optionally under a argonate atmosphere or, optionally under hydrogen atmosphere until the reducing reaction begins, the reaction product is leached and then washed and dried, wherein the oxide used has an average grain size of 0.5 to 20 ?m, a specific surface area according to BET of 0.5 20 m2/g and a minimum content of 94 wet.-%. An easy to produce powder, in particular in relation to the ignition point and burning time, is produced.
    Type: Application
    Filed: February 27, 2009
    Publication date: December 16, 2010
    Inventors: Yasushi Ikarashi, Kyoji Sekiguchi, Kiyoshi Terawaki, Takuji Yamaguchi
  • Patent number: 7824573
    Abstract: The present invention provides an alloy powder that is a material for producing inorganic functional materials such as phosphors, a phosphor with high brightness, and a method for producing the phosphor. An alloy powder for an inorganic functional material precursor contains at least one metal element and at least one activating element M1 and has a weight-average median diameter D50 of 5 ?m to 40 ?m. A method for producing a phosphor includes a step of heating an alloy, containing two or more metal elements for forming the phosphor, in a nitrogen-containing atmosphere.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 2, 2010
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiromu Watanabe, Masumi Itou, Keiichi Seki, Hiroshi Wada, Motoyuki Shigeiwa, Kaoru Terada, Naoto Kijima
  • Publication number: 20100272999
    Abstract: A method and a device are described for the production of metal powder or alloy powder of a moderate grain sizes less than 10 ?m, comprising or containing at least one of the reactive metals zirconium, titanium, or hafnium, by metallothermic reduction of oxides or halogenides of the cited reactive metals with the aid of a reducing metal, wherein said metal powder or alloy powder is phlegmatized by adding a passivating gas or gas mixture during and/or after the reduction of the oxides or halogenides and/or is phlegmatized by adding a passivating solid before the reduction of the oxides or halogenides, wherein both said reduction and also said phlegmatization are performed in a single gas-tight reaction vessel which can be evacuated.
    Type: Application
    Filed: January 8, 2009
    Publication date: October 28, 2010
    Inventor: Ulrich Gerhard Baudis
  • Patent number: 7785392
    Abstract: The present invention relates to a method for manufacturing metal nanoparticles, more particularly to a method for manufacturing metal nanoparticles, which includes: preparing a mixed solution including capping molecules, a metal catalyst, a reducing agent, and an organic solvent; adding a metal precursor to the mixed solution and raising to a predetermined temperature and stirring; and lowering the temperature of the mixed solution and producing nanoparticles. Embodiments of the invention allow the synthesis of nanoparticles, such as of single metals, metal alloys, or metal oxides, to a high concentration in a water base using a metal catalyst.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: August 31, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: In-Keun Shim, Jae-Woo Joung
  • Patent number: 7766992
    Abstract: A metallic article is produced by furnishing one or more nonmetallic precursor compound comprising the metallic constituent element(s), and chemically reducing the nonmetallic precursor compound(s) to produce an initial metallic particle, preferably having a size of no greater than about 0.070 inch, without melting the initial metallic particle. The initial metallic particle is thereafter melted and solidified to produce the metallic article. By this approach, the incidence of chemical defects in the metal article is minimized. The melted-and-solidified metal may be used in the as-cast form, or it may be converted to billet and further worked to the final form.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: August 3, 2010
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Clifford Earl Shamblen, Eric Allen Ott
  • Patent number: 7753989
    Abstract: A method of producing passivated Ti or Ti alloy particles with oxygen concentrations of less than about 900 parts per million (ppm), which includes introducing a halide vapor of Ti or the metal constituents of the alloy at sonic velocity or greater into a stream of liquid alkali or liquid alkaline earth metal or mixtures thereof forming a reaction zone in which the halide is reduced by the liquid metal present in sufficient excess of stoichiometric such that Ti or Ti alloy powder from the reduction of the halide by the liquid metal is friable. After filtration and distillation excess liquid metal is removed from the Ti or Ti alloy powder that is then maintained at elevated temperature for a time sufficient to grow the particles to average diameters calculated from BET surface area measurement greater than about one micron. After cooling the Ti or Ti alloy powder to temperature of about 80° C.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: July 13, 2010
    Assignee: Cristal US, Inc.
    Inventors: William Ernst, Lance Jacobsen
  • Publication number: 20100154590
    Abstract: A process for producing refractory metal alloy powders includes the steps of blending at least one powder with at least one solvent and at least one binder to form a slurry; forming a plurality of agglomerates from the slurry; screening the plurality of agglomerates; sintering the plurality of agglomerates; and melting said plurality of agglomerates to form a plurality of homogenous, densified powder particles.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: James F. Myers, Scott Ohm
  • Publication number: 20100151267
    Abstract: A powder batch is described comprising single crystal metal-containing particles having a crystal size of less than 50 nm as measured by X-ray diffraction and having a weight average particle size of from about 10 nanometers to less than 100 nanometers as measured by transmission electron microscopy and including a continuous or non-continuous coating of a ceramic material. The powder batch is preferably produced by flame spraying.
    Type: Application
    Filed: June 19, 2007
    Publication date: June 17, 2010
    Applicant: Cabot Corporation
    Inventors: Toivo T. Kodas, Miodrag Oljaca, Mark J. Hampden-Smith, George P. Fotou, Ralph E. Kornbrekke, Jian-Ping Shen
  • Publication number: 20100139455
    Abstract: The present invention provides a method for preparing nanoparticles of group IV elements, particularly nanoparticles of Si, Ge and Sn, and binary and ternary alloys of these elements. The method comprises the solution-phase decomposition of one or more group IV metal precursors at elevated temperature and under an inert atmosphere at atmospheric pressure, using a decomposition-promoting reagent. A surface-bonding agent is added to the reaction mixture to form an organic layer surrounding the nanoparticles and prevent aggregation.
    Type: Application
    Filed: September 4, 2007
    Publication date: June 10, 2010
    Inventors: Richard David Tilley, Christopher William Bumby
  • Patent number: 7727462
    Abstract: An article made of a metallic material having its constituent elements is made by furnishing at least one nonmetallic precursor compound, wherein all of the nonmetallic precursor compounds collectively include the constituent elements of the metallic material in their respective constituent-element proportions. The precursor compounds are chemically reduced to produce particles comprising the metallic material, without melting the precursor compounds and without melting the metallic material. The particles may be consolidated into a rod, which may be used as a welding rod in a welding operation. Alternatively, the nonmetallic precursor compounds may be consolidated prior to the chemical reduction.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: June 1, 2010
    Assignee: General Electric Company
    Inventors: Eric Allen Ott, Andrew Philip Woodfield, Clifford Earl Shamblen
  • Patent number: 7717977
    Abstract: The producing unit for continuously producing metal microparticles formed of a multicomponent alloy accompanied by the generation of a byproduct gas through an early reaction of the formation of the metal particles comprises a first mixing unit for continuously supplying and mixing a plurality of solutions for conducting the early reaction, a second mixing unit for continuously supplying another solution to the reaction liquid containing the metal microparticles formed in the early reaction and for mixing the two solutions, to introduce dissimilar metal atoms into the crystal lattices of the metal microparticles, and a gas-liquid separation unit that is installed in a midway of the pipe which is made so as to have enough length to finish the early reaction, and which continuously passes the reaction liquid to the second mixing unit from the first mixing unit, and that continuously removes the byproduct gas generated with the proceeding of the early reaction.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: May 18, 2010
    Assignee: FUJIFILM Corporation
    Inventors: Fumiko Shiraishi, Yasunori Ichikawa, Koukichi Waki, Seiji Sugiyama
  • Publication number: 20100112369
    Abstract: Compositions are disclosed comprising mercury, titanium, copper and one or more of tin, chromium and silicon, useful for the release of mercury in applications requiring the same, in particular in fluorescent lamps. A process for the preparation of these compositions is also disclosed.
    Type: Application
    Filed: January 7, 2010
    Publication date: May 6, 2010
    Applicant: SAES GETTERS S.p.A.
    Inventors: Alberto CODA, Alessio CORAZZA, Alessandro GALLITOGNOTTA, Vincenzo MASSARO, Mario PORRO, Luca TOIA
  • Publication number: 20100101637
    Abstract: The present invention aims to provide a method for producing a dispersion of metal nanoparticles which enables to control the shape and the particle diameter over a wide range, a dispersion of metal nanoparticles having superior dispersion stability, and a method for producing the same. In addition, the present invention further aims to provide a dispersion of metal nanoparticles which has a volume resistivity of 2×10?6 to 6×10?6 ?·cm and is suitable for use as an electrically conductive material, and a method for producing the same. Moreover, the present invention further aims to provide a method for synthesizing metal nanoparticles which can produce metal nanoparticles suitable for use as electrically conductive materials by synthesizing the metal nanoparticles from a insoluble metal salt which is free of corrosive materials.
    Type: Application
    Filed: February 27, 2008
    Publication date: April 29, 2010
    Applicant: Mitsubishi Materials Corporation
    Inventors: Kazuhiko Yamasaki, Airi Katagiri, Masahide Arai, Yoshiaki Takata, Toshiharu Hayashi
  • Patent number: 7704297
    Abstract: A melt of nickel nitrate hydrate is introduced as droplets or liquid flow into a heated reaction vessel and thermally decomposed in a gas phase at a temperature of 1200° C. or more and at an oxygen partial pressure equal to or below the equilibrium oxygen pressure of nickel-nickel oxide at that temperature to manufacture a highly crystalline fine nickel powder with an extremely narrow particle size distribution. The oxygen partial pressure during the thermal decomposition is preferably 10?2 Pa or less, and a metal other than nickel, a semimetal and/or a compound of these may be added to the nickel nitrate hydrate melt to manufacture a highly crystalline nickel alloy powder or highly crystalline nickel composite powder. The resultant powder is suited in particular to thick film pastes such as conductor pastes for manufacturing ceramic multilayer electronic components.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: April 27, 2010
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Kazuro Nagashima, Hidenori Ieda, Tetsuya Kimura
  • Publication number: 20100090164
    Abstract: The present invention provides high quality monodisperse or substantially monodisperse InAs nanocrystals in the as-prepared state. In some embodiments, the as-prepared substantially monodisperse InAs nanocrystals demonstrate a photoluminescence of between about 700 nm and 1400 nm.
    Type: Application
    Filed: June 10, 2009
    Publication date: April 15, 2010
    Inventors: Xiaogang Peng, Renguo Xie
  • Patent number: 7678339
    Abstract: A vaporised flow quenching reactor for producing a fine-powder from one or more reactant materials. The reactor comprises a first heat source selected from one of a DC plasma torch and RF plasma torch, a first reaction chamber within which energized reactant materials react and a first convergent-divergent nozzle for quenching the heated reactant materials from the first reaction chamber. The reactor also comprises a second reaction chamber provided for congregation of nano particles formed therefrom and a second convergent-divergent nozzle to deliver the nano particles to a collection chamber.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: March 16, 2010
    Inventor: Kurnia Wira
  • Publication number: 20100061879
    Abstract: The invention relates to novel pre-alloyed metal powders a method for production and use thereof.
    Type: Application
    Filed: November 28, 2007
    Publication date: March 11, 2010
    Applicant: H.C. Starck GmbH
    Inventors: Bernd Mende, Gerhard Gille, Ines Lamprecht
  • Publication number: 20100043662
    Abstract: A diffusion alloyed iron powder is provided wherein tungsten W is bonded to the surfaces of the particles of an iron or iron-based powder, and wherein the diffusion alloyed iron powder comprises by weight-%: 30-60 W, with the balance being essentially only iron and unavoidable impurities.
    Type: Application
    Filed: January 21, 2008
    Publication date: February 25, 2010
    Applicant: HOGANAS AB (publ)
    Inventors: Johan Arvidsson, Hans Söderhjelm
  • Publication number: 20100018346
    Abstract: Synthesis of nanoparticles with particle size control is provided by the method of using two different metal-containing precursors, a capping component, an optional reducing agent, and then contacting the two precursors with the capping component to form a reaction solution, which is heated to produce first and second metals-containing nanoparticles. By controlling the ratio of the concentration of the capping component to the total concentration of the two metal-containing precursors, the nanoparticles can have diameters ranging between about 1 nm to about 15 nm. A decrease in the concentration of the capping component typically increases the size of the nanoparticles. Preferred compositions include Pt and Co-containing alloy nanoparticles. Controlled synthesis of larger, about 6 nm to about 12 nm, sized nanoparticles can be achieved in a solvent-free reaction process.
    Type: Application
    Filed: January 26, 2009
    Publication date: January 28, 2010
    Inventors: Chuan-Jian Zhong, Jin Luo, Zhichaun Xu, Ting He